JPH08227841A - Light source filter, production aligner using filter thereof and projection exposure method - Google Patents
Light source filter, production aligner using filter thereof and projection exposure methodInfo
- Publication number
- JPH08227841A JPH08227841A JP7030939A JP3093995A JPH08227841A JP H08227841 A JPH08227841 A JP H08227841A JP 7030939 A JP7030939 A JP 7030939A JP 3093995 A JP3093995 A JP 3093995A JP H08227841 A JPH08227841 A JP H08227841A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- exposure
- region
- source filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/286—Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70583—Speckle reduction, e.g. coherence control or amplitude/wavefront splitting
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Optical Filters (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光源フィルタおよびそれ
を用いた投影露光装置に関し、特に照明光学系(2次光
源面)に多重反射による干渉変調で露光光の位相を、ま
た半透明膜により透過率を制御可能とした光源フィルタ
およびそれを用いた投影露光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source filter and a projection exposure apparatus using the same. The present invention relates to a light source filter whose transmittance can be controlled and a projection exposure apparatus using the same.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】近
年、半導体素子の高集積化に伴い、より微細なパターン
での回路構成が求められ、リソグラフィ技術に対する一
層の微細化要求が著しい。そこで、ステッパと呼ばれる
投影型露光装置を用い、その要求に応ずるべく検討がな
されてきた。2. Description of the Related Art In recent years, as semiconductor elements have been highly integrated, circuit structures with finer patterns have been required, and further miniaturization of lithography techniques has been remarkably demanded. Therefore, a projection type exposure apparatus called a stepper has been used and studies have been made to meet the demand.
【0003】従来からの検討の中心は露光装置に用いる
光源波長の短波長化とそれに伴う光学系、レジスタなど
の周辺技術の改良に重点がおかれ、高圧水銀ランプの輝
線であるg線(波長:436nm)、i線(波長:36
5nm)、さらにはKrFエキシマレーザを用いたDe
ep UV領域(波長:248nm)まで対象としてい
る。The focus of the conventional studies has been on shortening the wavelength of the light source used in the exposure apparatus and accompanying improvements in peripheral technologies such as optical systems and resistors. : 436 nm), i-line (wavelength: 36
5 nm), and De using a KrF excimer laser
It covers up to the ep UV region (wavelength: 248 nm).
【0004】しかしながら、特に半導体素子の急速な高
集積化に伴い、回路の最小線幅要求は0.3μm以下、
さらに0.2μm以下と光源の波長と同等かそれ以下の
値に近づきつつある。However, especially with the rapid integration of semiconductor devices, the minimum line width requirement of the circuit is 0.3 μm or less,
Further, it is approaching a value of 0.2 μm or less, which is equal to or less than the wavelength of the light source.
【0005】ここで、投影型露光装置の限界解像度Rと
焦点深度(DOF)は一般に式(1)に示すレーリーの
式により与えられる。Here, the limit resolution R and the depth of focus (DOF) of the projection type exposure apparatus are generally given by the Rayleigh equation shown in the equation (1).
【0006】光源の波長を短波長化することは解像度な
どの向上に重要である。しかし、短波長化に伴う狭帯域
化した光源と収差のない光学系の達成、ならびに露光波
長域に適した透過率を有するレジストを中心とした周辺
プロセスの構築など、露光システム全体としての高性能
な成立が必要であり、光源波長などの短波長化や縮小投
影レンズを中心とした光学系は限界に近づきつつある。
また、当然ながらこれらの露光装置ならびに露光プロセ
スに対する投資も増大しコストの低減が難しい。Shortening the wavelength of the light source is important for improving resolution and the like. However, the high performance of the exposure system as a whole, such as the achievement of a narrow-band light source and an aberration-free optical system accompanying the shortening of the wavelength, and the construction of peripheral processes centered on a resist with a transmittance suitable for the exposure wavelength range. Therefore, the optical system centering on the reduction of the wavelength of the light source and the reduction projection lens is approaching the limit.
In addition, as a matter of course, investment in these exposure apparatuses and exposure processes also increases, making it difficult to reduce costs.
【0007】したがって、式(1)から光源波長の短波
長化なしに解像度の向上を図るためには、投影レンズの
高NA(開口数)化が挙げられる。Therefore, in order to improve the resolution without shortening the wavelength of the light source from the formula (1), it is necessary to increase the NA (numerical aperture) of the projection lens.
【0008】しかしながら、高NA化は式(2)より明
らかなように、リソグラフィにおけるもう1つの重要な
特性である焦点深度の低下を招き、両特性の良好な達成
には開口数NAの最適化が必要である。また、高NA化
は作製技術的にも困難を伴い、現状ではいわゆる最大の
開口数NAは0.6程度である。さらに、一般的に用い
られている石英系のレンズ材料では、短波長領域での色
収差の補正が難しく吸収も増大することから、発熱によ
るレンズ歪が問題になってくる。However, as is clear from the equation (2), increasing the NA causes a decrease in the depth of focus, which is another important characteristic in lithography, and the numerical aperture NA is optimized in order to achieve both characteristics satisfactorily. is necessary. In addition, increasing the NA is also difficult in terms of manufacturing technology, and at present, the so-called maximum numerical aperture NA is about 0.6. Further, with commonly used quartz-based lens materials, it is difficult to correct chromatic aberration in the short wavelength region and absorption increases, so that lens distortion due to heat generation becomes a problem.
【0009】[0009]
【数1】 [Equation 1]
【0010】そこで、近年、光源の波長や投影レンズの
開口数NAの改良なしに解像度および焦点深度の向上を
図る幾つかの方法が提案されている。Therefore, in recent years, some methods have been proposed for improving the resolution and the depth of focus without improving the wavelength of the light source and the numerical aperture NA of the projection lens.
【0011】マスクへの加工あるいは露光装置の光学系
への遮光板の設置により解像度や焦点深度などの改善を
図る方法は、露光装置としてこれまでどおりの光源とレ
ンズが適用でき、かつ、レジストなどの周辺プロセスも
生かせることで、大幅なコスト増なしに展開できる。A method for improving resolution and depth of focus by processing a mask or installing a light-shielding plate in an optical system of an exposure apparatus can use the same light source and lens as the exposure apparatus, and can also use a resist or the like. By making the most of the peripheral processes of, it is possible to deploy without significant cost increase.
【0012】たとえば、特開昭57−62052によれ
ば、周期的なパターンを有するマスクの不透明部を挟む
両側の光透過部の少なくとも一方に、隣り合う光透過部
とは位相の180°反転する透明膜を形成することによ
り、同一開口数NAのレンズと比較して解像度を高める
方法が開示されている(第1の方法)。For example, according to JP-A-57-62052, at least one of the light transmitting portions on both sides of the opaque portion of the mask having a periodic pattern has a 180 ° phase inversion with respect to the adjacent light transmitting portion. A method is disclosed in which a transparent film is formed to improve the resolution as compared with a lens having the same numerical aperture NA (first method).
【0013】特開昭62−67514によれば、孤立
(単一)パターンの解像度向上手段として、マスクの単
一光透過部の周辺に良好な解像度が得られる範囲で位相
の反転した、やはり透明膜で形成された光透過部を補助
パターンとして設ける方法が開示されている(第2の方
法)。According to Japanese Patent Laid-Open No. 62-67514, as a means for improving the resolution of an isolated (single) pattern, the phase is inverted in the range where a good resolution can be obtained around the single light transmitting portion of the mask, which is also transparent. A method of providing a light transmitting portion formed of a film as an auxiliary pattern is disclosed (second method).
【0014】また、Journal of Vacuu
m Science Technology B9
(6) (3113)1991に、マスクパターンから
の回折光の位相を制御し、多重焦点結像系を形成可能と
すべく縮小投影レベルの瞳部分に光源フィルタを設置す
ることにより、コンタクトホールパターンなどの繰返し
性のない単一パターンの特性向上に有効な方法が開示さ
れている(第3の方法)。In addition, Journal of Vacuu
m Science Technology B9
(6) In (3113) 1991, the phase of the diffracted light from the mask pattern is controlled, and a light source filter is installed in the pupil portion of the reduced projection level so that a multi-focus imaging system can be formed. A method effective for improving the characteristics of a single pattern having no repeatability such as (3rd method) is disclosed.
【0015】さらに、特開平4−101148では、照
明光学系の瞳面かその共役面あるいは投影光学系の瞳面
の少なくとも1箇所に、マスクの微細パターンから得ら
れるフーリエ変換パターンに基づいて定めた1組以上の
光透過部を有する遮光板を設け、同一開口数NAのレン
ズに比較し繰返しパターンの解像度と焦点深度の向上を
図る方法が開示されている(第4の方法)。Further, in Japanese Patent Laid-Open No. 4-101148, it is determined on at least one position of the pupil plane of the illumination optical system or its conjugate plane or the pupil plane of the projection optical system based on the Fourier transform pattern obtained from the fine pattern of the mask. A method has been disclosed in which a light-shielding plate having one or more sets of light-transmitting portions is provided and the resolution and the depth of focus of a repetitive pattern are improved as compared with a lens having the same numerical aperture NA (fourth method).
【0016】しかしながら、上記第1の方法は、規則的
な繰返しパターンでなければ効果が得られない。また、
シフト端部の位相反転により周期性パターンの端部にマ
スクパターンにないパターンを転写してしまう場合もあ
る。さらに、実際の回路をレイアウトする場合は、複雑
な回路パターン中に良好な効果が得られるようにシフタ
を配置する必要があり、この作業が非常に煩雑となる。
さらに、回路構成によってはシフタレイアウトに矛盾を
生じシフタの配置が困難な場合もあり、実用化に向けて
大きな障害となっている。また、マスクの作製において
も、シフタを不透明(遮光)パターンの上部、下部のど
の位置に形成する場合でも、従来のマスク作製工程にな
い重ね合わせのプロセスを有し、高精度要求とともに工
程の増加を招く。さらに、欠陥の検査・修正も、シフタ
が従来からの遮光膜であるCr膜とは全く異なる透明膜
であるため、検査・修正とも実用的な手法が得られてい
ないのが現状である。However, the first method is not effective unless it has a regular repeating pattern. Also,
In some cases, a pattern not included in the mask pattern may be transferred to the end of the periodic pattern due to the phase inversion of the shift end. Furthermore, when laying out an actual circuit, it is necessary to dispose a shifter in a complicated circuit pattern so that a good effect can be obtained, and this work becomes very complicated.
Furthermore, depending on the circuit configuration, the shifter layout may be inconsistent and the shifter layout may be difficult, which is a major obstacle to practical use. In addition, even when a mask is produced, no matter where the shifter is formed above or below the opaque (light-shielding) pattern, there is an overlay process that is not available in the conventional mask production process. Invite. Further, in the inspection / correction of defects, the shifter is a transparent film which is completely different from the Cr film which is a conventional light-shielding film.
【0017】第2の方法は、第1の方法が適用できない
単一パターンの特性向上に有益であるが、周囲に透過光
の位相を反転した補助シフタが必要であり、パターンレ
イアウトは非常に煩雑で制約も増大する。また、補助パ
ターンのサイズによっては不必要なパターンが転写され
てしまうなどの問題もある。その他アライメント工程、
欠陥検査・修正などのマスク作製上の問題は第1の方法
と同様で実用上大きな障壁となっている。The second method is useful for improving the characteristics of a single pattern to which the first method cannot be applied, but an auxiliary shifter in which the phase of transmitted light is inverted is necessary in the surroundings, and the pattern layout is very complicated. The restrictions also increase. There is also a problem that an unnecessary pattern is transferred depending on the size of the auxiliary pattern. Other alignment process,
Problems in mask production such as defect inspection and repair are the same as in the first method, which is a major obstacle in practical use.
【0018】第3の方法は、コンタクトホールパターン
などの周期性のない単一パターンの特性向上に有効であ
るが、この手法を達成するために縮小投影レンズ内にマ
スクパターンからの回折光の位相を制御・変調可能な光
学素子を要する。さらに、この光学素子の位相変調領域
は効果の得られるマスクパターンに依存があるため、適
用パターンに応じて最適な変調光学素子を縮小投影レン
ズ内で交換しなければならない。したがって、この光学
素子を含めた縮小投影レンズの透過率の確保と、光学素
子の発熱などに起因する各種収差の除去は実用上極めて
重大な問題である。The third method is effective for improving the characteristics of a single pattern having no periodicity such as a contact hole pattern, but in order to achieve this method, the phase of the diffracted light from the mask pattern is set in the reduction projection lens. An optical element that can control and modulate Furthermore, since the phase modulation area of this optical element depends on the mask pattern in which the effect is obtained, the optimum modulation optical element must be replaced in the reduction projection lens according to the application pattern. Therefore, securing the transmittance of the reduction projection lens including this optical element and eliminating various aberrations caused by heat generation of the optical element are very serious problems in practical use.
【0019】第4の方法は、シフタなどを形成しない従
来どおりの通常マスクを用い、照明系へ遮光板を配置す
るだけで特性の向上が図れ有益であるが、パターンレイ
アウト方向依存を有し、限定されたレイアウト方向でし
か良好な効果が得られない。また、最適化された所定の
線幅より太い線幅領域では、焦点深度特性は通常の照明
系で得られる特性よりも大幅に低下する。さらに、同一
の線幅でもいわゆるパターンの疎密依存(近接効果)を
有し、パターンピッチの違いにより良好な特性の得られ
る露光条件が異なる。しかも、この技術の最大の問題点
は周期性のない単一パターンあるいはランダムパターン
には全く改善効果が得られないことである。The fourth method is advantageous in that the characteristics can be improved simply by arranging a light shielding plate in the illumination system by using a conventional ordinary mask without forming a shifter or the like, but it has a pattern layout direction dependency, A good effect can be obtained only in a limited layout direction. Further, in a line width region thicker than the optimized predetermined line width, the depth of focus characteristic is significantly lower than the characteristic obtained in a normal illumination system. Furthermore, even with the same line width, there is so-called pattern sparse / dense dependence (proximity effect), and the exposure conditions under which good characteristics are obtained differ depending on the pattern pitch. Moreover, the biggest problem of this technique is that no improvement effect can be obtained for a single pattern or a random pattern having no periodicity.
【0020】図12および13は、従来の投影露光装置
による簡単な結像原理を示す模式図である。図12は通
常のマスクパターンによる結像を示す図であり、図13
は露光光の回折角が大きく結像できない様子を示す図で
ある。12 and 13 are schematic views showing a simple principle of image formation by a conventional projection exposure apparatus. FIG. 12 is a diagram showing an image formed by a normal mask pattern.
FIG. 6 is a diagram showing a state in which an image cannot be formed due to a large diffraction angle of exposure light.
【0021】図12および13において、従来の投影露
光装置は、光源1とフライアイレンズ2とコンデンサレ
ンズ4とマスク5と投影レンズ8とを含む。12 and 13, the conventional projection exposure apparatus includes a light source 1, a fly-eye lens 2, a condenser lens 4, a mask 5 and a projection lens 8.
【0022】光源1の下方にフライアイレンズ2が設け
られ、フライアイレンズ2の下方にコンデンサレンズ4
が設けられ、コンデンサレンズ4の下方にマスク5が設
けられ、マスク5の下方に投影レンズ8が設けられてい
る。ウエハ10は投影レンズ8の下方に設置されてい
る。A fly-eye lens 2 is provided below the light source 1, and a condenser lens 4 is provided below the fly-eye lens 2.
Is provided, a mask 5 is provided below the condenser lens 4, and a projection lens 8 is provided below the mask 5. The wafer 10 is installed below the projection lens 8.
【0023】図12を参照して、光源1からの露光光6
1は、フライアイレンズ2およびコンデンサレンズ4を
通りマスク5のパターンによって回折され回折光71と
なって、投影レンズ8の瞳に取込まれ、0次光と回折さ
れた±1次光の3光束でウエハ10上にマスクパターン
が結像される。Referring to FIG. 12, exposure light 6 from light source 1
1 passes through the fly-eye lens 2 and the condenser lens 4 and is diffracted by the pattern of the mask 5 to become diffracted light 71, which is taken into the pupil of the projection lens 8 and is the 0th-order light and the ± 1st-order light diffracted. The light flux forms an image of the mask pattern on the wafer 10.
【0024】図13を参照して、微細なマスクパターン
になるほどその回折角は大きくなり、微細さがある限界
を越えると、そのパターンについては±1次回折光が投
影レンズ8の有効瞳から外れ、ウエハ10上に微細パタ
ーンを結像することができなくなる。Referring to FIG. 13, the finer the mask pattern, the larger its diffraction angle becomes. When the fineness exceeds a certain limit, ± 1st order diffracted light deviates from the effective pupil of the projection lens 8 for the pattern. The fine pattern cannot be imaged on the wafer 10.
【0025】図14は、従来の投影露光装置において遮
光板13を設けた場合の簡単な結像原理を示す模式図で
ある。FIG. 14 is a schematic view showing a simple image forming principle when the light shielding plate 13 is provided in the conventional projection exposure apparatus.
【0026】光源1の下方にフライアイレンズ2が設け
られ、フライアイレンズ2の下方に遮光板13が設けら
れ、遮光板13の下方にコンデンサレンズ4が設けら
れ、コンデンサレンズ4の下方にマスク51が設けら
れ、マスク51の下方に投影レンズ8が設けられてい
る。ウエハ10は投影レンズ8の下方に設置されてい
る。A fly-eye lens 2 is provided below the light source 1, a light-shield plate 13 is provided below the fly-eye lens 2, a condenser lens 4 is provided below the light-shield plate 13, and a mask is provided below the condenser lens 4. 51 is provided, and the projection lens 8 is provided below the mask 51. The wafer 10 is installed below the projection lens 8.
【0027】図14を参照して、照明系の中心領域を遮
光した遮光板13をフライアイレンズ2の下方に設け、
露光光61の斜入射成分65の回折光75を利用した変
形照明技術により上記の問題を改善している。この手法
はマスクパターンで得られる回折角の半分を利用する2
光束75a,75bにより結像を得るものであり(回折
光75cは投影レンズ8の有効瞳から外れる)、解像度
の向上が望めるとともに、2光束結像であることから理
想的にはそれぞれの光束で光路差がほとんどなく、位相
の整合性に優れ良好な焦点深度が得られる。Referring to FIG. 14, a light shielding plate 13 which shields the central region of the illumination system is provided below the fly-eye lens 2.
The above problem is solved by the modified illumination technique using the diffracted light 75 of the oblique incident component 65 of the exposure light 61. This method uses half of the diffraction angle obtained with the mask pattern.
An image is obtained by the light beams 75a and 75b (diffracted light 75c deviates from the effective pupil of the projection lens 8), and improvement in resolution can be expected, and ideally, since the two light beams are formed, the respective light beams are formed. There is almost no optical path difference, excellent phase matching, and good depth of focus can be obtained.
【0028】しかしながら、通常照明はもとより、斜入
射照明を利用する変形照明技術においても、結像の基本
はマスクパターンで回折された露光光の干渉効果を利用
している。したがって、周期性を有する繰返しパターン
に対しては干渉効果は得られるが、周期性のない単一パ
ターンでは干渉効果が全く得られず、変形照明によって
も改善効果は望めない。However, not only in the normal illumination but also in the modified illumination technique using the grazing incidence illumination, the basis of image formation utilizes the interference effect of the exposure light diffracted by the mask pattern. Therefore, the interference effect can be obtained for the repetitive pattern having the periodicity, but the interference effect cannot be obtained at all for the single pattern having no periodicity, and the improvement effect cannot be expected even by the modified illumination.
【0029】図15は、特開平4−101148に開示
された図14に示した従来の変形照明技術に用いられて
いる遮光板35の構造例を示す模式図である。(a)お
よび(c)は遮光板35の平面図である。(b)および
(d)は、それぞれ(a)および(c)の遮光板を点線
mm′または点線nn′で切断した断面図である。FIG. 15 is a schematic view showing an example of the structure of the light shielding plate 35 used in the conventional modified illumination technique shown in FIG. 14 disclosed in Japanese Patent Laid-Open No. 4-101148. (A) And (c) is a top view of the light shielding plate 35. (B) and (d) are sectional views obtained by cutting the light shielding plate of (a) and (c) along a dotted line mm 'or a dotted line nn', respectively.
【0030】図15において、遮光板35は、露光光が
通る開口部11と露光光が遮光される遮光部12とを含
む。In FIG. 15, the light blocking plate 35 includes an opening 11 through which the exposure light passes and a light blocking portion 12 that blocks the exposure light.
【0031】図15を参照して、2つの開口部11から
なる遮光板35を投影露光装置に装着することにより斜
入射の点形状照明系が形成される。Referring to FIG. 15, a light-shielding plate 35 having two openings 11 is attached to the projection exposure apparatus to form a point-shaped illumination system with oblique incidence.
【0032】しかしながら、この方法は特性改善効果の
得られるパターン(たとえば繰返しパターン)にレイア
ウト方向依存を有し、種々のレイアウトが施される実際
の回路パターンへの適用には問題となる。また、最適化
された線幅領域以上の線幅では通常照明に比較して大幅
に焦点深度(DOF)が低下する。さらに、同一の線幅
でもいわゆるパターンの疎密依存(近接効果)を有し、
ピッチの違いにより良好な特性の得られる露光条件が異
なる。さらに、この手法の最大の問題点として、周期性
のない単一パターンあるいはランダムパターンに対して
全く改善効果が認められない点が挙げられる。However, this method has a layout direction dependency in a pattern (for example, a repetitive pattern) in which a characteristic improving effect can be obtained, and is problematic when applied to an actual circuit pattern in which various layouts are applied. Further, the depth of focus (DOF) is significantly reduced as compared with the normal illumination when the line width is equal to or larger than the optimized line width region. Furthermore, even with the same line width, there is so-called pattern density dependence (proximity effect),
The exposure conditions under which good characteristics are obtained differ depending on the pitch. Further, the biggest problem of this method is that no improvement effect is observed for single patterns or random patterns having no periodicity.
【0033】この単一パターンやランダムパターンに対
しての問題は、結像特性の改善効果がマスクで回折され
た露光光の干渉効果に基づいているためであり、周期性
を有する繰返しパターンでは改善効果が得られるもの
の、周期性のない単一パターンやランダムパターンでは
改善効果は得られない。The problem with this single pattern or random pattern is that the effect of improving the imaging characteristics is based on the interference effect of the exposure light diffracted by the mask, and is improved in the repetitive pattern having periodicity. Although an effect can be obtained, an improvement effect cannot be obtained with a single pattern or a random pattern having no periodicity.
【0034】このように従来の技術では、パターンの周
期性、パターンのレイアウト、広範なパターンサイズ、
パターンの疎密(近接効果)などの実用上要求される特
性の改善をすべて良好に満足することができないという
問題点があった。As described above, in the conventional technique, pattern periodicity, pattern layout, wide pattern size,
There is a problem that it is not possible to satisfactorily satisfy all of the practically required improvements such as pattern density (proximity effect).
【0035】本発明は以上のような問題点を解決するた
めになされたもので、投影露光装置の波長およびレンズ
の開口数NAの改善なしに微細パターンの解像度ならび
に広範なパターン領域における焦点深度の向上をパター
ンのレイアウト方向依存なく達成し、また、周期性のな
い単一パターンやランダムパターンの特性改善を図るこ
とが可能な光源フィルタおよびそれを用いた露光装置を
提供することを目的とする。The present invention has been made in order to solve the above problems, and it is possible to improve the resolution of a fine pattern and the depth of focus in a wide pattern area without improving the wavelength of the projection exposure apparatus and the numerical aperture NA of the lens. An object of the present invention is to provide a light source filter capable of achieving improvement without depending on the layout direction of a pattern and improving characteristics of a single pattern or a random pattern having no periodicity, and an exposure apparatus using the same.
【0036】[0036]
【課題を解決するための手段】請求項1に係る光源フィ
ルタは、露光光を透過する光源フィルタであって、露光
光が透過する第1領域と、第1領域を挟んで設けられた
第2領域とを設けたものであり、露光光は第1領域と第
2領域の境界での反射なしに第1領域を透過する第1露
光光と、上記境界で反射され第1領域を一往復して透過
する第2露光光とを含み、第2露光光は第1露光光と2
分の1波長の位相差を生じる。A light source filter according to a first aspect is a light source filter that transmits exposure light, and a first region that transmits the exposure light and a second region that sandwiches the first region. The first exposure light is transmitted through the first area without being reflected at the boundary between the first area and the second area, and the exposure light is reflected at the boundary and makes one round trip through the first area. Second exposure light that passes through the second exposure light and the second exposure light is transmitted through the first exposure light and the second exposure light.
A phase difference of one-half wavelength is generated.
【0037】請求項2に係る光源フィルタは、請求項1
の光源フィルタにおいて、第2領域は露光光に対する透
過率が30%以上であり、反射率が55%以下の薄膜で
ある。A light source filter according to a second aspect is the first aspect.
In the light source filter of No. 2, the second region is a thin film having a transmittance of 30% or more for exposure light and a reflectance of 55% or less.
【0038】請求項3に係る光源フィルタは、請求項2
の光源フィルタにおいて、薄膜はCr,Ta,Mo,A
l,Ti,MoSi、あるいはCr,Ta,Mo,A
l,Ti,MoSiを主成分とする酸化物または窒化物
からなる。A light source filter according to a third aspect is the second aspect.
In the light source filter of, the thin film is made of Cr, Ta, Mo, A
l, Ti, MoSi, or Cr, Ta, Mo, A
It is made of an oxide or a nitride containing 1, Ti, and MoSi as the main components.
【0039】請求項4に係る光源フィルタは、請求項1
ないし3のいずれかの光源フィルタにおいて、第1領域
はSOGまたはスパッタSiO2 または光学ガラスまた
は有機膜のいずれかにより形成されている。A light source filter according to a fourth aspect is the first aspect.
In any one of the light source filters 3 to 3, the first region is formed of SOG, sputtered SiO 2, optical glass, or an organic film.
【0040】請求項5に係る光源フィルタは、請求項1
ないし4のいずれかの光源フィルタにおいて、露光光の
一部を遮光する遮光部分を設けたものである。A light source filter according to a fifth aspect is the first aspect.
In any one of the light source filters 4 to 4, a light shielding portion for shielding a part of the exposure light is provided.
【0041】請求項6に係る投影露光装置は、露光光を
投影する投影露光装置であって、露光光を出射する光源
と、光源フィルタとを設けたものであり、光源フィルタ
は露光光が透過する第1領域と、第1領域を挟んで第2
領域とを設けたものであり、露光光は第1領域と第2領
域との境界での反射なしに第1領域を透過する第1露光
光と、上記境界で反射され第1領域を一往復して透過す
る第2露光光とを含み、第2露光光は第2露光光と2分
の1波長の位相差を生じ、投影形状を有するマスクとを
設けたものである。A projection exposure apparatus according to a sixth aspect is a projection exposure apparatus for projecting exposure light, comprising a light source for emitting the exposure light and a light source filter, the light source filter transmitting the exposure light. And a second region sandwiching the first region
The first exposure light is transmitted through the first area without being reflected at the boundary between the first area and the second area, and the exposure light is reflected at the boundary and makes one round trip through the first area. And a second exposure light which is transmitted therethrough, and the second exposure light is provided with a mask having a projected shape that causes a phase difference of a half wavelength with the second exposure light.
【0042】請求項7に係る投影露光装置は、請求項6
の投影露光装置において、光源フィルタの第2領域は露
光光に対する透過率が30%以上であり、反射率が55
%以下の薄膜である。A projection exposure apparatus according to a seventh aspect is the sixth aspect.
In the projection exposure apparatus, the second region of the light source filter has a transmittance of exposure light of 30% or more and a reflectance of 55%.
% Or less thin film.
【0043】請求項8に係る投影露光装置は、請求項7
の投影露光装置において、薄膜はCr,Ta,Mo,A
l,Ti,MoSi、あるいはCr,Ta,Mo,A
l,Ti,MoSiを主成分とする酸化物または窒化物
からなる。A projection exposure apparatus according to an eighth aspect is the seventh aspect.
In the projection exposure apparatus, the thin film is made of Cr, Ta, Mo, A
l, Ti, MoSi, or Cr, Ta, Mo, A
It is made of an oxide or a nitride containing 1, Ti, and MoSi as the main components.
【0044】請求項9に係る投影露光装置は、光源フィ
ルタの第1領域は請求項6ないし8のいずれかの投影露
光装置において、SOGまたはスパッタSiO2 または
光学ガラスまたは有機膜のいずれかにより形成されてい
る。According to a ninth aspect of the projection exposure apparatus, the first region of the light source filter is formed of SOG, sputtered SiO 2, optical glass, or an organic film in the projection exposure apparatus according to any one of the sixth to eighth aspects. Has been done.
【0045】請求項10に係る投影露光装置は、請求項
6ないし9のいずれかの投影露光装置において、光源フ
ィルタに隣接して設けられた露光光の一部を遮光する遮
光部分を設けたものである。A projection exposure apparatus according to a tenth aspect is the projection exposure apparatus according to any one of the sixth to ninth aspects, further comprising a light-shielding portion provided adjacent to the light source filter for shielding a part of the exposure light. Is.
【0046】請求項11に係る投影露光方法は、光源フ
ィルタを用いて露光光を投影する投影露光方法であっ
て、露光光を作成するステップと、作成された露光光の
一部の位相を光源フィルタを用いて1/2波長ずらすス
テップと、1/2波長ずれた露光光と1/2波長ずれて
いない元の露光光とを重ねて所定の被投影物に投影する
ステップとを設けたものである。The projection exposure method according to claim 11 is a projection exposure method of projecting exposure light using a light source filter, wherein the step of creating exposure light and the phase of a part of the created exposure light A step of shifting a half wavelength by using a filter, and a step of superposing the exposure light shifted by a half wavelength and the original exposure light not shifted by a half wavelength on a predetermined projection object Is.
【0047】請求項12に係る投影露光方法は、請求項
11の投影露光方法において、露光光の一部を遮光する
ステップを設けたものである。A projection exposure method according to a twelfth aspect is the projection exposure method according to the eleventh aspect, further comprising a step of blocking a part of the exposure light.
【0048】[0048]
【作用】請求項1に係る光源フィルタにおいては、第1
露光光が第1領域と第2領域との境界での反射なしに第
1領域と第2領域とを透過し、第2露光光が第1領域と
第2領域との境界で反射され第1領域を一往復して透過
し、第2露光光は第1露光光と2分の1波長の位相差を
生じるので、第1露光光と第2露光光の結像焦点位置は
半波長光路差分ずれる。In the light source filter according to the first aspect, the first
The exposure light passes through the first region and the second region without being reflected at the boundary between the first region and the second region, and the second exposure light is reflected at the boundary between the first region and the second region. Since the first exposure light and the second exposure light have a phase difference of a half wavelength with respect to the first exposure light, the image forming focal position of the first exposure light and the second exposure light is a half-wavelength optical path difference. It shifts.
【0049】請求項2に係る光源フィルタにおいては、
請求項1の光源フィルタにおいて、第2領域は露光光に
対する透過率が30%以上であり反射率が55%以下の
薄膜である。In the light source filter according to claim 2,
In the light source filter according to claim 1, the second region is a thin film having a transmittance of exposure light of 30% or more and a reflectance of 55% or less.
【0050】請求項3に係る光源フィルタにおいては、
請求項2の光源フィルタにおいて、薄膜はCr,Ta,
Mo,Al,Ti,MoSi、あるいはCr,Ta,M
o,Al,Ti,MoSiを主成分とする酸化物または
窒化物からなる。In the light source filter according to claim 3,
The light source filter according to claim 2, wherein the thin film is Cr, Ta,
Mo, Al, Ti, MoSi, or Cr, Ta, M
It is made of oxide or nitride containing o, Al, Ti, and MoSi as main components.
【0051】請求項4に係る光源フィルタにおいては、
請求項1ないし3のいずれかの光源フィルタにおいて、
第1領域はSOGまたはスパッタSiO2 または光学ガ
ラスまたは有機膜のいずれかにより形成される。In the light source filter according to claim 4,
The light source filter according to any one of claims 1 to 3,
The first region is formed by either SOG or sputtered SiO 2 or optical glass or organic film.
【0052】したがって、第1領域と第2領域との境界
での良好な多重反射が実現される。請求項5に係る光源
フィルタにおいては、請求項1ないし4のいずれかの光
源フィルタにおいて、露光光の一部を遮光する遮光部分
があるので、露光光の必要な成分のみを取出し、位相変
調して干渉させることが可能である。Therefore, good multiple reflection at the boundary between the first area and the second area is realized. In the light source filter according to a fifth aspect, in the light source filter according to any one of the first to fourth aspects, since there is a light shielding portion that shields a part of the exposure light, only a necessary component of the exposure light is extracted and phase modulated. Can be interfered with.
【0053】請求項6に係る投影露光装置においては、
光源から露光光が出射され、光源フィルタにおいて第1
露光光が第1領域と第2領域との境界での反射なしに第
1領域を透過し、第2露光光が第1領域と第2領域との
境界で反射され第1領域を一往復して透過し、第2露光
光は第1露光光と2分の1波長の位相差を生じ、光源フ
ィルタを透過した第1および第2露光光によりマスクの
形状が投影されるので、第1露光光と第2露光光の焦点
位置は半波長光路差分ずれ、設定された焦点位置での結
像振幅は反転し、干渉して得られる結像の光強度分布は
互いのサイドローブが相殺された急峻で良好なプロファ
イルとなる。したがって光強度分布のコントラストが改
善され解像度の大幅な向上が可能となる。また、焦点方
向における光強度分布のコントラストが向上し焦点深度
の大幅な拡大が可能となる。さらに、繰返しパターンは
もとより、単一パターンであっても半波長位相の異なる
第1露光光と第2露光光とにより繰返しパターンの干渉
性が付与されたのと同等の効果が得られるため解像度の
大幅な改善が図れるとともに、パターンの疎密に起因す
る近接効果が低減される。In the projection exposure apparatus according to claim 6,
The exposure light is emitted from the light source, and the first light is emitted from the light source filter.
The exposure light passes through the first region without being reflected at the boundary between the first region and the second region, and the second exposure light is reflected at the boundary between the first region and the second region and makes one round trip through the first region. The second exposure light causes a phase difference of ½ wavelength with the first exposure light, and the shape of the mask is projected by the first and second exposure light transmitted through the light source filter. The focus positions of the light and the second exposure light are deviated by a half-wavelength optical path difference, the imaging amplitude at the set focus position is inverted, and the side lobes of the light intensity distributions of the images obtained by the interference cancel each other out. It has a sharp and good profile. Therefore, the contrast of the light intensity distribution is improved and the resolution can be significantly improved. Further, the contrast of the light intensity distribution in the focal direction is improved, and the focal depth can be greatly expanded. In addition to the repetitive pattern, even if it is a single pattern, it is possible to obtain the same effect as that when the repetitive pattern coherency is given by the first exposure light and the second exposure light having different half-wavelength phases. A great improvement can be achieved, and the proximity effect due to the density of the pattern is reduced.
【0054】請求項7に係る投影露光装置においては、
請求項6の投影露光装置において、光源フィルタの第2
領域は露光光に対する透過率が30%以上であり反射率
が55%以下の薄膜である。In the projection exposure apparatus according to claim 7,
The projection exposure apparatus according to claim 6, wherein the second light source filter is provided.
The region is a thin film having a transmittance of 30% or more for exposure light and a reflectance of 55% or less.
【0055】請求項8に係る投影露光装置においては、
請求項7の投影露光装置において、薄膜はCr,Ta,
Mo,Al,Ti,MoSi、あるいはCr,Ta,M
o,Al,Ti,MoSiを主成分とする酸化物または
窒化物からなる。In the projection exposure apparatus according to claim 8,
8. The projection exposure apparatus according to claim 7, wherein the thin film is Cr, Ta,
Mo, Al, Ti, MoSi, or Cr, Ta, M
It is made of oxide or nitride containing o, Al, Ti, and MoSi as main components.
【0056】請求項9に係る投影露光装置においては、
請求項6ないし8のいずれかの投影露光装置において、
光源フィルタの第1領域はSOGまたはスパッタSiO
2 または光学ガラスまたは有機膜のいずれかにより形成
されている。In the projection exposure apparatus according to claim 9,
The projection exposure apparatus according to claim 6,
The first region of the light source filter is SOG or sputtered SiO
2 or formed of either an optical glass or an organic film.
【0057】したがって、光源フィルタの第1領域と第
2領域との境界での良好な多重反射が実現され、解像度
の大幅な向上および焦点深度の拡大が実現される。Therefore, good multiple reflection is realized at the boundary between the first area and the second area of the light source filter, and the resolution is greatly improved and the depth of focus is increased.
【0058】請求項10に係る投影露光装置において
は、請求項6ないし9の投影露光装置において、光源フ
ィルタに隣接して設けられた露光光の一部を遮光する遮
光部分があるので、露光光の必要な成分のみを取出し、
位相変調して干渉させることができ、余分な露光光の成
分による結像が除去され、さらなる解像度の向上および
焦点深度の拡大が可能となる。The projection exposure apparatus according to claim 10 is the projection exposure apparatus according to any one of claims 6 to 9, wherein there is a light-shielding portion provided adjacent to the light source filter for shielding a part of the exposure light. Take out only the necessary ingredients of
Phase modulation can be performed to cause interference, image formation due to an excess exposure light component is removed, and it is possible to further improve the resolution and increase the depth of focus.
【0059】請求項11に係る投影露光方法において
は、露光光が作成され、作成された露光光の一部の位相
が光源フィルタにより1/2波長ずらされ、1/2波長
ずれた露光光と1/2波長ずれていない元の露光光とが
重ねて所定の被投影物に投影されるので、それらの露光
光の焦点位置は半波長光路差分ずれ、設定された焦点位
置での結像振幅が反転し、干渉して得られる結像の光強
度分布は互いのサイドローブが相殺された急峻で良好な
プロファイルとなる。したがって光強度分布のコントラ
ストが改善され解像度の大幅な向上が可能となる。ま
た、焦点方向における光強度分布のコントラストが向上
するので焦点深度の大幅な拡大が可能となる。In the projection exposure method according to the eleventh aspect, the exposure light is created, and the phase of a part of the created exposure light is shifted by ½ wavelength by the light source filter, and the exposure light is shifted by ½ wavelength. Since the original exposure light which is not shifted by ½ wavelength is superimposed and projected on a predetermined projection object, the focus positions of those exposure lights are shifted by the half-wavelength optical path difference, and the image formation amplitude at the set focus position. Are inverted, and the light intensity distribution of the image obtained by the interference has a steep and good profile in which side lobes are offset. Therefore, the contrast of the light intensity distribution is improved and the resolution can be significantly improved. Further, since the contrast of the light intensity distribution in the focal direction is improved, the depth of focus can be greatly expanded.
【0060】請求項12に係る投影露光方法において
は、請求項11の投影露光方法において、露光光の一部
が遮光されるので、露光光の必要な成分のみを取出し、
位相を変調して干渉させることができ、余分な露光光の
成分による結像が除去され、さらなる解像度の向上およ
び焦点深度の拡大が可能となる。In the projection exposure method according to the twelfth aspect, in the projection exposure method according to the eleventh aspect, since a part of the exposure light is shielded, only a necessary component of the exposure light is taken out.
The phase can be modulated to cause interference, and imaging due to an excess exposure light component can be removed, so that it is possible to further improve the resolution and increase the depth of focus.
【0061】[0061]
【実施例】以下、本発明による光源フィルタおよびそれ
を用いた投影露光装置の実施例を図面を参照しながら説
明する。Embodiments of a light source filter and a projection exposure apparatus using the same according to the present invention will be described below with reference to the drawings.
【0062】図1は本発明の実施例の光源フィルタを設
置した投影露光装置の構成およびその露光光の結像を示
す模式図である。FIG. 1 is a schematic view showing the structure of a projection exposure apparatus having a light source filter according to an embodiment of the present invention and the image formation of its exposure light.
【0063】図1を参照して、本発明の実施例の光源フ
ィルタを設置した投影露光装置は、露光光61を出射す
る光源1と、2次光源面であるフライアイレンズ2と、
露光光61から可干渉性に優れた2つの回折光を透過す
る多重反射干渉光源フィルタ3と、半導体回路のレジス
トパターンが設けられたマスク5と、マスク5を通って
2つの露光光(回折光)61,62をウエハ10に投影
し結像させる投影レンズ8およびその瞳面9とを含む。Referring to FIG. 1, a projection exposure apparatus equipped with a light source filter according to an embodiment of the present invention includes a light source 1 for emitting exposure light 61, a fly-eye lens 2 serving as a secondary light source surface,
The multiple reflection interference light source filter 3 that transmits two diffracted lights having excellent coherence from the exposure light 61, the mask 5 provided with the resist pattern of the semiconductor circuit, and the two exposure lights (diffracted light ) 61, 62 includes a projection lens 8 for projecting and forming an image on the wafer 10 and its pupil plane 9.
【0064】多重反射干渉光源フィルタ3は、さらに、
フィルタ基板31と半透過膜32と透明領域33とを含
む。The multiple reflection interference light source filter 3 further includes
It includes a filter substrate 31, a semi-transmissive film 32, and a transparent region 33.
【0065】図1においては、簡単のため、1フライア
イレンズからの1光束のみを示している。また、多重反
射干渉光源フィルタ3の一部分拡大図では、実際は露光
光61の一部は垂直に反射するが、模式的にずらして示
してある。In FIG. 1, only one light flux from one fly-eye lens is shown for simplicity. Further, in the partially enlarged view of the multiple reflection interference light source filter 3, a part of the exposure light 61 is actually reflected vertically, but it is schematically shown as being shifted.
【0066】光源1の下方にフライアイレンズ2が設け
られ、フライアイレンズ2の下方に多重反射干渉光源フ
ィルタ3が設けられ、多重反射干渉光源フィルタ3の下
方にコンデンサレンズ4が設けられ、コンデンサレンズ
4の下方にマスク5が設けられ、マスク5の下方に投影
レンズ8が設けられ、投影レンズ8は瞳面9を有す。瞳
面9の下方にウエハ10が設置されている。A fly-eye lens 2 is provided below the light source 1, a multiple reflection interference light source filter 3 is provided below the fly eye lens 2, and a condenser lens 4 is provided below the multiple reflection interference light source filter 3. A mask 5 is provided below the lens 4, a projection lens 8 is provided below the mask 5, and the projection lens 8 has a pupil plane 9. A wafer 10 is installed below the pupil plane 9.
【0067】多重反射干渉光源フィルタ3においては、
フィルタ基板31の下面に半透過膜32が形成され、そ
の下に透明領域33が形成され、その下に再び半透過膜
32が形成されている。In the multiple reflection interference light source filter 3,
A semi-transmissive film 32 is formed on the lower surface of the filter substrate 31, a transparent region 33 is formed under the semi-transmissive film 32, and the semi-transmissive film 32 is again formed under the transparent region 33.
【0068】光源1から露光光61が出射され、投影露
光装置の2次光源面であるフライアイレンズ2から得ら
れたコヒーレンシの高い露光光は、多重反射干渉光源フ
ィルタ3の透過光61と多重反射干渉光源フィルタ3内
での多重反射光62に適正な振幅で半波長位相分離され
た可干渉性に優れた2つの波面を有する構成となる。The exposure light 61 is emitted from the light source 1, and the exposure light with high coherency obtained from the fly-eye lens 2 which is the secondary light source surface of the projection exposure apparatus is multiplexed with the transmitted light 61 of the multiple reflection interference light source filter 3. The multiple reflection light 62 in the reflection interference light source filter 3 has a structure in which two wavefronts having an excellent amplitude and having a half-wavelength phase separation with an appropriate amplitude are excellent in coherence.
【0069】多重反射干渉光源フィルタ3で得られる多
重反射光62は、半透過膜32と透明領域33との上下
2つの境界での反射により得られ、まず、下側の境界で
反射されて1/4波長位相がずれ、次に上側の境界で反
射されさらに1/4波長位相がずれ、最終的には露光光
61と1/2波長位相差が生じる。1/2波長、すなわ
ち180°の位相差は、±5°程度前後してもそれほど
影響はない。また、トータルで1/2波長位相差が生じ
ればよく、必ずしも上下の2つの境界で1/4波長ずつ
位相がずれなくともよい。The multiple reflection light 62 obtained by the multiple reflection interference light source filter 3 is obtained by reflection at the upper and lower boundaries of the semi-transmissive film 32 and the transparent region 33, and is first reflected at the lower boundary to be 1 The / 4 wavelength phase shifts, and then the light is reflected by the upper boundary and further shifts the ¼ wavelength phase, and finally a half wavelength phase difference with the exposure light 61 occurs. The phase difference of ½ wavelength, that is, 180 ° does not have much effect even if it is about ± 5 °. In addition, it is sufficient that the phase difference is ½ wavelength in total, and the phase does not necessarily have to be shifted by ¼ wavelength at the upper and lower boundaries.
【0070】この半波長位相の異なる2波面を有する露
光光61,62でマスク5上のパターンを照明すること
により、本来は隣接パターンとの干渉性が期待できない
単一パターンであっても、マスク5で回折により得られ
た半波長位相の異なる2波面を有する回折光71,72
それぞれから可干渉な結像イメージが得られ、実効的に
干渉性を有する隣接パターンあるいは補助パターンを主
解像単一パターンに対してマスク上に付加形成したのと
同等の効果が得られる。By illuminating the pattern on the mask 5 with the exposure lights 61 and 62 having the two wavefronts having different half-wavelength phases, even if the pattern is originally a single pattern where interference with an adjacent pattern cannot be expected, 5. Diffracted lights 71, 72 having two wavefronts with different half-wavelength phases obtained by diffraction in FIG.
A coherent image is obtained from each of them, and an effect equivalent to that when an adjacent pattern or an auxiliary pattern having effective coherence is additionally formed on the mask with respect to the main resolution single pattern is obtained.
【0071】図2および3は、本発明の実施例の多重反
射干渉光源フィルタ3を設置した投影露光装置による単
一パターン投影時の結像原理を従来照明による結像と比
較して示した図である。FIGS. 2 and 3 show the principle of image formation when a single pattern is projected by a projection exposure apparatus having the multiple reflection interference light source filter 3 according to the embodiment of the present invention in comparison with image formation by conventional illumination. Is.
【0072】図2(A)は図1の70に示した回折光7
1,72によるz方向位置における結像イメージを従来
照明(回折光71のみ)によるものと比較して示す図で
あり、(B)は良好な解像度が得られる焦点深度(従
来:d1 ,本発明:d2 )を示す図である。FIG. 2A shows the diffracted light 7 shown at 70 in FIG.
Is a diagram showing the imaging image in the z direction position by 1,72 as compared to that by the conventional illumination (diffracted light 71 only), (B) focus good resolution can be obtained depth (conventional: d 1, the Invention: d 2 ).
【0073】図2において、回折光71,72の回折光
強度は1:1ではなく、回折光71の方が強い構成とし
ているため、回折光71と回折光72の回折光強度比か
ら、良好な解像度が得られる焦点深度は図2(B)に示
したような領域となる。In FIG. 2, since the diffracted light intensity of the diffracted light 71, 72 is not 1: 1 but the diffracted light 71 is stronger, the diffracted light intensity ratio of the diffracted light 71 and the diffracted light 72 is good. The depth of focus where various resolutions are obtained is in the region shown in FIG.
【0074】図3(C)は図2に示した結像のz方向位
置における振幅分布を示す図であり、(D)は光強度分
布を示す図である。FIG. 3C is a diagram showing the amplitude distribution at the z-direction position of the image formation shown in FIG. 2, and FIG. 3D is a diagram showing the light intensity distribution.
【0075】図1の同一光源1から発せられ、半波長時
間(位相)分離された2つの波面を有する露光光61,
62がマスクパターン5で回折され、回折光71,72
が得られる。この回折光71,72の波面がそれぞれウ
エハ10面上で結像する。回折光71,72の波面の位
相は半波長(180°)異なるため、従来は図3(C)
の(b)−1,(d)−1のような振幅分布であった
が、図3(C)の(a)−1,(c)−1のように図2
の各焦点位置−z1 ,z1 での結像振幅は反転し、干渉
して得られる結像の光強度分布は結果として図3(D)
の(a)−2,(c)−2のように互いのサイドローブ
が相殺された急峻で良好なプロファイルとなる。したが
って、図3(D)の(b)−2,(d)−2に示した従
来の照明系で得られる結像の光強度分布と比較して、光
強度のコントラスト(光強度の最大値Imaxと最小値
Iminの比;(Imax−Imin)/(Imax+
Imin))が改善され解像度の大幅な向上が図れる。Exposure light 61 emitted from the same light source 1 in FIG. 1 and having two wavefronts separated by a half wavelength time (phase),
62 is diffracted by the mask pattern 5 and diffracted light 71, 72
Is obtained. The wavefronts of the diffracted lights 71 and 72 are imaged on the surface of the wafer 10. Since the phases of the wavefronts of the diffracted lights 71 and 72 are different by a half wavelength (180 °), the conventional case is shown in FIG.
Although the amplitude distributions are as shown in (b) -1 and (d) -1 of FIG. 2, they are as shown in (a) -1 and (c) -1 of FIG.
The image forming amplitudes at the respective focus positions −z 1 and z 1 are inverted, and the light intensity distribution of the image obtained by the interference results in FIG. 3 (D).
As shown in (a) -2 and (c) -2 of FIG. Therefore, compared with the light intensity distribution of the image formed by the conventional illumination system shown in (b) -2 and (d) -2 of FIG. 3D, the contrast of the light intensity (the maximum value of the light intensity is Ratio of Imax and minimum value Imin; (Imax-Imin) / (Imax +
Imin)) is improved and the resolution can be significantly improved.
【0076】また、焦点深度においても、前述のように
半波長時間(位相)分離された2つの波面を有する回折
光71,72は互いに半波長分の光路差のため結像焦点
位置が異なる。すなわち、ウエハの焦点方向に図2
(A),(B)のように2つの結像焦点位置−z1 ,z
1 を有し、かつ上記解像度向上効果で述べたように反転
した結像振幅の重ね合わせが適用できることから、ウエ
ハの焦点方向における光強度分布のコントラストが向上
し、焦点深度も従来照明と比較して大幅に拡大する。Also with respect to the depth of focus, the diffracted lights 71 and 72 having two wavefronts separated by a half-wavelength time (phase) as described above have different image-forming focus positions due to the optical path difference of a half-wavelength. That is, as shown in FIG.
As in (A) and (B), two image forming focal points −z 1 and z
1 and the superposition of the inverted imaging amplitudes as described in the resolution improvement effect can be applied, the contrast of the light intensity distribution in the focal direction of the wafer is improved, and the depth of focus is also compared to conventional illumination. Greatly expand.
【0077】繰返しパターンでは隣接するパターン間の
干渉効果があり、単一パターンと比較して従来からの結
像構成においても良好な特性を有するが、本発明の光源
フィルタを適用することでさらに特性の向上を図ること
ができる。The repetitive pattern has an interference effect between adjacent patterns, and has good characteristics in the conventional image-forming configuration as compared with the single pattern, but by applying the light source filter of the present invention, further characteristics can be obtained. Can be improved.
【0078】さらに、解像度や焦点深度(DOF)向上
のため、投影露光装置の光源波長や投影レンズの開口数
NAの改良なしに、しかも簡便な方法で低コストに良好
な改善特性が得られ、かつ広範な適用(汎用性)を考え
た場合、従来技術で述べた第4の方法の遮光板を投影露
光装置の照明系に配置する方法、いわゆる変形照明技術
が最も適しているので、これを改良し従来の任意の2次
光源形状を得る変形照明技術では改善が困難であった周
期性のない単一パターンあるいはランダムパターンに対
して良好な改善効果を得ることとした。Further, in order to improve the resolution and the depth of focus (DOF), good improvement characteristics can be obtained at a low cost without improving the light source wavelength of the projection exposure apparatus and the numerical aperture NA of the projection lens. In consideration of wide application (general versatility), the method of arranging the light shielding plate of the fourth method described in the prior art in the illumination system of the projection exposure apparatus, so-called modified illumination technology, is the most suitable. It was decided to obtain a good improvement effect on a single pattern or a random pattern having no periodicity, which was difficult to improve by the conventional modified illumination technique for obtaining an arbitrary secondary light source shape.
【0079】図4は、本発明の実施例の多重反射干渉光
源フィルタ3を設置した投影露光装置による直入射3光
束結像の模式図である。FIG. 4 is a schematic diagram of direct-incident three-beam imaging by a projection exposure apparatus having the multiple reflection interference light source filter 3 of the embodiment of the present invention.
【0080】図5は、本発明の実施例の多重反射干渉光
源フィルタ3を設置した投影露光装置において多重反射
干渉光源フィルタ3の一部を遮光した場合の構成および
斜入射3光束結像の模式図である。FIG. 5 is a schematic diagram of a configuration in which a part of the multiple reflection interference light source filter 3 is shielded in the projection exposure apparatus having the multiple reflection interference light source filter 3 according to the embodiment of the present invention and oblique incidence three-beam imaging. It is a figure.
【0081】σファクタσ=0.6の多重反射干渉光源
フィルタ3においてσ=0.5の領域を遮光する輪帯形
状照明により斜入射照明の効果を付加した構成としたと
きのライン&スペースなどの繰返しパターンに対する結
像イメージを示している。輪帯形状照明とは後述の図1
5(c)のような遮光形状である。Line and space when the effect of oblique incidence illumination is added to the multiple reflection interference light source filter 3 having the σ factor σ = 0.6 by the annular illumination that shields the region of σ = 0.5. 3 shows an imaged image for a repeating pattern of FIG. What is annular illumination?
It has a light-shielding shape like 5 (c).
【0082】σファクタとは、投影露光装置照明光学系
のコヒーレンシの度合いを示し、コヒーレントファクタ
と呼ばれる。照明光学系レンズ(4(図1中))の開口
数NAi11 および投影光学系レンズ(8(図1中))の
開口数NAobによりσ=NA i11 /NAobで定義され
る。開口径が小さいほどコヒーレンシは高い傾向にあ
る。The σ factor means the projection exposure apparatus illumination optical system.
Of the coherency factor of
Called. Aperture of the illumination optical system lens (4 (in Fig. 1))
Number NAi11And the projection optical system lens (8 (in FIG. 1))
Numerical aperture NAobBy σ = NA i11/ NAobDefined by
It The smaller the aperture diameter, the higher the coherency tends to be.
It
【0083】図6は、本発明の多重反射干渉光源フィル
タ3を設置した投影露光装置において繰返しパターンか
ら得られる結像の振幅分布と光強度分布を従来照明によ
る結像構成の投影露光装置による場合と比較した図であ
り、(A)は図4の本発明の多重反射干渉光源フィルタ
3を設置した投影露光装置による直入射3光束結像の振
幅分布および光強度分布を示す図であり、(B)は図5
の本発明の多重反射干渉光源フィルタ3を設置した投影
露光装置による斜入射2光束結像の振幅分布および光強
度分布を示す図であり、(C)は従来照明による結像の
振幅分布および光強度分布を示す図である。FIG. 6 shows a case where the projection exposure apparatus having the multiple reflection interference light source filter 3 of the present invention has an imaging amplitude distribution and light intensity distribution obtained from a repetitive pattern by a projection exposure apparatus having an imaging configuration using conventional illumination. FIG. 6A is a diagram for comparison with FIG. 4A is a diagram showing an amplitude distribution and a light intensity distribution of direct-incident three-beam imaging by a projection exposure apparatus in which the multiple reflection interference light source filter 3 of the present invention in FIG. 4 is installed, B) is Figure 5
FIG. 9C is a diagram showing an amplitude distribution and a light intensity distribution of oblique incident two-beam imaging by a projection exposure apparatus in which the multiple reflection interference light source filter 3 of the present invention is installed. FIG. It is a figure which shows intensity distribution.
【0084】図4および5において、投影露光装置は、
光源1とフライアイレンズ2と多重反射干渉光源フィル
タ3とコンデンサレンズ4とマスク51と投影レンズ8
とその瞳面9とを含む。In FIGS. 4 and 5, the projection exposure apparatus is
Light source 1, fly-eye lens 2, multiple reflection interference light source filter 3, condenser lens 4, mask 51, and projection lens 8
And its pupil plane 9.
【0085】光源1の下方にフライアイレンズ2が設け
られ、フライアイレンズ2の下方に多重反射干渉光源フ
ィルタ3が設けられ、多重反射干渉光源フィルタ3の下
方にコンデンサレンズ4が設けられ、コンデンサレンズ
4の下方にマスク51が設けられ、マスク51の下方に
投影レンズ8が設けられ、投影レンズ8は瞳面9を有
し、瞳面9の下方にウエハ10が設置されている。A fly-eye lens 2 is provided below the light source 1, a multiple reflection interference light source filter 3 is provided below the fly eye lens 2, and a condenser lens 4 is provided below the multiple reflection interference light source filter 3. A mask 51 is provided below the lens 4, a projection lens 8 is provided below the mask 51, the projection lens 8 has a pupil plane 9, and a wafer 10 is provided below the pupil plane 9.
【0086】多重反射干渉光源フィルタの構成および構
造は図1の場合と同様である。図4を参照して、光源1
から出射された露光光61はフライアイレンズ2を通っ
て多重反射干渉光源フィルタ3で多重反射される。この
多重反射により得られる2波面を有する直入射の露光光
63は、コンデンサレンズ4を通り繰返しパターンを有
するマスク51で回折され2波面を有する回折光73と
なり、投影レンズ8およびその瞳面9によりウエハ10
上に結像される。2波面を有する直入射の露光光63の
多重反射干渉光源フィルタ3での多重反射、および露光
光63から得られる繰返しパターンによる回折光73の
波面は図中では省略してある。The configuration and structure of the multiple reflection interference light source filter is the same as in the case of FIG. Referring to FIG. 4, the light source 1
The exposure light 61 emitted from the laser beam passes through the fly-eye lens 2 and is multiply reflected by the multiple reflection interference light source filter 3. The directly incident exposure light 63 having a two-wavefront obtained by this multiple reflection passes through the condenser lens 4 and is diffracted by the mask 51 having a repeating pattern to become a diffracted light 73 having a two-wavefront, which is formed by the projection lens 8 and its pupil plane 9. Wafer 10
Imaged above. The multiple reflection of the directly incident exposure light 63 having two wavefronts by the multiple reflection interference light source filter 3 and the wavefront of the diffracted light 73 by the repeated pattern obtained from the exposure light 63 are omitted in the figure.
【0087】図5を参照して、光源1から出射された露
光光61は、フライアイレンズ2を通って多重反射干渉
光源フィルタ3で多重反射され、遮光板36により中心
部が遮光されて2波面を有する斜入射の露光光64とな
り、コンデンサレンズ4を通り繰返しパターンを有する
マスク51で回折され2波面を有する回折光74とな
り、投影レンズ8およびその瞳面9によりウエハ10上
で結像される。Referring to FIG. 5, the exposure light 61 emitted from the light source 1 passes through the fly-eye lens 2 and is multiple-reflected by the multiple reflection interference light source filter 3. The obliquely incident exposure light 64 having a wavefront is passed through the condenser lens 4, is diffracted by the mask 51 having a repeating pattern, and becomes the diffracted light 74 having two wavefronts, and is imaged on the wafer 10 by the projection lens 8 and its pupil plane 9. It
【0088】2波面を有する斜入射の露光光64の多重
反射干渉光源フィルタ3での多重反射、および露光光6
4から得られるパターンの回折光74の波面は図中では
省略してある。Multiple reflection of the obliquely incident exposure light 64 having two wavefronts by the multiple reflection interference light source filter 3 and the exposure light 6
The wavefront of the diffracted light 74 of the pattern obtained from No. 4 is omitted in the figure.
【0089】斜入射の露光光64について、露光光64
xによる結像は、その0次回折光74cと±1次回折光
74d,74bのうち−1次回折光74bによる2光束
結像であり、露光光64yによる結像は、その0次光7
4bと±1次回折光74a,74cのうち−1次回折光
74cによる2光束結像である。Regarding the obliquely incident exposure light 64, the exposure light 64
The image formation by x is a two-beam image formation by the −first-order diffracted light 74b among the 0th-order diffracted light 74c and the ± first-order diffracted lights 74d, 74b, and the image formation by the exposure light 64y is the 0th-order diffracted light 7b.
4b and ± 1st-order diffracted light 74a and 74c, which is a −2nd-order diffracted light 74c.
【0090】このように、斜入射照明を利用した場合、
図4に示した0次回折光73aと±1次回折光73bで
形成される通常照明の3光束結像に対し、0次回折光と
±1次回折光の片方の1次回折光を用いる2光束結像と
なり、半分の回折角で結像が得られ、解像度の向上が図
れるとともに2光束の良好な位相整合により焦点深度も
拡大できる。As described above, when the oblique incidence illumination is used,
In contrast to the three-beam imaging of normal illumination formed by the 0th-order diffracted light 73a and the ± 1st-order diffracted lights 73b shown in FIG. , An image can be obtained with a diffraction angle of half, the resolution can be improved, and the depth of focus can be expanded by the good phase matching of the two light fluxes.
【0091】この露光光61の斜入射成分から得られた
半波長位相の異なる2波面を有する露光光64で照明す
ることにより、図6(B)の(b)−1のような斜入射
にて得られた反転した結像振幅(位相反転した2波面を
有する露光光それぞれから得られる振幅分布)の重ね合
わせにより、同一露光量で露光したときの光強度のピー
クImaxは、(A)の(a)−2に示された多重反射
干渉光源フィルタ3の中心部を輪帯形状などに遮光しな
い場合に比較して低下するものの、(b)−2のような
急峻な光強度分布が得られコントラストが向上する。By illuminating with the exposure light 64 having two wavefronts having different half-wavelength phases obtained from the oblique incidence component of the exposure light 61, the oblique incidence as shown in (b) -1 of FIG. 6B is obtained. By superimposing the inverted imaging amplitudes (amplitude distributions obtained from the respective exposure lights having the two phase-inverted wavefronts) obtained as described above, the peak Imax of the light intensity when exposed at the same exposure amount is (A) Although it is lower than that in the case where the central portion of the multiple reflection interference light source filter 3 shown in (a) -2 is not shielded in an annular shape or the like, a steep light intensity distribution as shown in (b) -2 is obtained. The contrast is improved.
【0092】すなわち(C)の(c)−1,−2に示し
た従来からの通常の結像構成を用いて得られる特性と比
較して光強度分布のコントラストが大幅に改善され、良
好な解像度と焦点深度が得られる。That is, the contrast of the light intensity distribution is greatly improved as compared with the characteristics obtained by using the conventional normal image forming configuration shown in (c) -1 and -2 of (C), which is excellent. You get resolution and depth of focus.
【0093】パターンの疎密(線幅の近遠)に起因して
結像振幅が変化する近接効果については、その原因が密
なパターン領域では繰返しパターンと同様に干渉効果が
あるのに対し、疎なパターン領域では単一パターンと同
様となり干渉効果が得られず、この干渉効果の違いによ
り同一パターンサイズであっても大きな振幅分布を生じ
る結果となる。しかし、本発明の多重反射干渉光源フィ
ルタを用いれば、単一パターンすなわち疎なパターン領
域においても半波長位相の異なる2波面の露光光により
干渉性が付与されたのと同等の効果が得られ、密なパタ
ーン領域とバランスし、結果として近接効果を低減する
ことができる。Regarding the proximity effect in which the image-forming amplitude changes due to the density of the pattern (near and far of the line width), the interference effect is similar to the repeated pattern in the pattern area where the cause is dense. In such a pattern region, the same interference effect cannot be obtained as with a single pattern, and due to the difference in the interference effect, a large amplitude distribution is generated even with the same pattern size. However, by using the multiple reflection interference light source filter of the present invention, even in a single pattern, that is, in a sparse pattern region, an effect equivalent to that in which coherency is imparted by exposure light of two wavefronts having different half-wavelength phases is obtained, It is possible to balance with the dense pattern area and consequently reduce the proximity effect.
【0094】諸特性の改善効果を本発明の多重反射干渉
光源フィルタで達成するためには、露光光を半波長位相
分離するための透明領域の膜厚と、分離された2つの波
面を有する露光光のフィルタ透過率の比が重要である。
なお、この位相変調(光路差)を得るための光源フィル
タの透明領域の膜厚t1 、ならびに光源フィルタを透過
する露光光の透過率は式(3)〜(8)より求まる(透
過率には、半透明領域で反射されずにフィルタを透過す
る露光光のものT1 と半透明領域で反射され透明領域を
一往復してフィルタを透過する露光光のものT2 とがあ
る)。In order to achieve the effect of improving various characteristics with the multiple reflection interference light source filter of the present invention, the exposure having the film thickness of the transparent region for half-wavelength phase separation of the exposure light and the two wavefronts separated. The ratio of the filter transmittance of light is important.
The film thickness t 1 of the transparent region of the light source filter for obtaining this phase modulation (optical path difference) and the transmittance of the exposure light passing through the light source filter are obtained from the equations (3) to (8) Is T 1 of the exposure light which passes through the filter without being reflected by the semi-transparent region and T 2 of the exposure light which is reflected by the semi-transparent region and travels back and forth through the transparent region through the filter.
【0095】[0095]
【数2】 [Equation 2]
【0096】この露光光のフィルタ透過率は式(7),
式(8)により与えられ、半透明領域で反射されずに透
過する露光光の透過率T1 と透明領域を一往復した露光
光の透過率T2 の比T2 /T1 は半透明領域の反射率R
からT2 /T1 =R2 となる。上記のように露光光によ
り得られる結像特性を向上させるためには、マスクで生
じる回折光の1次回折光のサイドローブ振幅を相殺でき
る位相反転した結像振幅をもう一方の露光光で形成する
ことが基本となる。The filter transmittance of this exposure light is given by equation (7),
The ratio T 2 / T 1 of the transmittance T 1 of the exposure light which is given by the formula (8) and is transmitted without being reflected in the semitransparent region and the transmittance T 2 of the exposure light which makes one round trip in the transparent region is the semitransparent region. Reflectance R
Therefore, T 2 / T 1 = R 2 . As described above, in order to improve the imaging characteristic obtained by the exposure light, a phase-inverted imaging amplitude capable of canceling the side lobe amplitude of the first-order diffracted light of the diffracted light generated by the mask is formed by the other exposure light. That is the basis.
【0097】たとえば、図1において、メインの結像振
幅に対してサイドローブ振幅のピークは約30%程度と
見積もられ、改善に寄与する半透明領域32の反射率R
は≦55%程度(T2 /T1 ≦〜30%)が望ましい。
また、露光光61で形成される結像光強度は、露光の処
理速度を考慮すると通常照明系の〜10%以上は必要と
考えられ、半透明領域32の透過率TはT≧30%程度
(T1 ≧9%)を要する。For example, in FIG. 1, the peak of the side lobe amplitude is estimated to be about 30% with respect to the main imaging amplitude, and the reflectance R of the semitransparent region 32 contributing to the improvement is estimated.
Is preferably about ≦ 55% (T 2 / T 1 ≦ ˜30%).
Further, it is considered that the imaging light intensity formed by the exposure light 61 needs to be 10% or more of the normal illumination system in consideration of the exposure processing speed, and the transmissivity T of the semitransparent region 32 is about T ≧ 30%. (T 1 ≧ 9%) is required.
【0098】したがって、半透明領域を形成する材料
は、これら透過率と反射率の条件を同一膜厚で同時に満
足し、かつ露光装置の2次光源面開口部全面にわたって
均一な膜厚分布が得られる膜厚材料がふさわしい。Therefore, the material forming the semi-transparent region simultaneously satisfies these conditions of transmittance and reflectance with the same film thickness, and a uniform film thickness distribution is obtained over the entire opening of the secondary light source surface of the exposure apparatus. Suitable film thickness material.
【0099】また、透明領域33の膜厚は式(6)によ
り与えられるが、この透明領域33内を一往復する露光
光62の位相は透明領域33の膜厚にほぼ依存すること
から、半透明領域32を有する基板31上に形成しやす
く、かつ均一な膜厚分布の得られる膜厚透明材料が望ま
しい。The film thickness of the transparent region 33 is given by the equation (6). Since the phase of the exposure light 62 that makes one round trip in the transparent region 33 depends substantially on the film thickness of the transparent region 33, It is desirable to use a transparent material having a film thickness that can be easily formed on the substrate 31 having the transparent region 32 and can obtain a uniform film thickness distribution.
【0100】このように本発明の多重反射干渉光源フィ
ルタは従来の変形照明技術を用いる投影露光装置と比較
して、パターンの解像度、ならびに焦点深度の良好な改
善が達成できる。特に、単一パターンについては大幅に
改善効果が得られる。したがって、パターンの周期性、
パターンレイアウト、パターンサイズ、パターンの疎密
などの依存が小さく、実用上要求されるほとんどの特性
を良好に満足する。As described above, the multiple reflection interference light source filter of the present invention can achieve excellent improvement in pattern resolution and depth of focus as compared with the conventional projection exposure apparatus using the modified illumination technique. In particular, a significant improvement effect can be obtained for a single pattern. Therefore, the periodicity of the pattern,
It has little dependence on pattern layout, pattern size, pattern density, etc., and satisfies most practically required characteristics.
【0101】すなわち、単一パターンと繰返しパターン
のどちらにも改善効果を有し、しかも広範なパターンサ
イズならびにパターンの疎密(近接効果)に対しても有
効であることから、同一の投影露光装置でしかも光源フ
ィルタの交換なしに、超LSIなどの実際の作製工程で
要求されるほとんどすべてのパターンに適用でき、プロ
セスコストならびに初期設備投資の大幅な低減が図れ実
用上極めて有益である。That is, since it has an improving effect on both a single pattern and a repetitive pattern, and is also effective against a wide range of pattern sizes and pattern density (proximity effect), the same projection exposure apparatus can be used. In addition, it can be applied to almost all patterns required in the actual manufacturing process such as VLSI without replacing the light source filter, and the process cost and initial capital investment can be significantly reduced, which is extremely useful in practice.
【0102】図5や図15でも少し述べたが解像度およ
び焦点深度などの特性のさらなる改善に、本発明の多重
反射干渉光源フィルタ3の露光光透過領域33を種々の
形状に遮光することが有効である。Although a little described in FIGS. 5 and 15, it is effective to shield the exposure light transmitting region 33 of the multiple reflection interference light source filter 3 of the present invention in various shapes in order to further improve the characteristics such as resolution and depth of focus. Is.
【0103】そこで、この露光光透過領域33の遮光に
ついて詳しく述べることにする。図7は、本発明の実施
例の多重反射干渉光源フィルタ3の露光光透過領域33
を遮光板35により遮光する種々遮光形状を示す図であ
る。Therefore, the light shielding of the exposure light transmitting region 33 will be described in detail. FIG. 7 shows the exposure light transmitting region 33 of the multiple reflection interference light source filter 3 of the embodiment of the present invention.
It is a figure which shows various light-shielding shapes which light-shields with a light-shielding plate 35.
【0104】図7において、多重反射干渉光源フィルタ
3は、図1と同様の構成および構造である。In FIG. 7, the multiple reflection interference light source filter 3 has the same structure and structure as in FIG.
【0105】図7を参照して、遮光板35は多重反射干
渉光源フィルタ3の最上部に多重反射干渉光源フィルタ
3の半透過膜32形成に用いた材料により遮光できる膜
厚でパターン形成されている。Referring to FIG. 7, the light shielding plate 35 is patterned on the uppermost part of the multiple reflection interference light source filter 3 with a film thickness capable of shielding light by the material used for forming the semi-transmissive film 32 of the multiple reflection interference light source filter 3. There is.
【0106】図7(a)の遮光形状は、中心部透過領域
の低減構造であり、単一パターンの改善に一層有効であ
る。(b)および(c)の遮光形状は、中心部透過領域
を遮光し、照明系の周辺から得られる斜入射光を有する
構造であり、繰返しパターンの改善に一層有効である。
(c)は図5と同様の輪帯形状照明である。The light-shielding shape of FIG. 7A is a structure for reducing the central transmission region, and is more effective for improving a single pattern. The light-shielding shapes of (b) and (c) are structures that shield the central transmission region and have obliquely incident light obtained from the periphery of the illumination system, and are more effective in improving the repetitive pattern.
(C) is an annular illumination similar to that shown in FIG.
【0107】図8は、本発明の実施例の多重反射干渉光
源フィルタ3の露光光透過領域33を遮光板などにより
遮光する種々遮光構造を示す図である。FIG. 8 is a diagram showing various light shielding structures in which the exposure light transmitting region 33 of the multiple reflection interference light source filter 3 of the embodiment of the present invention is shielded by a light shielding plate or the like.
【0108】多重反射干渉光源フィルタ3の構成および
構造は図1の場合と同様である。図7および8を参照し
て、遮光部の形成は、少なくとも半透過膜32形成に用
いた材料を図7のように多重反射干渉光源フィルタ3の
最上部または図8(a)のように最下部(裏面)、ある
いは図8(b)のように少なくとも下層、上層半透過膜
32の上下面のいずれかに遮光できる膜厚でパターン形
成することが望ましいが、図8(c)のように有機膜3
6のパターン塗布形成あるいは遮光フィルム36の樹脂
接着などの他の材料を用いた手法であってもよい。The configuration and structure of the multiple reflection interference light source filter 3 are the same as in the case of FIG. 7 and 8, at least the material used for forming the semi-transmissive film 32 is formed at the uppermost portion of the multiple reflection interference light source filter 3 as shown in FIG. 7 or as shown in FIG. It is desirable to form a pattern with a film thickness capable of blocking light on the lower portion (back surface) or at least on the lower layer and the upper and lower surfaces of the upper semi-transmissive film 32 as shown in FIG. 8B, but as shown in FIG. 8C. Organic film 3
Alternatively, a method using another material such as pattern coating formation of No. 6 or resin bonding of the light shielding film 36 may be used.
【0109】さらに、遮光板35と多重反射干渉光源フ
ィルタ3を必ずしも一体形成する必要はなく、前述の図
9のホルダ37に遮光板35と多重反射干渉光源フィル
タ3とを重ね合わせて投影露光装置に装着することも、
それぞれの交換が可能となるので有益である。Further, it is not always necessary to integrally form the light shielding plate 35 and the multiple reflection interference light source filter 3, and the light shielding plate 35 and the multiple reflection interference light source filter 3 are superposed on the holder 37 shown in FIG. Can also be attached to
It is useful because each can be exchanged.
【0110】以上のような多重反射干渉光源フィルタ3
の遮光により得られるこれらの位相の高度化手法は、照
明光学系を一部遮光することにより露光強度に若干の低
下をきたすものの、本発明の多重反射干渉光源フィルタ
3による効果に、コヒーレンシの位相の高度化による干
渉性の向上、あるいは前述のような斜入射照明の効果が
付加されることで適応パターンに応じて特性改善がもた
らされる。The multiple reflection interference light source filter 3 as described above
Although the method of improving the phase obtained by blocking the light of the above causes a slight decrease in the exposure intensity by partially blocking the illumination optical system, the effect of the multiple reflection interference light source filter 3 of the present invention has the effect of reducing the phase of the coherency. The improvement of the coherence due to the sophistication of the above, or the addition of the effect of the grazing incidence illumination as described above brings about the characteristic improvement according to the adaptive pattern.
【0111】次に、具体的な適用例について説明する。
図9は、本発明の多重反射干渉光源フィルタ3および遮
光板34とそのホルダ37(片側のみ示す)とを示す斜
視図である。Next, a specific application example will be described.
FIG. 9 is a perspective view showing the multiple reflection interference light source filter 3, the light shielding plate 34, and the holder 37 (only one side is shown) of the present invention.
【0112】図9において、多重反射干渉光源フィルタ
3は、基板31と半透過膜32と透明領域33とを含
む。In FIG. 9, the multiple reflection interference light source filter 3 includes a substrate 31, a semi-transmissive film 32, and a transparent region 33.
【0113】多重反射干渉光源フィルタ3において、石
英基板などのような露光光に対して透明な基板31が形
成される。その最大開口径は投影露光装置のσファクタ
で表わせば、σ=約0.7である。基板31上に、透過
率が30%以上、反射率が55%以下で約15nm以下
程度の膜厚からなるCr,Ta,Mo,Al,MoSi
などあるいはこれらの材料を主成分とする酸化物または
窒化物などからなる半透過膜32が形成される。半透過
膜32上にSOG(Spin On Glass), スパッタ形成した
SiO2 (スパッタSiO2 ),光学ガラス,有機膜な
どのような露光光が多重反射する透明領域33が形成さ
れる。さらに、透明領域33の上層に下層と同様な半透
過膜32が形成される。ここでは、基板31として屈折
率nがn=1.51が用いられ、半透過膜32として露
光光に対する透過率TがT=約40%、反射率RがR=
約20%得られるCr膜が膜厚約10nmでスパッタ形
成されている。また、透明領域33には屈折率n=1.
48のSOG膜が用いられ、SOGの膜厚としては半透
過膜32での位相変調も考慮して、透過する露光光の位
相がトータルで1/2波長変調される膜厚とする必要が
あり、ここでは前述の式(6)に基づき約0.45μm
とした。In the multiple reflection interference light source filter 3, a substrate 31 such as a quartz substrate which is transparent to exposure light is formed. The maximum aperture diameter is σ = about 0.7 when expressed by the σ factor of the projection exposure apparatus. Cr, Ta, Mo, Al, MoSi having a film thickness of about 15 nm or less with a transmittance of 30% or more and a reflectance of 55% or less on the substrate 31.
Etc. or a semi-transmissive film 32 made of an oxide or a nitride containing these materials as a main component is formed. On the semi-transmissive film 32, a transparent region 33 such as SOG (Spin On Glass), sputtered SiO 2 (sputtered SiO 2 ), optical glass, an organic film or the like in which the exposure light is multiply reflected is formed. Further, a semi-transmissive film 32 similar to the lower layer is formed on the transparent region 33. Here, the substrate 31 has a refractive index n of n = 1.51, and the semi-transmissive film 32 has a transmittance T of exposure light of T = about 40% and a reflectance R of R = R.
A Cr film obtained by about 20% is formed by sputtering with a film thickness of about 10 nm. Further, the transparent region 33 has a refractive index n = 1.
Forty-eight SOG films are used, and it is necessary to consider the phase modulation of the semi-transmissive film 32 as the film thickness of the SOG so that the total phase of the transmitted exposure light is modulated by 1/2 wavelength. , About 0.45 μm based on the above equation (6).
And
【0114】この作製においては、露光光の位相を制御
するSOGの膜厚とその均一性、また、2つの波面を有
する露光光の透過率を制御する極薄Cr膜の膜質と膜厚
の管理が極めて重要である。したがって、SOGの膜厚
ならびに膜厚均一性に最も影響を及ぼすSOG粘度・塗
布装置の回転数・塗布雰囲気温度・焼成温度などのプロ
セス条件のばらつきを設定値の≦5%に制御することで
達成する。さらに、極薄Cr膜の形成においては、スパ
ッタ製膜時初期の凝集を回避するため、比較的低圧のス
パッタガス圧領域において製膜速度を制御することによ
り、適正な透過率と反射率を有する半透過膜を形成す
る。In this fabrication, the film thickness and uniformity of the SOG that controls the phase of the exposure light, and the film quality and film thickness of the ultrathin Cr film that controls the transmittance of the exposure light having two wavefronts are controlled. Is extremely important. Therefore, it is achieved by controlling the variation of process conditions such as SOG viscosity, coating device rotation speed, coating atmosphere temperature, firing temperature, etc., which have the most influence on the SOG film thickness and film thickness uniformity within ≦ 5% of the set value. To do. Further, in forming the ultra-thin Cr film, in order to avoid agglomeration in the initial stage during sputtering film formation, by controlling the film formation speed in a relatively low sputter gas pressure region, proper transmittance and reflectance can be obtained. Form a semi-permeable membrane.
【0115】このようにして作製した多重反射干渉光源
フィルタを投影露光装置の照明光学系に光軸整合を図り
図9に示すように露光装置のσ値を定義する遮光板34
と重ね合わせる。そしてホルダ37に重ねられた多重反
射干渉光源フィルタと遮光板34とを固定し、投影露光
装置の照明光学系に設置する。The multiple reflection interference light source filter thus produced is aligned with the illumination optical system of the projection exposure apparatus so as to align the optical axis, and as shown in FIG. 9, the shading plate 34 for defining the σ value of the exposure apparatus.
And overlap. Then, the multiple reflection interference light source filter and the light shielding plate 34, which are stacked on the holder 37, are fixed and installed in the illumination optical system of the projection exposure apparatus.
【0116】投影露光装置にはNA=0.5、σ=0.
6のKrFエキシマレーザ投影露光装置を使用し、その
照明光学系(光源1直下流側)に本発明の多重反射干渉
光源フィルタ3を設置する。投影露光装置の全体構成図
は図1と同様である。In the projection exposure apparatus, NA = 0.5, σ = 0.
The KrF excimer laser projection exposure apparatus of No. 6 is used, and the multiple reflection interference light source filter 3 of the present invention is installed in the illumination optical system (on the downstream side of the light source 1). The overall configuration of the projection exposure apparatus is the same as that shown in FIG.
【0117】図10および11は、本発明の多重反射干
渉光源フィルタを設置した投影露光装置を用いた場合お
よび光源フィルタを用いない従来の通常の投影露光装置
を用いた場合の単一パターンに対する転写結果の解像特
性および焦点深度特性を比較した図である。FIGS. 10 and 11 show the transfer of a single pattern when the projection exposure apparatus having the multiple reflection interference light source filter of the present invention is used and when the conventional ordinary projection exposure apparatus not using the light source filter is used. It is a figure which compared the resolution characteristic and depth of focus characteristic of a result.
【0118】設置された多重反射干渉光源フィルタの半
透明領域の透過率T=40%、半透明領域の反射率R=
20%である。The transmissivity T = 40% of the translucent region and the reflectivity R = of the translucent region of the installed multiple reflection interference light source filter.
20%.
【0119】図10を参照して、従来照明によれば、設
計線幅が約0.3μm以下になると、レジストパターン
が正確に投影されなくなってしまう。それに対し、本発
明の投影露光装置による照明によれば、設計線幅が約
0.2μm程度までは、それほど誤差を含まずほぼ正確
にレジストパターンを投影できることがわかる。Referring to FIG. 10, according to the conventional illumination, when the designed line width is about 0.3 μm or less, the resist pattern cannot be projected accurately. On the other hand, according to the illumination by the projection exposure apparatus of the present invention, it is understood that the resist pattern can be projected almost accurately up to a design line width of about 0.2 μm without including much error.
【0120】図11を参照して、従来照明によれば、デ
フォーカス(焦点ぼけ)が生じない範囲が、図2に示し
たz方向において、約−0.25μm以上0.25μm
以下と狭い範囲であった。しかし、本発明の投影露光装
置による照明によれば、約−0.75μm以上、1.0
μm以下の広い範囲でデフォーカスを生じなくなる。Referring to FIG. 11, according to the conventional illumination, the range in which defocus (defocusing) does not occur is about −0.25 μm or more and 0.25 μm in the z direction shown in FIG.
It was a narrow range as below. However, according to the illumination by the projection exposure apparatus of the present invention, about -0.75 μm or more, 1.0
Defocus does not occur in a wide range of μm or less.
【0121】したがって、本発明の多重反射干渉光源フ
ィルタを設置した投影露光装置を用いることにより、従
来の投影露光装置の照明系に比較して極めて良好な特性
が得られることがわかる。Therefore, it is understood that by using the projection exposure apparatus having the multiple reflection interference light source filter of the present invention, extremely good characteristics can be obtained as compared with the illumination system of the conventional projection exposure apparatus.
【0122】上記と同様にNA=0.5、σ=0.6の
KrFエキシマレーザ投影露光装置を用いて、多重反射
干渉光源フィルタ3の透明領域33にSiO2 をスパッ
タ形成し、また、半透明膜32にT=50%、R=15
%が得られるAl膜をスパッタ形成する。Similarly to the above, a KrF excimer laser projection exposure apparatus with NA = 0.5 and σ = 0.6 was used to sputter-form SiO 2 on the transparent region 33 of the multiple reflection interference light source filter 3 and also to form a semi-transparent region. T = 50%, R = 15 on transparent film 32
%, An Al film with a high yield is formed by sputtering.
【0123】これをライン&スペースの繰返しパターン
に適用する。その際の特性は、図6(A)の(a)−2
に示したものと同様な光強度分布のコントラストが得ら
れ、図6(C)の(c)−2のような従来の通常の投影
露光装置から得られる光強度分布と比較して解像度が大
幅に改善される。また、焦点位置の光強度分布コントラ
ストが従来の通常の投影露光装置から得られる値と比較
して極めて良好であることから、焦点深度も大幅な拡大
が見込める。This is applied to a repeating pattern of lines and spaces. The characteristic at that time is (a) -2 in FIG.
The contrast of the light intensity distribution similar to that shown in FIG. 6 is obtained, and the resolution is significantly higher than that of the light intensity distribution obtained from the conventional ordinary projection exposure apparatus as shown in (c) -2 of FIG. To be improved. Further, since the light intensity distribution contrast at the focus position is extremely good as compared with the value obtained from the conventional ordinary projection exposure apparatus, the depth of focus can be expected to be greatly expanded.
【0124】以上のように、本発明の多重反射干渉光源
フィルタおよびそれを用いた投影露光装置は、単一パタ
ーンと繰返しパターンのどちらにも改善効果を有し、同
一光源フィルタで実際の超LSIなどの作製工程で要求
されるほとんどすべてのパターンに対し良好に対応でき
ることから、DRAMなどの繰返しパターン中心のチッ
ププロセス、また、ランダムパターンの多いロジックな
どのチッププロセスともに有効であり、したがって、マ
スクのレイヤや対象チップにより光源フィルタの交換の
必要がなくプロセスコストの大幅な低減が図れる。ま
た、フィルタ全面に薄膜を形成することで得られるの
で、微細加工プロセスを有する位相シフトマスクなどの
作製工程と比較して極めて簡便である。さらに、従来の
投影露光装置の照明光学系のみの改良で、解像度や焦点
深度などの特性改善効果が得られることから、投影露光
装置の適応チップ世代延命に伴う初期設備投資の大幅低
減に寄与する。As described above, the multiple reflection interference light source filter of the present invention and the projection exposure apparatus using the same have the effect of improving both the single pattern and the repetitive pattern. Since it can satisfactorily deal with almost all the patterns required in the manufacturing process such as, it is effective in both the chip process centering on repeated patterns such as DRAM and the chip process such as logic with many random patterns. There is no need to replace the light source filter depending on the layer or target chip, and the process cost can be greatly reduced. Further, since it can be obtained by forming a thin film on the entire surface of the filter, it is extremely simple as compared with a manufacturing process of a phase shift mask having a fine processing process. Furthermore, by improving only the illumination optical system of the conventional projection exposure apparatus, characteristics improvement effects such as resolution and depth of focus can be obtained, which contributes to a significant reduction in the initial capital investment accompanying the extension of the adaptive chip generation of the projection exposure apparatus. .
【0125】そして、改善効果が原理的に露光光の波長
に依存しないため、上記実施例で述べたKrFエキシマ
レーザ(波長:248nm)に限定されるものではな
く、g線(波長:436nm)、i線(波長:365n
m)、さらにはArFエキシマレーザ(波長:193n
m)、F2 エキシマレーザ(波長:157nm)などの
多世代の露光光源に対して有効であり、実用上極めて有
益な露光装置を提供することができる。Since the improvement effect does not depend on the wavelength of the exposure light in principle, the improvement effect is not limited to the KrF excimer laser (wavelength: 248 nm) described in the above embodiment, but g-line (wavelength: 436 nm), i-line (wavelength: 365n
m), and ArF excimer laser (wavelength: 193n
m), an F 2 excimer laser (wavelength: 157 nm), and other multi-generation exposure light sources, and an extremely useful practical exposure apparatus can be provided.
【0126】[0126]
【発明の効果】本発明の請求項1に係る光源フィルタ
は、第1露光光が第1領域と第2領域との境界での反射
なしに第1領域と第2領域とを透過し、第2露光光が第
1領域と第2領域との境界で反射され第1領域を一往復
して透過し、第1露光光と第2露光光は2分の1波長の
位相差を生じるので、第1露光光と第2露光光の焦点位
置は半波長光路差分ずれる。In the light source filter according to the first aspect of the present invention, the first exposure light passes through the first region and the second region without being reflected at the boundary between the first region and the second region, 2 exposure light is reflected at the boundary between the first region and the second region, travels back and forth through the first region once, and the first exposure light and the second exposure light cause a phase difference of ½ wavelength. The focus positions of the first exposure light and the second exposure light deviate by the half-wavelength optical path difference.
【0127】その結果、設定された焦点位置での結像振
幅は反転し、干渉して得られる結像の光強度分布は互い
のサイドローブが相殺された急峻で良好なプロファイル
となる。したがって光強度分布のコントラストが改善さ
れ解像度の大幅な向上が可能となる。また、焦点方向に
おける光強度分布のコントラストが向上するので焦点深
度の大幅な拡大が可能となる。さらに、繰返しパターン
はもとより、単一パターンであっても半波長位相の異な
る第1露光光と第2露光光とにより繰返しパターンの干
渉性が付与されたのと同等の効果が得られるため解像度
の大幅な改善が図れるとともに、パターンの疎密に起因
する近接効果が低減される。As a result, the image forming amplitude at the set focal position is inverted, and the light intensity distribution of the image formed by the interference has a steep and good profile in which the side lobes are canceled out. Therefore, the contrast of the light intensity distribution is improved and the resolution can be significantly improved. Further, since the contrast of the light intensity distribution in the focal direction is improved, the depth of focus can be greatly expanded. In addition to the repetitive pattern, even if it is a single pattern, it is possible to obtain the same effect as that when the repetitive pattern coherency is given by the first exposure light and the second exposure light having different half-wavelength phases. A great improvement can be achieved, and the proximity effect due to the density of the pattern is reduced.
【0128】請求項2に係る光源フィルタにおいては、
請求項1の光源フィルタにおいて、第2領域が露光光に
対する透過率が30%以上であり反射率が55%以下の
薄膜である。In the light source filter according to claim 2,
The light source filter according to claim 1, wherein the second region is a thin film having a transmittance of exposure light of 30% or more and a reflectance of 55% or less.
【0129】請求項3に係る光源フィルタにおいては、
請求項2の光源フィルタにおいて、薄膜はCr,Ta,
Mo,Al,Ti,MoSi、あるいはCr,Ta,M
o,Al,Ti,MoSiを主成分とする酸化物または
窒化物からなる。In the light source filter according to claim 3,
The light source filter according to claim 2, wherein the thin film is Cr, Ta,
Mo, Al, Ti, MoSi, or Cr, Ta, M
It is made of oxide or nitride containing o, Al, Ti, and MoSi as main components.
【0130】請求項4に係る光源フィルタは、請求項1
ないし3のいずれかの光源フィルタにおいて、第1領域
がSOGまたはスパッタSiO2 または光学ガラスまた
は有機膜のいずれかにより形成されている。A light source filter according to a fourth aspect is the first aspect.
In any of the light source filters 1 to 3, the first region is formed of SOG, sputtered SiO 2, optical glass, or an organic film.
【0131】したがって、第1領域と第2領域との境界
での良好な多重反射が実現される。その結果、光強度分
布のコントラストの向上および焦点深度の拡大を実現す
ることが可能である。Therefore, excellent multiple reflection at the boundary between the first area and the second area is realized. As a result, it is possible to improve the contrast of the light intensity distribution and increase the depth of focus.
【0132】請求項5に係る光源フィルタにおいては、
請求項1ないし4のいずれかの光源フィルタにおいて、
露光光の一部を遮光する遮光部分があるので、露光光の
必要な成分のみを取出し、位相変調して干渉させること
が可能である。In the light source filter according to claim 5,
The light source filter according to any one of claims 1 to 4,
Since there is a light-shielding portion that shields a part of the exposure light, it is possible to extract only the necessary component of the exposure light, phase-modulate it, and cause interference.
【0133】請求項6に係る光源フィルタを用いた投影
露光装置においては、第1露光光が第1領域と第2領域
との境界上での反射なしに第1領域と第2領域とを透過
し、第2露光光が第1領域と第2領域との境界で反射さ
れ第1領域を一往復して透過し、第1露光光と第2露光
光は2分の1波長の位相差を生じ、マスクの形状が投影
されるので、第1露光光と第2露光光の焦点位置は半波
長の光路差分ずれ、焦点位置での結像振幅を反転し、干
渉して得られる結像の光強度分布は互いにサイドローブ
が相殺された急峻で良好なプロファイルとなる。したが
って光強度分布のコントラストが改善され解像度の大幅
な向上が可能となる。また焦点方向における光強度分布
のコントラストが向上し焦点深度の大幅な拡大が可能と
なる。さらに、繰返しパターンはもとより単一パターン
であっても半波長位相の異なる第1露光光と第2露光光
とにより繰返しパターンの干渉性が付与されたのと同等
の効果が得られるため、解像度の大幅な改善が図れると
ともに、パターンの疎密に起因する近接効果が低減され
る。In the projection exposure apparatus using the light source filter according to the sixth aspect, the first exposure light passes through the first area and the second area without being reflected on the boundary between the first area and the second area. Then, the second exposure light is reflected at the boundary between the first region and the second region and travels back and forth through the first region once, and the first exposure light and the second exposure light have a phase difference of ½ wavelength. Since the mask shape is projected, the focus positions of the first exposure light and the second exposure light are deviated from each other by a half-wavelength optical path difference, the imaging amplitude at the focus position is inverted, and the image obtained by interference is formed. The light intensity distribution has a steep and favorable profile in which side lobes are offset from each other. Therefore, the contrast of the light intensity distribution is improved and the resolution can be significantly improved. Further, the contrast of the light intensity distribution in the focal direction is improved, and the depth of focus can be greatly expanded. Furthermore, even if the pattern is a single pattern as well as the repetitive pattern, the same effect as that when the coherency of the repetitive pattern is given by the first exposure light and the second exposure light having different half-wavelength phases can be obtained, so that the resolution A great improvement can be achieved, and the proximity effect due to the density of the pattern is reduced.
【0134】その結果、パターンの周期性、パターンレ
イアウト、パターンサイズ、パターンの疎密などの依存
が小さく単一パターンおよび繰返しパターンのいずれに
も有効な実用上要求されるほとんどの特性を良好に満足
するような投影露光装置を提供することが可能となる。As a result, the dependence on the periodicity of the pattern, the pattern layout, the pattern size, the density of the pattern, etc. is small, and most of the practically required characteristics effective for both the single pattern and the repeating pattern are well satisfied. It is possible to provide such a projection exposure apparatus.
【0135】請求項7に係る投影露光装置においては、
請求項6の投影露光装置において、光源フィルタの第2
領域が露光光に対する透過率が30%以上であり反射率
が55%以下の薄膜である。In the projection exposure apparatus according to claim 7,
The projection exposure apparatus according to claim 6, wherein the second light source filter is provided.
The region is a thin film having a transmittance of 30% or more for exposure light and a reflectance of 55% or less.
【0136】請求項8に係る投影露光装置においては、
請求項7の投影露光装置において、薄膜はCr,Ta,
Mo,Al,Ti,MoSi、あるいはCr,Ta,M
o,Al,Ti,MoSiを主成分とする酸化物または
窒化物からなる。In the projection exposure apparatus according to claim 8,
8. The projection exposure apparatus according to claim 7, wherein the thin film is Cr, Ta,
Mo, Al, Ti, MoSi, or Cr, Ta, M
It is made of oxide or nitride containing o, Al, Ti, and MoSi as main components.
【0137】請求項9に係る投影露光装置においては、
請求項6ないし8のいずれかの投影露光装置において、
光源フィルタの第1領域がSOGまたはスパッタSiO
2 または光学ガラスまたは有機膜のいずれかにより形成
されている。In the projection exposure apparatus according to claim 9,
The projection exposure apparatus according to claim 6,
The first region of the light source filter is SOG or sputtered SiO
2 or formed of either an optical glass or an organic film.
【0138】したがって、光源フィルタの第1領域と第
2領域との境界での良好な多重反射が実現され、解像度
の大幅な向上および焦点深度の拡大が実現される。Therefore, good multiple reflection at the boundary between the first and second regions of the light source filter is realized, and the resolution is greatly improved and the depth of focus is increased.
【0139】その結果、パターンの周期性、パターンレ
イアウト、パターンサイズ、パターンの疎密などの依存
が小さく単一パターンおよび繰返しパターンのいずれに
も有効な実用上要求されるほとんどの特性を良好に満足
するような投影露光装置が実現可能となる。As a result, the dependence of pattern periodicity, pattern layout, pattern size, pattern density, etc. is small, and most of the practically required characteristics effective for both single patterns and repeated patterns are well satisfied. Such a projection exposure apparatus can be realized.
【0140】請求項10に係る投影露光装置において
は、請求項6ないし9の投影露光装置において、光源フ
ィルタに隣接して設けられた露光光の一部を遮光する遮
光部分があるので、露光光の必要な成分のみを取出し、
位相変調して干渉させることができ、余分な露光光の成
分による結像が除去され、さらなる解像度の向上および
焦点深度の拡大が可能となる。The projection exposure apparatus according to claim 10 is the projection exposure apparatus according to any one of claims 6 to 9, wherein there is a light-shielding portion provided adjacent to the light source filter for shielding a part of the exposure light. Take out only the necessary ingredients of
Phase modulation can be performed to cause interference, image formation due to an excess exposure light component is removed, and it is possible to further improve the resolution and increase the depth of focus.
【0141】その結果、パターンの周期性、パターンレ
イアウト、パターンサイズ、パターンの疎密などの依存
が小さく単一パターンおよび繰返しパターンのいずれに
も有効な実用上要求されるほとんどの特性をより良好に
満足するような投影露光装置を提供することが可能とな
る。As a result, the dependence of pattern periodicity, pattern layout, pattern size, pattern density, etc. is small, and most practically required characteristics effective for both single patterns and repeated patterns are better satisfied. It is possible to provide such a projection exposure apparatus.
【0142】請求項11に係る投影露光方法において
は、露光光が作成され、作成された露光光の一部の位相
が光源フィルタにより1/2波長ずらされ、1/2波長
ずれた露光光と1/2波長ずれていない元の露光光とが
重ねて所定の被投影物に投影されるので、それらの露光
光の焦点位置は半波長光路差分ずれ、設定された焦点位
置での結像振幅が反転し、干渉して得られる結像の高強
度分布は互いのサイドローブが相殺された急峻で良好な
プロファイルとなる。したがって光強度分布のコントラ
ストが改善され解像度の大幅な向上が可能となる。ま
た、焦点方向における光強度分布のコントラストが向上
し焦点深度の大幅な拡大が可能となる。さらに、繰返し
パターンはもとより単一パターンであっても半波長位相
の異なる2つの露光光により繰返しパターンの干渉性が
付与されたのと同等の効果が得られるため、解像度の大
幅な改善が図れるとともに、パターンの疎密に起因する
近接効果が低減される。In the projection exposure method according to the eleventh aspect, the exposure light is created, and the phase of a part of the created exposure light is shifted by ½ wavelength by the light source filter, and the exposure light is shifted by ½ wavelength. Since the original exposure light which is not shifted by ½ wavelength is superimposed and projected on a predetermined projection object, the focus positions of those exposure lights are shifted by the half-wavelength optical path difference, and the image formation amplitude at the set focus position. Are reversed, and the high-intensity distribution of the image obtained by the interference has a steep and favorable profile in which side lobes are canceled out. Therefore, the contrast of the light intensity distribution is improved and the resolution can be significantly improved. Further, the contrast of the light intensity distribution in the focal direction is improved, and the focal depth can be greatly expanded. Furthermore, even if the pattern is a single pattern as well as a repetitive pattern, the same effect can be obtained that the coherence of the repetitive pattern is imparted by two exposure lights having different half-wavelength phases, so that the resolution can be significantly improved. , The proximity effect due to the pattern density is reduced.
【0143】その結果、パターンの周期性、パターンレ
イアウト、パターンサイズ、パターンの疎密などの依存
が小さく単一パターンおよび繰返しパターンのいずれに
も有効な実用上要求されるほとんどの特性を良好に満足
するような投影露光方法を実現することが可能となる。As a result, the dependence of the pattern periodicity, pattern layout, pattern size, pattern density, etc. is small, and most of the practically required characteristics effective for both single patterns and repetitive patterns are well satisfied. It is possible to realize such a projection exposure method.
【0144】請求項12に係る投影露光方法において
は、請求項11の投影露光方法において、露光光の一部
が遮光されるので、露光光の必要な成分のみを取出し、
位相変調して干渉させることができ、余分な露光光の成
分による結像が除去され、さらなる解像度の向上および
焦点深度の拡大が可能となる。In the projection exposure method according to the twelfth aspect, in the projection exposure method according to the eleventh aspect, since a part of the exposure light is shielded, only necessary components of the exposure light are taken out,
Phase modulation can be performed to cause interference, image formation due to an excess exposure light component is removed, and it is possible to further improve the resolution and increase the depth of focus.
【0145】その結果、パターンの周期性、パターンレ
イアウト、パターンサイズ、パターンの疎密などの依存
が小さく単一パターンおよび繰返しパターンのいずれに
も有効な実用上要求されるほとんどの特性をより良好に
満足するような投影露光方法を実現することが可能とな
る。As a result, the dependence on the periodicity of the pattern, the pattern layout, the pattern size, the density of the pattern, etc. is small, and most of the practically required characteristics effective for both the single pattern and the repeated pattern are better satisfied. It is possible to realize such a projection exposure method.
【図1】本発明の実施例の光源フィルタを設置した投影
露光装置の構成およびその露光光の結像を示す模式図で
ある。FIG. 1 is a schematic diagram showing a configuration of a projection exposure apparatus having a light source filter according to an embodiment of the present invention and an image formation of the exposure light thereof.
【図2】本発明の実施例の多重反射干渉光源フィルタ3
を設置した投影露光装置による単一パターン投影時の結
像原理を従来照明による結像と比較した図である。FIG. 2 is a multiple reflection interference light source filter 3 according to an embodiment of the present invention.
FIG. 6 is a diagram comparing an image formation principle when a single pattern is projected by a projection exposure apparatus in which is installed with a conventional illumination.
【図3】本発明の実施例の多重反射干渉光源フィルタ3
を設置した投影露光装置による単一パターン投影時の結
像原理を従来照明による結像と比較した図である。FIG. 3 is a multiple reflection interference light source filter 3 according to an embodiment of the present invention.
FIG. 6 is a diagram comparing an image formation principle when a single pattern is projected by a projection exposure apparatus in which is installed with a conventional illumination.
【図4】本発明の実施例の多重反射干渉光源フィルタ3
を設置した投影露光装置において繰返しパターンに対し
多重反射干渉光源フィルタ3を設置した場合の構成およ
び直入射3光束結像の模式図である。FIG. 4 is a multiple reflection interference light source filter 3 according to an embodiment of the present invention.
FIG. 3 is a schematic diagram of a configuration and a direct-incidence three-beam imaging when a multiple reflection interference light source filter 3 is installed for a repetitive pattern in a projection exposure apparatus in which is installed.
【図5】本発明の多重反射干渉光源フィルタ3を設置し
た投影露光装置において繰返しパターンに対し一部を遮
光した多重反射干渉光源フィルタ3を設置した場合の構
成および斜入射3光束結像の模式図である。FIG. 5 is a schematic diagram of a configuration and an oblique incidence three-beam imaging when a multiple exposure light source filter 3 of the present invention is provided with a multiple reflection interference light source filter 3 that partially shields a repetitive pattern from the projection exposure apparatus. It is a figure.
【図6】本発明の多重反射干渉光源フィルタ3を設置し
た投影露光装置において図4の直入射3光束結像構成を
用いた投影露光装置と図5の斜入射3光束結像構成を用
いた投影露光装置とを繰返しパターンから得られる結像
振幅分布と光強度分布を従来照明による結像構成の投影
露光装置による場合とを比較した図である。FIG. 6 shows a projection exposure apparatus using the multiple reflection interference light source filter 3 of the present invention, which uses the projection exposure apparatus using the normal incidence three-beam imaging configuration of FIG. 4 and the oblique incidence three-beam imaging configuration of FIG. It is the figure which compared the case where the projection exposure apparatus of the image formation structure by the conventional illumination is compared with the imaging amplitude distribution and light intensity distribution obtained from a repeating pattern with a projection exposure apparatus.
【図7】本発明の実施例の多重反射干渉光源フィルタ3
の露光光透過領域33を遮光板35により遮光する種々
遮光形状を示す図である。FIG. 7 is a multiple reflection interference light source filter 3 according to an embodiment of the present invention.
FIG. 6 is a diagram showing various light shielding shapes in which the exposure light transmitting region 33 of FIG.
【図8】本発明の実施例の遮光板35による多重反射干
渉光源フィルタ3の露光光透過領域33を遮光する種々
遮光構造を示す模式図である。FIG. 8 is a schematic diagram showing various light blocking structures for blocking the exposure light transmitting region 33 of the multiple reflection interference light source filter 3 by the light blocking plate 35 of the embodiment of the present invention.
【図9】本発明の多重反射干渉光源フィルタの構造と遮
光板34と多重反射干渉光源フィルタ3と遮光板34の
ホルダ37(片側のみ示す)とを示す図である。FIG. 9 is a diagram showing a structure of a multiple reflection interference light source filter of the present invention, a light shielding plate 34, a multiple reflection interference light source filter 3, and a holder 37 (only one side is shown) of the light shielding plate 34.
【図10】本発明の多重反射干渉光源フィルタ3を設置
した投影露光装置1を用いた場合および光源フィルタを
用いない従来の通常の投影露光装置を用いた場合の単一
パターンに対する転写結果の解像度特性を比較した図で
ある。FIG. 10 is a resolution of a transfer result for a single pattern when the projection exposure apparatus 1 provided with the multiple reflection interference light source filter 3 of the present invention is used and when the conventional ordinary projection exposure apparatus that does not use the light source filter is used. It is the figure which compared the characteristic.
【図11】本発明の多重反射干渉光源フィルタ3を設置
した投影露光装置1を用いた場合および光源フィルタを
用いない従来の通常の投影露光装置を用いた場合の単一
パターンに対する転写結果の焦点深度特性を比較した図
である。FIG. 11 is a focus of a transfer result for a single pattern when the projection exposure apparatus 1 having the multiple reflection interference light source filter 3 of the present invention is used and when the conventional normal projection exposure apparatus not using the light source filter is used. It is a figure which compared the depth characteristic.
【図12】従来の通常の投影露光装置による簡単な結像
原理を示す模式図である。図12は通常のマスクパター
ンによる結像を示す図である。FIG. 12 is a schematic diagram showing a simple imaging principle by a conventional normal projection exposure apparatus. FIG. 12 is a diagram showing image formation by a normal mask pattern.
【図13】従来の通常の投影露光装置による簡単な結像
原理を示す模式図である。図12は通常のマスクパター
ンによる結像を示す図である。FIG. 13 is a schematic diagram showing a simple imaging principle by a conventional normal projection exposure apparatus. FIG. 12 is a diagram showing image formation by a normal mask pattern.
【図14】特開平4−101148に開示された従来の
変形照明技術に用いられている簡単な結像原理を示す模
式図である。FIG. 14 is a schematic diagram showing a simple imaging principle used in the conventional modified illumination technique disclosed in Japanese Patent Laid-Open No. 4-101148.
【図15】従来の遮光板35の遮光形状を示す図であ
る。FIG. 15 is a view showing a light shielding shape of a conventional light shielding plate 35.
1 光源 3 多重反射干渉光源フィルタ 5,51 マスク 31 基板 32 半透明領域 33 透明領域 13,34,35 遮光板 36 遮光板35と異なる遮光板 37 ホルダ 61 露光光束 62 多重反射した露光光束 64 多重反射した露光光束の斜入射成分 71 露光光束61のマスク5パターンによる回折光束 72 露光光束62のマスク5パターンによる回折光束 73 露光光束63のマスク51パターンによる回折光
束 74 露光光束64のマスク51パターンによる回折光
束 75 露光光束65のマスク51パターンによる回折光
束DESCRIPTION OF SYMBOLS 1 light source 3 multiple reflection interference light source filter 5,51 mask 31 substrate 32 semi-transparent area 33 transparent area 13, 34, 35 light shielding plate 36 light shielding plate different from light shielding plate 37 holder 61 exposure light flux 62 multiple reflection exposure light flux 64 multiple reflection Oblique incidence component of exposure light flux 71 Diffused light flux of mask light 5 pattern of exposure light flux 72 72 Light flux diffracted by mask 5 pattern of exposure light flux 73 73 Diffraction light flux of mask 51 pattern of exposure light flux 63 74 Diffraction by mask 51 pattern of exposure light flux 64 Light flux 75 Diffraction light flux of the exposure light flux 65 by the mask 51 pattern
Claims (12)
て、 前記露光光が透過する第1領域と、 前記第1領域を挟んで設けられた第2領域とを含み、 前記露光光は、前記第1領域と前記第2領域との境界で
の反射なしに前記第1領域を透過する第1露光光と前記
境界で反射され前記第1領域を一往復して透過する第2
露光光とを含み、 前記第2露光光は前記第1露光光と2分の1波長の位相
差を生じる光源フィルタ。1. A light source filter that transmits exposure light, comprising: a first region that transmits the exposure light; and a second region that sandwiches the first region, wherein the exposure light is A second exposure light that passes through the first region without reflection at the boundary between the first region and the second region and a second exposure light that is reflected at the boundary and travels back and forth through the first region.
A light source filter including exposure light, wherein the second exposure light causes a phase difference of a half wavelength with the first exposure light.
率が30%以上であり、反射率が55%以下の薄膜であ
る請求項1に記載の光源フィルタ。2. The light source filter according to claim 1, wherein the second region is a thin film having a transmittance of 30% or more for the exposure light and a reflectance of 55% or less.
Ti,MoSi、あるいはCr,Ta,Mo,Al,T
i,MoSiを主成分とする酸化物または窒化物からな
る請求項2に記載の光源フィルタ。3. The thin film comprises Cr, Ta, Mo, Al,
Ti, MoSi, or Cr, Ta, Mo, Al, T
The light source filter according to claim 2, wherein the light source filter is made of an oxide or a nitride containing i, MoSi as a main component.
2 、光学ガラスまたは有機膜のいずれかにより形成され
た請求項1ないし3のいずれかに記載の光源フィルタ。4. The first region is SOG, sputtered SiO 2.
2. The light source filter according to any one of claims 1 to 3, which is formed of either optical glass or an organic film.
含む請求項1ないし4のいずれかに記載の光源フィル
タ。5. The light source filter according to claim 1, further comprising a light shielding portion that shields a part of the exposure light.
て、 前記露光光を出射する光源と、 前記露光光を透過する光源フィルタとを含み、前記光源
フィルタは、 前記露光光が透過する第1領域と、 前記第1領域を挟んで設けられた第2領域とを含み、 前記露光光は前記第1領域と前記第2領域との境界での
反射なしに前記第1領域を透過する第1露光光と、 前記境界上で反射され前記第1領域を一往復して透過す
る第2露光光とを含み、 前記第2露光光は前記第1露光光と2分の1波長の位相
差を生じ、 投影すべき形状を有するマスクとを含み、 前記光源フィルタを透過した第1および第2露光光を用
いて前記マスクの投影形状を投影する投影露光装置。6. A projection exposure apparatus that projects exposure light, comprising: a light source that emits the exposure light; and a light source filter that transmits the exposure light, wherein the light source filter transmits the exposure light. A first region and a second region provided so as to sandwich the first region, wherein the exposure light passes through the first region without being reflected at a boundary between the first region and the second region. One exposure light and a second exposure light reflected on the boundary and transmitted through the first region in one round trip, and the second exposure light has a phase difference of a half wavelength with the first exposure light. And a mask having a shape to be projected, and projecting the projected shape of the mask using the first and second exposure lights that have passed through the light source filter.
率が30%以上であり、反射率が55%以下の薄膜であ
る請求項6に記載の投影露光装置。7. The projection exposure apparatus according to claim 6, wherein the second region is a thin film having a transmittance of the exposure light of 30% or more and a reflectance of 55% or less.
Ti,MoSi、あるいはCr,Ta,Mo,Al,T
i,MoSiを主成分とする酸化物または窒化物からな
る請求項7に記載の投影露光装置。8. The thin film comprises Cr, Ta, Mo, Al,
Ti, MoSi, or Cr, Ta, Mo, Al, T
The projection exposure apparatus according to claim 7, wherein the projection exposure apparatus is composed of an oxide or a nitride containing i, MoSi as a main component.
iO2 または光学ガラスまたは有機膜のいずれかにより
形成された請求項6ないし8のいずれかに記載の投影露
光装置。9. The first region is SOG or sputter S.
The projection exposure apparatus according to any one of claims 6 to 8, which is formed of iO 2, optical glass, or an organic film.
た前記露光光の一部を遮光する遮光手段をさらに含む請
求項6ないし9のいずれかに記載の投影露光装置。10. The projection exposure apparatus according to claim 6, further comprising a light shielding unit provided adjacent to the light source filter for shielding a part of the exposure light.
る投影露光方法であって、 前記露光光を作成するステップと、 作成された露光光の一部の位相を前記光源フィルタを用
いて1/2波長ずらすステップと、 1/2波長ずれた前記露光光と、1/2波長ずれていな
い元の露光光とを重ねて所定の被投影物に投影するステ
ップとを含む投影露光方法。11. A projection exposure method for projecting exposure light using a light source filter, comprising the steps of: creating the exposure light; A projection exposure method comprising: a step of shifting two wavelengths; and a step of superimposing the exposure light having a half wavelength shift and the original exposure light having no half wavelength shift and projecting the same onto a predetermined projection target.
を含む請求項11に記載の投影露光方法。12. The projection exposure method according to claim 11, further comprising a step of blocking a part of the exposure light.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03093995A JP3571397B2 (en) | 1995-02-20 | 1995-02-20 | Light source filter, projection exposure apparatus and projection exposure method using the same |
KR1019960004114A KR960032100A (en) | 1995-02-20 | 1996-02-17 | Light source filter, projection exposure apparatus using the same, and projection exposure method |
DE19606170A DE19606170A1 (en) | 1995-02-20 | 1996-02-20 | Light source filter for projecting masking images on to semiconductor wafers for lithographic micro-miniaturisation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03093995A JP3571397B2 (en) | 1995-02-20 | 1995-02-20 | Light source filter, projection exposure apparatus and projection exposure method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08227841A true JPH08227841A (en) | 1996-09-03 |
JP3571397B2 JP3571397B2 (en) | 2004-09-29 |
Family
ID=12317654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03093995A Expired - Lifetime JP3571397B2 (en) | 1995-02-20 | 1995-02-20 | Light source filter, projection exposure apparatus and projection exposure method using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3571397B2 (en) |
KR (1) | KR960032100A (en) |
DE (1) | DE19606170A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990079781A (en) * | 1998-04-09 | 1999-11-05 | 윤종용 | Photomasks and Photo Equipment |
JP2005079591A (en) * | 2003-08-29 | 2005-03-24 | Asml Netherlands Bv | Lithograph apparatus, device manufacturing method and device |
CN110530782A (en) * | 2019-09-25 | 2019-12-03 | 迈克医疗电子有限公司 | Eliminate the optical system and method for side-lobe signal interference |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6784976B2 (en) * | 2002-04-23 | 2004-08-31 | Asml Holding N.V. | System and method for improving line width control in a lithography device using an illumination system having pre-numerical aperture control |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0302130A1 (en) * | 1987-08-05 | 1989-02-08 | Mercotrust Aktiengesellschaft | Illumination device |
US5253040A (en) * | 1990-11-09 | 1993-10-12 | Mitsubishi Denki Kabushiki Kaisha | Projection aligner |
JPH0684746A (en) * | 1992-03-09 | 1994-03-25 | Hitachi Ltd | Projection aligner and formation of pattern |
US5642183A (en) * | 1993-08-27 | 1997-06-24 | Sharp Kabushiki Kaisha | Spatial filter used in a reduction-type projection printing apparatus |
-
1995
- 1995-02-20 JP JP03093995A patent/JP3571397B2/en not_active Expired - Lifetime
-
1996
- 1996-02-17 KR KR1019960004114A patent/KR960032100A/en not_active Application Discontinuation
- 1996-02-20 DE DE19606170A patent/DE19606170A1/en not_active Ceased
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990079781A (en) * | 1998-04-09 | 1999-11-05 | 윤종용 | Photomasks and Photo Equipment |
JP2005079591A (en) * | 2003-08-29 | 2005-03-24 | Asml Netherlands Bv | Lithograph apparatus, device manufacturing method and device |
CN110530782A (en) * | 2019-09-25 | 2019-12-03 | 迈克医疗电子有限公司 | Eliminate the optical system and method for side-lobe signal interference |
CN110530782B (en) * | 2019-09-25 | 2024-05-07 | 迈克医疗电子有限公司 | Optical system and method for eliminating side lobe signal interference |
Also Published As
Publication number | Publication date |
---|---|
KR960032100A (en) | 1996-09-17 |
JP3571397B2 (en) | 2004-09-29 |
DE19606170A1 (en) | 1996-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6310679B1 (en) | Projection exposure method and apparatus | |
US5863712A (en) | Pattern forming method, projection exposure system, and semiconductor device fabrication method | |
JP3101594B2 (en) | Exposure method and exposure apparatus | |
EP2177949B1 (en) | Method of correcting proximity effects in an attenuated rim-phase shifting mask | |
US5467166A (en) | Projection exposure method and apparatus | |
JP3368265B2 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
JP2001297976A (en) | Method of exposure and aligner | |
US5642183A (en) | Spatial filter used in a reduction-type projection printing apparatus | |
JP3123548B2 (en) | Exposure method and exposure apparatus | |
US5636004A (en) | Projection exposure method and apparatus | |
JP2001272764A (en) | Photomask for projection exposure and for projection exposure method using the photomask | |
JPH06244082A (en) | Projection exposure device | |
JPH07122469A (en) | Projection aligner | |
JP3347670B2 (en) | Mask and exposure method using the same | |
JP2000021720A (en) | Exposure method and manufacture of aligner | |
JP2000021722A (en) | Exposure method and aligner | |
JP4579977B2 (en) | Imaging and equipment in lithography | |
JPH08227841A (en) | Light source filter, production aligner using filter thereof and projection exposure method | |
JPH09127319A (en) | Reflecting mirror, manufacture thereof and projection exposure device using mirror thereof | |
JP3296296B2 (en) | Exposure method and exposure apparatus | |
JPH0968790A (en) | Photomask | |
US7956983B2 (en) | Exposure equipment having auxiliary photo mask and exposure method using the same | |
JP3323815B2 (en) | Exposure method and exposure apparatus | |
JP2980479B2 (en) | Photomask and exposure method | |
JP3133618B2 (en) | Spatial filter used in reduction projection exposure apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040624 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070702 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090702 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100702 Year of fee payment: 6 |