JPH08227829A - Aluminum foil for electrolyc capacitor electrode - Google Patents

Aluminum foil for electrolyc capacitor electrode

Info

Publication number
JPH08227829A
JPH08227829A JP5508195A JP5508195A JPH08227829A JP H08227829 A JPH08227829 A JP H08227829A JP 5508195 A JP5508195 A JP 5508195A JP 5508195 A JP5508195 A JP 5508195A JP H08227829 A JPH08227829 A JP H08227829A
Authority
JP
Japan
Prior art keywords
aluminum foil
amount
electrolytic capacitor
foil
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5508195A
Other languages
Japanese (ja)
Other versions
JP3454485B2 (en
Inventor
Kaneshige Yamamoto
兼滋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP05508195A priority Critical patent/JP3454485B2/en
Publication of JPH08227829A publication Critical patent/JPH08227829A/en
Application granted granted Critical
Publication of JP3454485B2 publication Critical patent/JP3454485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE: To provide the aluminum foil for an electrolytic capacitor electrode, which can stably obtain the electrode foil (especially an anode foil for a high voltage) having the high electrostatic capacitance. CONSTITUTION: The aluminum impurity of this aluminum foil for an electrolytic capacitor is 99.9wt.% or more. Furthermore, the elements of 0.0010-0.0100wt.% of Fe, 0.0015-0.0150wt.% of Si and 0.0001-0.0050wt.% of Cu and other inevitable impurity elements are contained. The amount of the deposition of Fe is specified to the range of 10-70% of the content of Fe. With respect to the amount of the deposition of Fe, errors and the like are not generated by a thermal phenol dissolution method, and the amount is accurately measured. It is preferable that the amount of deposition of Si is specifed in the range of 5-50% with respect to the content of Si. It is preferable that the amount of deposition of Cu is specified in the range of 1-20% with respect to the sum of the amounts of deposition of Fe, Si and Cu.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電容量の高い電解コ
ンデンサ用電極箔(特に高圧用陽極箔)を得ることので
きる電解コンデンサ電極用アルミニウム箔に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum foil for an electrolytic capacitor electrode, which can obtain an electrode foil for an electrolytic capacitor having a high electrostatic capacity (particularly, a high voltage anode foil).

【0002】[0002]

【従来の技術】従来より、電解コンデンサ用電極箔を製
造するためには、電解コンデンサ電極用アルミニウム箔
にエッチング処理を施し、箔表面に微細な孔(エッチン
グピット)を多数形成して、箔表面の表面積を拡大する
ことが行われている。この表面積の拡大は、電解コンデ
ンサ用電極箔の静電容量を高めるために、最も有効な方
法である。従って、高静電容量の電解コンデンサ用電極
箔を得るためには、エッチング特性の良好な電解コンデ
ンサ電極用アルミニウム箔を使用して製造する必要があ
る。一方、エッチング処理としては、使用耐電圧に適し
たエッチングピットが得られるように、種々のエッチン
グ方法が採用されている。例えば、高圧用陽極箔には、
トンネル状のエッチングピットが形成されているのが好
ましく、これに適するエッチング法として直流エッチン
グ法が採用されている。
2. Description of the Related Art Conventionally, in order to manufacture an electrode foil for an electrolytic capacitor, an aluminum foil for an electrolytic capacitor electrode is subjected to an etching treatment to form a large number of fine holes (etching pits) on the foil surface. The surface area of is being expanded. This expansion of the surface area is the most effective method for increasing the capacitance of the electrode foil for electrolytic capacitors. Therefore, in order to obtain an electrode foil for an electrolytic capacitor having a high capacitance, it is necessary to manufacture using an aluminum foil for an electrolytic capacitor electrode having good etching characteristics. On the other hand, as the etching treatment, various etching methods are adopted so that etching pits suitable for the withstand voltage used can be obtained. For example, for high voltage anode foil,
It is preferable that a tunnel-shaped etching pit is formed, and a DC etching method is adopted as an etching method suitable for this.

【0003】高圧用陽極箔の静電容量を向上させる手段
の一つは、このトンネル状のエッチングピットの密度を
高めることである。トンネル状のエッチングピットの密
度を高めるには、トンネル状のエッチングピットをアル
ミニウム箔表面から深さ方向に垂直に形成させる必要が
あるとともに、一つのエッチングピットの径を耐電圧皮
膜で塞がない最小の直径とすることである。そして、こ
のアルミニウム箔表面から深さ方向に垂直にエッチング
ピットを形成させるには、直流エッチング前のアルミニ
ウム箔の全結晶粒中における立方体方位を有するの結晶
粒の割合を多くすることである。即ち、箔表面が(10
0)面と平行になるような結晶組織(これを立方体方位
を有する結晶粒という。)を、アルミニウム箔中の全結
晶粒に対して、多く形成させると良いのである。このよ
うな立方体方位を有する結晶粒は、アルミニウム箔を製
造する際における、均質化処理,熱間圧延,一次冷間圧
延,中間焼鈍,二次冷間圧延及び最終焼鈍の条件を適宜
選択することによって、アルミニウム箔中に多く形成さ
せることができる。特に、二次冷間圧延を低圧延率とし
たり、或いは最終焼鈍の温度を比較的高温にすることに
よって、多く形成させることができる。
One of the means for improving the electrostatic capacity of the high voltage anode foil is to increase the density of the tunnel-shaped etching pits. To increase the density of tunnel-shaped etching pits, it is necessary to form tunnel-shaped etching pits vertically from the aluminum foil surface in the depth direction, and the diameter of one etching pit must not be blocked by the withstand voltage film. It is to be the diameter of. In order to form etching pits perpendicularly to the depth direction from the surface of the aluminum foil, it is necessary to increase the proportion of crystal grains having a cubic orientation in all the crystal grains of the aluminum foil before direct current etching. That is, the foil surface is (10
It is advisable to form a large number of crystal structures parallel to the (0) plane (this is called a crystal grain having a cubic orientation) with respect to all the crystal grains in the aluminum foil. For the crystal grains having such a cubic orientation, the conditions for homogenization treatment, hot rolling, primary cold rolling, intermediate annealing, secondary cold rolling and final annealing during the production of aluminum foil should be appropriately selected. According to this, a large amount can be formed in the aluminum foil. In particular, a large amount can be formed by reducing the secondary cold rolling to a low rolling rate or by setting the temperature of final annealing to a relatively high temperature.

【0004】また、この立方体方位を有する結晶粒の生
成割合は、不純物の固溶・析出状態によって支配され
る。例えば、特公平3−61333号公報には、アルミ
ニウム箔中のFe又はSiのいずれか一方の析出量を、
その含有量に対して10〜70%に規制したものは、エ
ッチング特性が良好になることが教示されている。特公
平3−61333号公報には、エッチング特性が良好に
なる原理を明記していないが、結局、不純物の析出状態
によって、立方体方位を有する結晶粒が多く生成してエ
ッチング特性が良好になるという原理に基づくものでは
ないかと推察される。しかしながら、この先行技術にお
いては、Fe又はSiの析出量を、電気抵抗法によって
測定しており、以下の如き欠点があった。(i)電気抵
抗法では、アルミニウム箔中において析出している全て
の元素の影響で、電気抵抗値が増減し、Feのみの析出
量又はSiのみの析出量を測定することは、極めて困難
であった。従って、アルミニウム箔中にFe又はSiの
みが含有されている場合はともかく、他のCu,Zn,
Mn等の元素が含有されていると、現実的にはFe又は
Siのみの析出量を測定することはできなかった。(i
i)Fe又はSiの析出量による電気抵抗値の減少量に
ついて、確定した値は知られていない。従って、現実
に、電気抵抗値の増減によって、Fe又はSiの析出量
を知ることは困難である。なお、20℃で測定した、S
iの析出量による電気抵抗値の減少量(又はSiの固溶
量による電気抵抗値の増加量)についても、その値は未
確定である(刊行物「軽金属」1985年第35巻第3
号第162〜167頁に掲載された「アルミニウムの再
結晶に及ぼすけい素および鉄,けい素共存の影響」と題
する論文、特にその第163頁左欄第5〜8行目を参照
のこと。)。即ち、電気抵抗法により、種々の不純物元
素を含有するアルミニウム箔中のFe又はSiの析出量
を知ることは、現実的には不可能とも言えるのである。
従って、特公平3−61333号公報記載の方法によっ
て、高静電容量の電解コンデンサ用電極箔を安定して得
ることができる、電解コンデンサ電極用アルミニウム箔
を製造することは、実質的に不可能であった。
The production rate of crystal grains having this cubic orientation is governed by the solid solution / precipitation state of impurities. For example, in Japanese Examined Patent Publication No. 3-63333, the precipitation amount of either Fe or Si in an aluminum foil is
It is taught that when the content is regulated to 10 to 70%, the etching characteristics are improved. Japanese Patent Publication No. 3-61333 does not specify the principle of improving the etching characteristics, but eventually, many crystal grains having a cubic orientation are generated depending on the precipitation state of impurities, and the etching characteristics are improved. It is presumed that it is based on the principle. However, in this prior art, the precipitation amount of Fe or Si is measured by the electric resistance method, and there are the following defects. (I) In the electric resistance method, the electric resistance value increases or decreases due to the influence of all the elements precipitated in the aluminum foil, and it is extremely difficult to measure the precipitation amount of only Fe or the precipitation amount of only Si. there were. Therefore, if the aluminum foil contains only Fe or Si, other Cu, Zn,
When an element such as Mn is contained, the amount of precipitation of only Fe or Si cannot be actually measured. (I
i) Regarding the amount of decrease in electric resistance value due to the amount of precipitation of Fe or Si, a definite value is not known. Therefore, it is actually difficult to know the precipitation amount of Fe or Si by increasing or decreasing the electric resistance value. In addition, S measured at 20 ° C.
Regarding the decrease amount of the electric resistance value due to the precipitation amount of i (or the increase amount of the electric resistance value due to the solid solution amount of Si), the value has not been determined yet (Publication “Light Metal”, 1985, Vol. 35, No. 3).
See No. 162-167, entitled "Effects of Silicon, Iron, and Silicon Coexistence on Recrystallization of Aluminum," especially page 163, left column, lines 5-8. ). That is, it is practically impossible to know the precipitation amount of Fe or Si in the aluminum foil containing various impurity elements by the electric resistance method.
Therefore, it is practically impossible to manufacture an aluminum foil for electrolytic capacitor electrodes by which the electrode foil for electrolytic capacitor having high capacitance can be stably obtained by the method described in Japanese Patent Publication No. 3-61333. Met.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者は、
アルミニウム箔中で析出している各元素毎に、その析出
量を測定できる方法を採用し、種々研究を行った。その
結果、Feの含有量に対して、Feが一定の割合で析出
しているアルミニウム箔は、エッチング特性(特に、ト
ンネル状のエッチングピットの生成特性)が良好で、高
静電容量を持つ電解コンデンサ用電極箔(特に、高圧用
陽極箔)を安定して製造しうることを見出し、本発明に
到達したのである。更に、Siの含有量に対して、Si
が一定の割合で析出しているアルミニウム箔、又はF
e,Si及びCuの析出量の合計に対してCuが一定の
割合で析出しているアルミニウム箔についても、エッチ
ング特性がより良好となり、高静電容量を持つ電解コン
デンサ用電極箔を安定して製造しうることを見出し、本
発明に到達したのである。
Therefore, the inventor of the present invention
Various studies were conducted by adopting a method capable of measuring the amount of each element deposited in the aluminum foil. As a result, the aluminum foil in which Fe is deposited at a constant ratio with respect to the content of Fe has good etching characteristics (particularly, tunnel-like etching pit generation characteristics) and has a high capacitance. The inventors have found that a capacitor electrode foil (in particular, a high voltage anode foil) can be stably manufactured, and have reached the present invention. Furthermore, with respect to the Si content, Si
Aluminum foil in which a certain proportion is deposited, or F
Even for aluminum foil in which Cu is deposited at a constant ratio with respect to the total amount of deposited e, Si, and Cu, the etching characteristics are improved, and the electrode foil for electrolytic capacitors having high capacitance is stabilized. They have found that they can be manufactured and have reached the present invention.

【0006】[0006]

【課題を解決するための手段】即ち、本発明は、アルミ
ニウム純度が99.9重量%以上であって、Fe:0.
0010〜0.0100重量%、Si:0.0015〜
0.0150重量%、Cu:0.0001〜0.005
0重量%、その他不可避不純物元素を含有し、熱フェノ
ール溶解法によって測定されるFeの析出量が、Feの
含有量に対して、10〜70%の範囲に規制されている
ことを特徴とする電解コンデンサ電極用アルミニウム箔
に関するものである。また、上記した条件に加えて、更
にSiの析出量がSiの含有量に対して、5〜50%の
範囲に規制されている電解コンデンサ電極用アルミニウ
ム箔、又はCuの析出量が、Fe,Si及びCuの析出
量の合計に対して、1〜20%の範囲に規制されている
電解コンデンサ電極用アルミニウム箔に関するものであ
る。
That is, according to the present invention, the aluminum purity is 99.9% by weight or more, and Fe: 0.
0010 to 0.0100% by weight, Si: 0.0015 to
0.0150% by weight, Cu: 0.0001 to 0.005
It is characterized by containing 0% by weight and other unavoidable impurity elements, and the precipitation amount of Fe measured by the hot phenol dissolution method is regulated in the range of 10 to 70% with respect to the Fe content. The present invention relates to an aluminum foil for electrolytic capacitor electrodes. In addition to the above-mentioned conditions, the amount of deposited Si is regulated within the range of 5 to 50% relative to the content of Si, the aluminum foil for electrolytic capacitor electrodes, or the amount of deposited Cu is Fe, The present invention relates to an aluminum foil for electrolytic capacitor electrodes, which is regulated in the range of 1 to 20% with respect to the total amount of deposited Si and Cu.

【0007】まず、本発明において、前提となること
は、電解コンデンサ電極用アルミニウム箔のアルミニウ
ム純度が99.9重量%以上であるということである。
純度が99.9重量%未満であると、相対的に不純物が
多くなって、いかに各Fe,Si及び/又はCuの析出
量を規制しても、他の不純物元素による析出物の存在の
ため、エッチング時に過溶解が生じやすくなり、表面積
を十分に拡大することができない。また、過剰に不純物
を含有していると、立方体方位を有する結晶粒の生成割
合が少なくなったり、或いは立方体方位を有する結晶粒
の成長が図れなくなり、トンネル状のエッチングピット
が得られにくくなる。従って、エッチング特性の良好な
電解コンデンサ電極用アルミニウム箔が得られにくくな
り、高静電容量の電解コンデンサ用電極箔が得られにく
くなるため、好ましくない。
First, the premise of the present invention is that the aluminum purity of the electrolytic capacitor electrode aluminum foil is 99.9% by weight or more.
If the purity is less than 99.9% by weight, the amount of impurities becomes relatively large, and no matter how the precipitation amount of each Fe, Si and / or Cu is regulated, the existence of precipitates due to other impurity elements However, over-dissolution tends to occur during etching, and the surface area cannot be sufficiently expanded. Further, when the impurities are excessively contained, the generation ratio of crystal grains having a cubic orientation becomes small, or the growth of crystal grains having a cubic orientation cannot be achieved, and it becomes difficult to obtain tunnel-shaped etching pits. Therefore, it is difficult to obtain an aluminum foil for an electrolytic capacitor electrode having good etching characteristics, and it is difficult to obtain an electrode foil for an electrolytic capacitor having a high capacitance, which is not preferable.

【0008】電解コンデンサ電極用アルミニウム箔中に
は、Feが0.0010〜0.0100重量%、好まし
くは0.0015〜0.0040重量%含有されてい
る。Feが0.0010重量%未満であると、アルミニ
ウム箔が高純度になり、高価になるので好ましくない。
更に、Feの量が少なくなりすぎて、本発明において規
制した範囲内でFeを析出させることが困難になる。逆
に、Feが0.0100重量%を超えると、Feの析出
量を本発明において規制した範囲内とすることは容易で
あるが、析出Feの絶対量が多くなって、相対的に立方
体方位を有する結晶粒の割合が低下し、トンネル状のエ
ッチングピットの形成割合が低下するので、好ましくな
い。更に、析出Feの絶対量が多いので、エッチング時
に過溶解が生じやすくなり、高静電容量の電解コンデン
サ用電極箔が得られにくくなるため、好ましくない。
Fe is contained in the aluminum foil for electrolytic capacitor electrodes in an amount of 0.0010 to 0.0100% by weight, preferably 0.0015 to 0.0040% by weight. If the Fe content is less than 0.0010% by weight, the aluminum foil becomes highly pure and expensive, which is not preferable.
Further, the amount of Fe becomes too small, and it becomes difficult to precipitate Fe within the range regulated in the present invention. On the other hand, when the Fe content exceeds 0.0100% by weight, it is easy to set the Fe precipitation amount within the range regulated in the present invention, but the absolute Fe precipitation amount increases and the cubic orientation becomes relatively large. It is not preferable because the proportion of the crystal grains having γ is reduced and the proportion of the tunnel-shaped etching pits is reduced. Furthermore, since the absolute amount of precipitated Fe is large, overdissolution tends to occur during etching, and it becomes difficult to obtain an electrode foil for an electrolytic capacitor having a high electrostatic capacity, which is not preferable.

【0009】また、電解コンデンサ電極用アルミニウム
箔中には、Siが0.0015〜0.0150重量%、
好ましくは0.0015〜0.0050重量%含有され
ている。Siが0.0015重量%未満であると、アル
ミニウム箔が高純度になり、高価になるので好ましくな
い。逆に、Siが0.0150重量%を超えると、析出
Siの絶対量が多くなって、エッチング時に過溶解が生
じやすくなり、高静電容量の電解コンデンサ用電極箔が
得られにくくなるため、好ましくない。
In the aluminum foil for electrolytic capacitor electrodes, Si is contained in an amount of 0.0015 to 0.0150% by weight,
It is preferably contained in an amount of 0.0015 to 0.0050% by weight. If the Si content is less than 0.0015% by weight, the aluminum foil becomes highly pure and expensive, which is not preferable. On the other hand, when Si exceeds 0.0150% by weight, the absolute amount of precipitated Si increases and overmelting easily occurs during etching, which makes it difficult to obtain an electrode foil for electrolytic capacitors with high capacitance. Not preferable.

【0010】更に、電解コンデンサ電極用アルミニウム
箔中には、Cuが0.0001〜0.0050重量%含
有されている。Cuが0.0001重量%未満である
と、Cuの量が少なくなりすぎて、エッチング特性が低
下する傾向が生じるので好ましくない。逆に、Cuが
0.0050重量%を超えると、析出Cuの絶対量が多
くなって、エッチング時に過溶解が生じやすくなり、高
静電容量の電解コンデンサ用電極箔が得られにくくなる
ため、好ましくない。なお、本発明に係る電解コンデン
サ電極用アルミニウム箔中には、他の不純物元素、例え
ばZnやMnなどを含有していてもよい。
Further, the aluminum foil for electrolytic capacitor electrodes contains 0.0001 to 0.0050% by weight of Cu. If the Cu content is less than 0.0001% by weight, the amount of Cu becomes too small and the etching characteristics tend to deteriorate, which is not preferable. On the other hand, when Cu exceeds 0.0050% by weight, the absolute amount of precipitated Cu increases and overmelting easily occurs during etching, making it difficult to obtain an electrode foil for electrolytic capacitors with high capacitance. Not preferable. The aluminum foil for electrolytic capacitor electrodes according to the present invention may contain other impurity elements such as Zn and Mn.

【0011】本発明に係る電解コンデンサ電極用アルミ
ニウム箔中には、Feが、Fe含有量に対して一定の量
的割合で析出している。即ち、Feの含有量に対して、
Feの析出量が10〜70%の割合となるように、好ま
しくは20〜50%の割合となるように析出している。
この析出量が10%未満であると、エッチングの開始点
が少なくなり、多数のエッチングピットが形成されず、
高静電容量の電解コンデンサ用電極箔が得られにくくな
る。また、Feの析出量が10%未満になると、立方体
方位を有する結晶粒の形成割合が少なくなって、トンネ
ル状のエッチングピットを数多く形成させることが困難
になるので、好ましくない。逆に、析出量の合計が70
%を超えると、エッチング時に過溶解が生じ、表面積の
十分な拡大が図れず、高静電容量の電解コンデンサ用電
極箔が得られにくくなる。また、化成処理後において漏
洩電流が増大する傾向が生じるので、好ましくない。
In the aluminum foil for electrolytic capacitor electrodes according to the present invention, Fe is deposited at a constant quantitative ratio with respect to the Fe content. That is, with respect to the Fe content,
The Fe precipitation amount is 10 to 70%, preferably 20 to 50%.
If this amount of precipitation is less than 10%, the starting point of etching is reduced, and many etching pits are not formed,
It becomes difficult to obtain an electrode foil for an electrolytic capacitor having a high capacitance. On the other hand, if the precipitation amount of Fe is less than 10%, the formation ratio of crystal grains having a cubic orientation decreases, and it becomes difficult to form many tunnel-shaped etching pits, which is not preferable. On the contrary, the total amount of precipitation is 70
If it exceeds%, over-dissolution occurs during etching, the surface area cannot be sufficiently expanded, and it becomes difficult to obtain an electrode foil for an electrolytic capacitor having high capacitance. In addition, the leakage current tends to increase after the chemical conversion treatment, which is not preferable.

【0012】更に、本発明においては、Siの析出量
を、Siの含有量に対して5〜50%の範囲に規制する
ことが好ましい。Siの析出量が5%未満であると、エ
ッチング開始点が少なくなり、エッチング特性が低下す
る傾向が生じる。逆に、Siの析出量が50%を超える
と、Si析出物が多すぎて、過溶解を生じやすくなり、
表面積の拡大が図れなくなる傾向が生じる。また、Si
析出物が多すぎると、立方体方位を有する結晶粒の成長
の妨害となったり、或いは化成処理後に漏洩電流が増大
する傾向が生じる。なお、Siは、単体で析出すること
もあれば、Al−Fe−Si系の化合物の形でも析出す
る。従って、Al−Fe−Si系の化合物の形であって
も、単体Siであっても、また、その両方が存在する場
合であっても、要するに析出したSi元素の全重量のS
i含有量に対する割合を指す。
Further, in the present invention, it is preferable to control the amount of Si deposited in the range of 5 to 50% with respect to the content of Si. If the amount of Si deposited is less than 5%, the starting point of etching is reduced, and the etching characteristics tend to be deteriorated. On the other hand, when the amount of Si deposited exceeds 50%, there are too many Si deposits, and overdissolution tends to occur.
It tends to be impossible to increase the surface area. Also, Si
If there are too many precipitates, it may hinder the growth of crystal grains having a cubic orientation, or the leakage current tends to increase after the chemical conversion treatment. Note that Si may be precipitated alone or in the form of Al—Fe—Si compound. Therefore, whether it is in the form of an Al-Fe-Si-based compound, elemental Si, or both are present, in short, S of the total weight of the precipitated Si element is
Indicates the ratio to the i content.

【0013】また、本発明においては、Cuの析出量
を、Fe,Si及びCuの析出量の合計に対して、1〜
20%の範囲に規制することが好ましく、特に1〜10
%の範囲に規制することがより好ましい。Cuはアルミ
ニウムに固溶しやすい元素であり、固溶するとアルミニ
ウムのマトリックスの自然電極電位が高くなることによ
って、エッチング特性が向上する。しかしながら、Cu
の固溶量が多すぎると、エッチング時に過溶解を生じる
恐れ或いは立方体方位を有する結晶粒の成長を妨害する
恐れがあり、表面積の拡大が図れなくなる傾向があるた
め、Cuを1%以上析出させるのが好ましい。また、C
uの析出物自体は貴な電位を示すため、Cu析出物が多
くても、過溶解を生じる恐れがある。従って、Cuの析
出量は20%以下に規制されているのが好ましい。
Further, in the present invention, the amount of Cu deposited is 1 to the total amount of Fe, Si and Cu deposited.
It is preferable to regulate it in the range of 20%, particularly 1 to 10
It is more preferable to regulate the content in the range of%. Cu is an element that easily forms a solid solution in aluminum, and when it forms a solid solution, the natural electrode potential of the aluminum matrix increases, and the etching characteristics improve. However, Cu
If the solid solution amount of Cu is too large, it may cause overdissolution at the time of etching, or may hinder the growth of crystal grains having a cubic orientation, and it tends to be difficult to increase the surface area. Is preferred. Also, C
Since the u precipitate itself exhibits a noble potential, even if there are many Cu precipitates, overdissolution may occur. Therefore, the amount of Cu deposited is preferably regulated to 20% or less.

【0014】本発明においては、Fe,Si及びCuの
析出量は、以下に説明する熱フェノール溶解法によって
測定する。熱フェノール溶解法の基本的な考え方は、次
のとおりである。即ち、約443Kに熱したフェノール
中でアルミニウム箔を溶解させると、析出物以外のアル
ミニウム及びアルミニウム中に固溶している各元素は容
易に溶解する。その後、溶解しなかった析出物を適当な
孔径のフィルターを介して瀘過し、フィルター上に捕集
された析出物を塩酸溶液に溶解し、この溶液を定量分析
することによって、Fe,Si,Cuの個々の析出量を
測定するのである。熱フェノール溶解法を採用した場合
の具体的測定方法は、次のとおりである。まず、種々の
方法により調整して作製したアルミニウム箔を適当な大
きさに切断採取し、適当な前処理方法によって切断時等
に付着した不純物を除去する。この除去方法としては、
例えば、水酸化ナトリウム溶液やエタノール等で洗浄す
る方法が採用される。その後、一定の容量のフェノール
を秤量して、これが蒸発して減少しないように還流しな
がら、443〜453Kに加熱する。この加熱したフェ
ノール中に、準備したアルミニウム箔を投入し、アルミ
ニウム及びアルミニウム中に固溶している各元素を溶解
させる。その後、フェノールは約313Kの温度にて凝
固するので、一定量のベンジルアルコールをフェノール
に添加し、液体状態を維持させたまま、アルミニウムを
溶解させたフェノールを適切な孔径のフィルターを用い
て瀘過する。そして、フィルター上に捕集された析出物
を一定の濃度の塩酸溶液で溶解する。この溶液を、原子
吸光法又はICP発光分析法等の方法で分析して、各元
素含有量を測定する。以上のようにして、準備したアル
ミニウム箔中に析出していたFe,Si及びCuの量を
求めることができる。そして、個々の元素の析出量と、
アルミニウム箔中に含有されていた個々の元素の含有量
を用いて、本発明におけるFe,Si,Cuの析出割合
を計算することができるのである。
In the present invention, the amounts of Fe, Si and Cu deposited are measured by the hot phenol dissolution method described below. The basic idea of the hot phenol dissolution method is as follows. That is, when the aluminum foil is dissolved in phenol heated to about 443 K, aluminum other than the precipitate and each element dissolved in the aluminum are easily dissolved. After that, the undissolved precipitate was filtered through a filter having an appropriate pore size, the precipitate collected on the filter was dissolved in a hydrochloric acid solution, and this solution was quantitatively analyzed to obtain Fe, Si, The amount of individual precipitation of Cu is measured. The specific measurement method when the hot phenol dissolution method is adopted is as follows. First, the aluminum foil prepared by various methods is cut into a proper size and collected, and the impurities attached during the cutting are removed by a suitable pretreatment method. This removal method includes:
For example, a method of washing with a sodium hydroxide solution, ethanol or the like is adopted. Then, a certain volume of phenol is weighed and heated to 443 to 453 K while refluxing so that it does not evaporate and decrease. The prepared aluminum foil is put into this heated phenol to dissolve the aluminum and each element that forms a solid solution in the aluminum. After that, phenol coagulates at a temperature of about 313K, so a certain amount of benzyl alcohol was added to the phenol, and while maintaining the liquid state, the aluminum-dissolved phenol was filtered using a filter with an appropriate pore size. To do. Then, the precipitate collected on the filter is dissolved with a hydrochloric acid solution having a constant concentration. This solution is analyzed by a method such as an atomic absorption method or an ICP emission analysis method to measure the content of each element. As described above, the amounts of Fe, Si and Cu deposited in the prepared aluminum foil can be obtained. And the precipitation amount of each element,
It is possible to calculate the precipitation ratio of Fe, Si, and Cu in the present invention by using the content of each element contained in the aluminum foil.

【0015】熱フェノール溶解法によって、各析出物を
フィルター上に捕集すれば、粒径分布を求めることがで
きる。即ち、フィルター上に捕集された析出物を、走査
型電子顕微鏡にて観察し、その結果を画像解析して粒径
分布を求めるのである。そして、本発明者がこの粒径分
布に関して研究したところ、2μm以下の析出物の数
が、析出物全体の数に対して、50%以上を占めている
と、エッチング特性が良好になる傾向があった。2μm
以下の析出物の数が全体の50%未満であると、エッチ
ング開始点が少なくなって、エッチング特性が低下する
のではないかと考えられる。なお、電解コンデンサ高圧
用陽極箔を製造する際には、箔表面に使用耐電圧に応じ
た適切な径のトンネル状のエッチングピットを多数形成
することが要求されるので、2μmを超える析出物の数
はなるべく少ない方が好ましい。つまり、2μmを超え
る析出物は、エッチング時に、比較的大きな径のトンネ
ル状エッチングピットの形成をもたらし、ピット密度が
減少する傾向となって、多数のトンネル状のエッチング
ピットが形成されにくくなる恐れがあるのである。
The particle size distribution can be determined by collecting each precipitate on the filter by the hot phenol dissolution method. That is, the precipitate collected on the filter is observed with a scanning electron microscope, and the result is image-analyzed to obtain the particle size distribution. Then, when the present inventor studied this particle size distribution, when the number of precipitates of 2 μm or less accounted for 50% or more of the total number of precipitates, the etching characteristics tended to be improved. . 2 μm
When the number of the following precipitates is less than 50% of the whole, it is considered that the etching starting point is reduced and the etching characteristics are deteriorated. When manufacturing an anode foil for electrolytic capacitor high voltage, it is required to form a large number of tunnel-shaped etching pits having an appropriate diameter according to the withstand voltage used on the foil surface. It is preferably as small as possible. That is, a precipitate having a size of more than 2 μm causes the formation of tunnel-shaped etching pits having a relatively large diameter at the time of etching, and the pit density tends to decrease, which may make it difficult to form a large number of tunnel-shaped etching pits. There is.

【0016】また、本発明において、アルミニウム箔中
の平均結晶粒径は0.02〜5mmであるのが好まし
い。エッチングの初期には結晶粒界からエッチングピッ
トが形成されることが多く、従って、結晶粒径が小さい
ほど、数多くのエッチングピットが形成され、表面積拡
大に寄与する。即ち、平均結晶粒径が5mmを超えると
ピット密度が低くなって、多くのエッチングピットが形
成されず、表面積が十分に拡大しない傾向となる。しか
しながら、結晶粒径が小さすぎると、形成されたエッチ
ングピット同士が合体して抜け落ちてしまい、却って表
面積を減少させる結果となる。即ち、平均結晶粒径が
0.02mm未満になると、しだいに表面積が減少して
ゆく傾向となる。なお、平均結晶粒径は、JIS G
0501(伸銅品結晶粒度試験方法の切断法)に規定さ
れる方法で測定を数回繰り返し、その平均値を算出して
求める。
Further, in the present invention, the average crystal grain size in the aluminum foil is preferably 0.02 to 5 mm. Etching pits are often formed from crystal grain boundaries at the initial stage of etching, and therefore, the smaller the crystal grain size, the more etching pits are formed, which contributes to the increase in surface area. That is, if the average crystal grain size exceeds 5 mm, the pit density becomes low, many etching pits are not formed, and the surface area tends not to be sufficiently expanded. However, if the crystal grain size is too small, the formed etching pits coalesce with each other and fall out, resulting in a decrease in the surface area. That is, when the average crystal grain size is less than 0.02 mm, the surface area tends to gradually decrease. The average crystal grain size is JIS G
Measurement is repeated several times by the method specified in 0501 (Cutting method of grain size test method for copper alloy products), and the average value is calculated.

【0017】また、結晶粒の大きさと立方体方位を有す
る結晶粒の生成割合との間には、一般的に、結晶粒が大
きいほど立方体方位を有する結晶粒の生成割合は低下す
るという関係がある。即ち、最終焼鈍前の結晶粒が大き
いほど、立方体方位を有する結晶粒以外の結晶粒の粒径
も大きいため、最終焼鈍工程において、立方体方位を有
する結晶粒の成長が妨害されるのである。本発明におい
ては、立方体方位を有する結晶粒が全結晶粒に対して6
0%以上を占めているのが好ましい。立方体方位を有す
る結晶粒の割合が60%未満であると、トンネル状のエ
ッチングピットの形成割合が低下する傾向となって、静
電容量が十分に高くならない傾向が生じる。最近、使い
捨てカメラ等に使用される電解コンデンサ陽極箔は、高
静電容量よりも低コストを優先する傾向がある。従っ
て、電解コンデンサ電極用アルミニウム箔についても、
立方体方位を有する結晶粒が高割合で生成していなくて
も差し支えがない場合も多くなっている。また、立方体
方位を有する結晶粒以外の結晶粒がある程度存在してい
る方が、化成処理後における過電圧特性が良好であるこ
とも報告されている[刊行物「軽金属学会 第87回秋
期大会概要集」第285〜286頁の「電解コンデンサ
用アルミニウム箔の微細集合組織」と題する福地正明氏
(北海道職業能力開発短期大学校)の論文]。依って、
立方体方位を有する結晶粒の割合は、一般的には60%
以上が好ましいが、それ以下であっても差し支えないこ
とは言うまでもない。
Further, there is a relationship between the size of crystal grains and the generation rate of crystal grains having a cubic orientation, in general, the larger the crystal grain size, the lower the production rate of crystal grains having a cubic orientation. . That is, as the crystal grain before the final annealing is larger, the grain size of the crystal grain other than the crystal grain having the cubic orientation is also large, so that the growth of the crystal grain having the cubic orientation is hindered in the final annealing step. In the present invention, the crystal grains having a cubic orientation are 6 with respect to all the crystal grains.
It preferably accounts for 0% or more. If the proportion of crystal grains having a cubic orientation is less than 60%, the proportion of formation of tunnel-shaped etching pits tends to decrease, and the capacitance tends not to become sufficiently high. Recently, electrolytic capacitor anode foils used in disposable cameras and the like tend to prioritize low cost over high capacitance. Therefore, even for aluminum foil for electrolytic capacitor electrodes,
In many cases, there is no problem even if crystal grains having a cubic orientation are not produced at a high rate. It has also been reported that the presence of some crystal grains other than those having a cubic orientation has better overvoltage characteristics after chemical conversion treatment [Publication "Summary of the 87th Autumn Meeting of the Japan Institute of Light Metals". "A paper by Masaaki Fukuchi (Hokkaido Vocational Ability Development Junior College) entitled" Fine Texture of Aluminum Foil for Electrolytic Capacitors "on pages 285-286]. Therefore,
The proportion of crystal grains having a cubic orientation is generally 60%.
The above is preferable, but needless to say, it may be less than that.

【0018】以上のように、Feの析出量を所定の範囲
に規制した本発明に係る電解コンデンサ電極用アルミニ
ウム箔、或いは所望により更にSi及びCuの析出量を
所定の範囲に規制した本発明に係る電解コンデンサ電極
用アルミニウム箔を製造する方法としては、例えば、所
定の速度にてアルミニウム鋳塊を鋳造後、適切な温度で
均質化処理し、所定の温度で熱間圧延や中間焼鈍等を行
うこと方法を挙げることができる。特に、均質化処理の
温度や時間、熱間圧延の温度や時間、中間焼鈍及び最終
焼鈍の温度や時間等を調整することによって、Feの析
出量或いはSi及びCuの析出量を所定の範囲に規制す
ることができる。このようにして得られた電解コンデン
サ電極用アルミニウム箔に、所定の条件でエッチング処
理を施すと、箔表面に微細なトンネル状のエッチングピ
ットが多数形成され、表面積の拡大した高静電容量の電
解コンデンサ電極箔が得られるのである。そして、この
電解コンデンサ電極箔は、特に、高圧用陽極箔として好
適に使用することができる。
As described above, the aluminum foil for electrolytic capacitor electrodes according to the present invention in which the amount of Fe deposited is regulated within a predetermined range, or the present invention in which the amount of Si and Cu deposited is further regulated within a predetermined range, if desired. As a method for producing such an aluminum foil for electrolytic capacitor electrodes, for example, after casting an aluminum ingot at a predetermined speed, homogenization treatment is performed at an appropriate temperature, and hot rolling or intermediate annealing is performed at a predetermined temperature. That method can be mentioned. In particular, by adjusting the temperature and time of homogenization treatment, the temperature and time of hot rolling, and the temperature and time of intermediate annealing and final annealing, the precipitation amount of Fe or the precipitation amount of Si and Cu can be controlled within a predetermined range. Can be regulated. When the aluminum foil for electrolytic capacitor electrodes thus obtained is subjected to an etching treatment under predetermined conditions, a large number of fine tunnel-shaped etching pits are formed on the foil surface, resulting in a high electrostatic capacitance with a large surface area. Thus, a capacitor electrode foil can be obtained. And this electrolytic capacitor electrode foil can be suitably used especially as a high voltage anode foil.

【0019】[0019]

【実施例】【Example】

実施例1 厚さ400mmで、Al純度99.99重量%、Fe:
0.0015重量%、Si:0.0020重量%、C
u:0.0030重量%、その他不可避不純物元素を含
有するアルミニウム鋳塊を準備した。このアルミニウム
鋳塊に、803K×18Ks(530℃×5時間)の条
件で均質化処理を施した。その後、熱間圧延開始温度7
83K(510℃)で熱間圧延終了温度613K(34
0℃)で、熱間圧延を施した。次いで、常法により一次
冷間圧延を施した後、503K×36Ks(230℃×
10時間)で中間焼鈍を施した。その後、常法により二
次冷間圧延を施した後、界面活性剤を含むアルカリ溶液
にて脱脂洗浄を行った後、803K×54Ks(530
℃×15時間)の条件で窒素雰囲気中で最終焼鈍を施し
て、厚さ0.1mmの電解コンデンサ電極用アルミニウ
ム箔を得た。
Example 1 Thickness 400 mm, Al purity 99.99% by weight, Fe:
0.0015% by weight, Si: 0.0020% by weight, C
u: 0.0030% by weight, and an aluminum ingot containing other unavoidable impurity elements was prepared. This aluminum ingot was subjected to homogenization treatment under the condition of 803K × 18Ks (530 ° C. × 5 hours). After that, hot rolling start temperature 7
83 K (510 ° C), hot rolling finish temperature 613 K (34
Hot rolling was performed at 0 ° C. Then, after performing a primary cold rolling by a conventional method, 503 K × 36 Ks (230 ° C. ×
Intermediate annealing was performed for 10 hours). Then, after performing secondary cold rolling by a conventional method, after degreasing and washing with an alkaline solution containing a surfactant, 803K × 54Ks (530
Final annealing was performed in a nitrogen atmosphere under the conditions of (° C. × 15 hours) to obtain a 0.1 mm thick aluminum foil for electrolytic capacitor electrodes.

【0020】実施例2 中間焼鈍の条件を523K×72Ks(250℃×20
時間)に変更した他は、実施例1と同一の方法で厚さ
0.1mmの電解コンデンサ電極用アルミニウム箔を得
た。
Example 2 The intermediate annealing conditions were 523 K × 72 Ks (250 ° C. × 20).
An aluminum foil for an electrolytic capacitor electrode having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the time was changed.

【0021】実施例3 熱間圧延を省略して、均質化処理した後徐冷し、所定の
厚みになるまで一次冷間圧延を行った他は、実施例1と
同一の方法で厚さ0.1mmの電解コンデンサ電極用ア
ルミニウム箔を得た。
Example 3 The same method as in Example 1 was used except that the hot rolling was omitted, the homogenization treatment was performed, and then the material was gradually cooled and the primary cold rolling was performed until a predetermined thickness was obtained. An aluminum foil for an electrolytic capacitor electrode having a thickness of 0.1 mm was obtained.

【0022】比較例1 熱間圧延と一次冷間圧延との間に、633K×18Ks
(360℃×5時間)の条件で中間焼鈍を挿入した他
は、実施例1と同一の方法で厚さ0.1mmの電解コン
デンサ電極用アルミニウム箔を得た。
Comparative Example 1 Between the hot rolling and the primary cold rolling, 633 K × 18 Ks
An aluminum foil for an electrolytic capacitor electrode having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the intermediate annealing was inserted under the condition of (360 ° C. × 5 hours).

【0023】比較例2 均質化処理の条件を873K×18Ks(600℃×5
時間)に変更した他は、実施例1と同一の方法で厚さ
0.1mmの電解コンデンサ電極用アルミニウム箔を得
た。
Comparative Example 2 The conditions for homogenization treatment were 873 K × 18 Ks (600 ° C. × 5
An aluminum foil for an electrolytic capacitor electrode having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the time was changed.

【0024】上記実施例1〜3及び比較例1,2に係る
方法により得た5種類の電解コンデンサ電極用アルミニ
ウム箔について、Fe,Si及びCuの析出量を熱フェ
ノール溶解法により測定し、表1に記載した各析出量の
割合を求めた。また、各電解コンデンサ電極用アルミニ
ウム箔中における2μm以下の析出物が占める割合も求
めた。これらの結果を表1に示した。更に、全結晶粒の
数に対する立方体方位を有する結晶粒の数(立方体方位
比率)及び平均結晶粒径を測定し、それらの結果を表1
に示した。なお、立方体方位比率の測定方法は、アルミ
ニウム箔試料を、塩酸:硝酸:弗化水素酸=50:4
7:3の容積比を有する溶液中に15秒間浸漬し、結晶
組織を顕出した後、画像解析装置にて測定した。
The amounts of Fe, Si and Cu deposited on the five types of aluminum foil for electrolytic capacitor electrodes obtained by the methods of Examples 1 to 3 and Comparative Examples 1 and 2 were measured by the hot phenol dissolution method, and The ratio of each precipitation amount described in 1 was determined. Further, the proportion of the deposits of 2 μm or less in each aluminum foil for electrolytic capacitor electrode was also obtained. The results are shown in Table 1. Further, the number of crystal grains having a cubic orientation with respect to the total number of crystal grains (cubic orientation ratio) and the average grain size were measured, and the results are shown in Table 1.
It was shown to. The cubic orientation ratio was measured by measuring the aluminum foil sample with hydrochloric acid: nitric acid: hydrofluoric acid = 50: 4.
After immersing in a solution having a volume ratio of 7: 3 for 15 seconds to reveal a crystal structure, the crystal structure was measured with an image analyzer.

【0025】そして、各電解コンデンサ電極用アルミニ
ウム箔に、以下の条件でエッチング処理及び化成処理を
施して、以下に示す条件で静電容量(μF/cm2)を
測定した。 [エッチング処理]:348K(75℃)の(5.3w
t.%HCl+6.4wt.%AlCl36H2O+6.
9wt.%H2SO4)溶液中に、電解コンデンサ電極用
アルミニウム箔を浸漬し、電流密度DC0.2A/cm
2を400sec.流して、エッチング処理を行った。 [化成処理]:エッチング処理後のアルミニウム箔を巾
1cm×長さ5cmの大きさに裁断し、この1枚を液温
353K(80℃)の(9wt.%硼酸+0.1wt.
%五硼酸アンモニウム)水溶液中に浸漬し、対向電極を
sus 304として、370Vで30分間の条件で化
成処理を行った。 [静電容量]:化成処理した電極箔(大きさ巾1cm×
長さ5cm)1枚を、303K(30℃)の7wt.%
五硼酸アンモニウム水溶液中に浸漬し、対向電極を、静
電容量が40000μF以上のエッチドアルミニウム箔
として、120Hzの直列等価回路でLCRメーターを
用いて、静電容量(μF/cm2)を測定した。なお、
表1に示した静電容量(%)は、Fe:0.001重量
%、Si:0.001重量%、Cu:0.005重量
%、その他不可避不純物元素を含有する純度99.99
%のアルミニウム鋳塊を使用し、実施例1と同一の方法
で得られたアルミニウム箔に、前記したエッチング処理
及び化成処理を施した電極箔の静電容量を100%とし
て、これとの相対比較で求めたものである。この基準試
料として使用したアルミニウム箔は、Feの含有量に対
するFeの析出量の割合は50%、Siの含有量に対す
るSiの析出量の割合は15%、またFe,Si及びC
uの析出量の合計に対するCuの析出量の割合は5%、
2μm以下の析出物が析出物全体の数に占める割合は9
0%、立方体方位比率は95%、平均結晶粒径は0.5
mmであった。
Then, each aluminum foil for electrolytic capacitor electrode was subjected to etching treatment and chemical conversion treatment under the following conditions, and the electrostatic capacity (μF / cm 2 ) was measured under the following conditions. [Etching process]: 348K (75 ° C) (5.3w
t. % HCl + 6.4 wt. % AlCl 3 6H 2 O + 6.
9 wt. % H 2 SO 4 ) solution, the aluminum foil for electrolytic capacitor electrodes is dipped to obtain a current density of DC 0.2 A / cm
2 for 400 sec. It was made to flow and the etching process was performed. [Chemical conversion treatment]: The aluminum foil after the etching treatment was cut into a size of 1 cm in width and 5 cm in length, and this one sheet was cut at a liquid temperature of 353 K (80 ° C.) (9 wt.% Boric acid + 0.1 wt.
% Ammonium pentaborate) aqueous solution and subjected to chemical conversion treatment under the conditions of 370 V for 30 minutes with sus 304 as the counter electrode. [Capacitance]: Electrode foil subjected to chemical conversion treatment (size width 1 cm x
One piece (length: 5 cm) has a weight of 7 wt. %
The counter electrode was immersed in an aqueous solution of ammonium pentaborate, and the counter electrode was used as an etched aluminum foil having a capacitance of 40,000 μF or more, and the capacitance (μF / cm 2 ) was measured using an LCR meter in a 120 Hz series equivalent circuit. . In addition,
The electrostatic capacity (%) shown in Table 1 is 0.009% by weight of Fe, 0.001% by weight of Si, 0.005% by weight of Cu, and a purity of 99.99 containing other unavoidable impurity elements.
% Aluminum ingot was used and the aluminum foil obtained by the same method as in Example 1 was subjected to the above-mentioned etching treatment and chemical conversion treatment, and the electrostatic capacity was set to 100%, and a relative comparison was made. It was obtained in. In the aluminum foil used as the reference sample, the ratio of the precipitation amount of Fe to the content of Fe was 50%, the ratio of the precipitation amount of Si to the content of Si was 15%, and Fe, Si and C were used.
The ratio of the amount of Cu deposited to the total amount of u deposited is 5%,
The ratio of deposits of 2 μm or less to the total number of deposits is 9
0%, cubic orientation ratio 95%, average crystal grain size 0.5
mm.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例4〜7 表2に示した元素組成を持つアルミニウム鋳塊No1〜
4を使用する他は、実施例1と同一の方法で厚さ0.1
mmの電解コンデンサ電極用アルミニウム箔を得た。
Examples 4 to 7 Aluminum ingot No. 1 having the elemental composition shown in Table 2
In the same manner as in Example 1, except that 4 is used, a thickness of 0.1
An aluminum foil for an electrolytic capacitor electrode having a thickness of mm was obtained.

【0028】実施例8及び9 表2に示した元素組成を持つアルミニウム鋳塊No3及
び4(厚さ400mm)を準備した。このアルミニウム
鋳塊に、793K×36Ks(520℃×10時間)の
条件で均質化処理を施した。その後、熱間圧延開始温度
743K(470℃)で熱間圧延終了温度543K(2
70℃)で、熱間圧延を施した。次いで、熱間圧延上が
り板に653K×18Ks(380℃×5時間)の条件
で一次中間焼鈍を施した後、常法により一次冷間圧延を
施した。その後、更に523K×36Ks(250℃×
10時間)の条件で二次中間焼鈍を施した。次いで、常
法により二次冷間圧延を施した後、界面活性剤を含むア
ルカリ溶液にて脱脂洗浄を行った後、803K×54K
s(530℃×15時間)の条件で窒素雰囲気中で最終
焼鈍を施して、厚さ0.1mmの電解コンデンサ電極用
アルミニウム箔を得た。
Examples 8 and 9 Aluminum ingots Nos. 3 and 4 (thickness 400 mm) having the elemental compositions shown in Table 2 were prepared. This aluminum ingot was subjected to a homogenization treatment under the conditions of 793 K × 36 Ks (520 ° C. × 10 hours). After that, the hot rolling start temperature is 743K (470 ° C) and the hot rolling end temperature is 543K (2
Hot rolling was performed at 70 ° C. Then, the hot-rolled sheet was subjected to primary intermediate annealing under the conditions of 653 K × 18 Ks (380 ° C. × 5 hours), and then subjected to primary cold rolling by a conventional method. After that, 523K × 36Ks (250 ° C ×
Secondary intermediate annealing was performed under the condition of 10 hours). Then, after performing secondary cold rolling by a conventional method, after degreasing and washing with an alkaline solution containing a surfactant, 803K × 54K
Final annealing was performed in a nitrogen atmosphere under the condition of s (530 ° C x 15 hours) to obtain an aluminum foil for electrolytic capacitor electrodes having a thickness of 0.1 mm.

【0029】比較例3 表2に示した元素組成を持つアルミニウム鋳塊No5を
使用し、且つ均質化処理の条件を793K×90Ks
(520℃×25時間)とし、更に熱間圧延の条件を熱
間圧延開始温度753K(480℃)で熱間圧延終了温
度523K(250℃)とした他は、実施例1と同一の
方法で、厚さ0.1mmの電解コンデンサ電極用アルミ
ニウム箔を得た。
Comparative Example 3 An aluminum ingot No. 5 having the elemental composition shown in Table 2 was used, and the homogenization treatment conditions were 793 K × 90 Ks.
(520 ° C. × 25 hours), and the same conditions as in Example 1 except that the hot rolling conditions were a hot rolling start temperature of 753 K (480 ° C.) and a hot rolling end temperature of 523 K (250 ° C.). An aluminum foil for an electrolytic capacitor electrode having a thickness of 0.1 mm was obtained.

【0030】比較例4 表2に示した元素組成を持つアルミニウム鋳塊No2
(厚さ400mm)を準備した。このアルミニウム鋳塊
に、873K×18Ks(600℃×5時間)の条件で
均質化処理を施した。その後、熱間圧延開始温度853
K(580℃)で熱間圧延終了温度523K(250
℃)で、熱間圧延を施した。次いで、常法により一次冷
間圧延を施した後、523K×18Ks(250℃×5
時間)で中間焼鈍を施した。その後、常法により二次冷
間圧延を施した後、界面活性剤を含むアルカリ溶液にて
脱脂洗浄を行った後、803K×54Ks(530℃×
15時間)の条件で窒素雰囲気中で最終焼鈍を施して、
厚さ0.1mmの電解コンデンサ電極用アルミニウム箔
を得た。
Comparative Example 4 Ingot No. 2 having the elemental composition shown in Table 2
(Thickness 400 mm) was prepared. This aluminum ingot was subjected to homogenization treatment under the conditions of 873K × 18Ks (600 ° C. × 5 hours). After that, hot rolling start temperature 853
K (580 ° C.) hot rolling finish temperature 523 K (250
Hot rolling was performed at (.degree. C.). Then, after performing primary cold rolling by a conventional method, 523K × 18Ks (250 ° C. × 5
Intermediate annealing was performed. Then, after performing secondary cold rolling by a conventional method, after degreasing and cleaning with an alkaline solution containing a surfactant, 803K × 54Ks (530 ° C ×
15 hours) under the nitrogen atmosphere in the final annealing,
An aluminum foil for an electrolytic capacitor electrode having a thickness of 0.1 mm was obtained.

【0031】比較例5 表2に示した元素組成を持つアルミニウム鋳塊No6を
使用する他は、実施例8と同一の方法で、厚さ0.1m
mの電解コンデンサ電極用アルミニウム箔を得た。
Comparative Example 5 The same method as in Example 8 was used except that the aluminum ingot No. 6 having the elemental composition shown in Table 2 was used, and the thickness was 0.1 m.
An aluminum foil for an electrolytic capacitor electrode of m was obtained.

【0032】[0032]

【表2】 [Table 2]

【0033】上記実施例4〜9及び比較例3〜5に係る
方法により得た9種類の電解コンデンサ電極用アルミニ
ウム箔について、Fe,Si及びCuの析出量を熱フェ
ノール溶解法により測定し、表3に記載した各析出量の
割合を求めた。また、各電解コンデンサ電極用アルミニ
ウム箔中における2μm以下の析出物が占める割合も求
めた。これらの結果を表3に示した。更に、全結晶粒の
数に対する立方体方位を有する結晶粒の数(立方体方位
比率)及び平均結晶粒径を測定し、それらの結果を表3
に示した。そして、各電解コンデンサ電極用アルミニウ
ム箔に、実施例1で行ったのと同一の条件でエッチング
処理及び化成処理を施して、静電容量(μF/cm2
を測定し、その結果を実施例1と同様の評価法で表3に
示した。
With respect to the nine types of aluminum foil for electrolytic capacitor electrodes obtained by the methods according to Examples 4 to 9 and Comparative Examples 3 to 5, the amounts of Fe, Si and Cu deposited were measured by the hot phenol dissolution method, The ratio of each precipitation amount described in 3 was obtained. Further, the proportion of the deposits of 2 μm or less in each aluminum foil for electrolytic capacitor electrode was also obtained. The results are shown in Table 3. Further, the number of crystal grains having a cubic orientation with respect to the total number of crystal grains (cubic orientation ratio) and the average grain size were measured, and the results are shown in Table 3.
It was shown to. Then, each aluminum foil for electrolytic capacitor electrodes was subjected to etching treatment and chemical conversion treatment under the same conditions as in Example 1 to obtain a capacitance (μF / cm 2 ).
Was measured and the results are shown in Table 3 by the same evaluation method as in Example 1.

【0034】[0034]

【表3】 [Table 3]

【0035】以上の実施例1〜9及び比較例1〜5の結
果から明らかなように、Feの析出量が特定の範囲内に
規制されている電解コンデンサ電極用アルミニウム箔を
使用し、エッチング処理した電極箔は、高静電容量を有
していることが分かる。実施例6〜9に係る方法で得ら
れた電解コンデンサ電極用アルミニウム箔は、静電容量
が低いが、相対評価の基準に用いたアルミニウム箔が9
9.99%Al純度であるのに対して、Al純度が9
9.97%以下というように低純度であるにも拘らず、
比較的高静電容量であることが分かる。また、実施例6
と実施例8とを比較すれば明らかなとおり、Si及びC
uの析出量が特定の範囲に規制されている方が、より静
電容量が高くなることが分かる。一方、比較例1,2,
4及び5に係る方法で得られた電解コンデンサ電極用ア
ルミニウム箔は、Feの析出量が特定の範囲内に規制さ
れていないため、高静電容量の電極箔が得られない。ま
た、比較例3に係る方法で得られた電解コンデンサ電極
用アルミニウム箔は、不純物元素含有量が多すぎて、F
eの析出量が特定の範囲内に規制されていても、高静電
容量の電極箔を得ることができない。これは、不純物が
多すぎて、エッチング時に過溶解を起こすからではない
かと推察される。なお、実施例1〜9に係る方法で得ら
れた電解コンデンサ電極用アルミニウム箔を、2%燐酸
水素アンモニウム水溶液中で陽極酸化処理して、各箔の
漏洩電流を測定したところ、いずれも実用上問題のない
範囲であった。
As is clear from the results of Examples 1 to 9 and Comparative Examples 1 to 5 described above, the aluminum foil for electrolytic capacitor electrodes in which the precipitation amount of Fe is regulated within a specific range is used and the etching treatment is performed. It can be seen that the formed electrode foil has a high capacitance. Although the aluminum foil for electrolytic capacitor electrodes obtained by the method according to Examples 6 to 9 has a low capacitance, the aluminum foil used as a standard for relative evaluation is 9
9.99% Al purity, whereas Al purity is 9
Despite the low purity of 9.97% or less,
It can be seen that the capacitance is relatively high. In addition, Example 6
As is clear from a comparison between Example and Example 8, Si and C
It can be seen that the capacitance is higher when the deposition amount of u is regulated within a specific range. On the other hand, Comparative Examples 1, 2,
In the aluminum foil for electrolytic capacitor electrodes obtained by the methods according to 4 and 5, since the amount of Fe deposited is not regulated within a specific range, an electrode foil with high capacitance cannot be obtained. In addition, the aluminum foil for electrolytic capacitor electrodes obtained by the method according to Comparative Example 3 had an excessively high impurity element content,
Even if the amount of e deposited is regulated within a specific range, it is not possible to obtain an electrode foil having a high capacitance. It is presumed that this is because there are too many impurities to cause overdissolution during etching. The aluminum foil for electrolytic capacitor electrodes obtained by the method according to Examples 1 to 9 was anodized in a 2% aqueous solution of ammonium hydrogen phosphate, and the leakage current of each foil was measured. There was no problem.

【0036】[0036]

【発明の効果】以上説明したように、本発明に係る電解
コンデンサ電極用アルミニウム箔は、その箔中に含有さ
れているFeの析出量を、特定の範囲に規制したので、
エッチング処理を施すことによって、安定して高静電容
量の電極箔を得ることができる。更に、Si又はCuの
各析出物の析出量を、特定の範囲に規制した場合には、
より安定して高静電容量の電極箔を得ることができる。
また、各析出物の大きさや数を特定の範囲に規定した
り、若しくはアルミニウム箔中の平均結晶粒径の大きさ
や立方体方位比率を特定の範囲に規定した場合にも、よ
り安定して高静電容量の電極箔を得ることができるとい
う効果を奏する。
As described above, in the aluminum foil for electrolytic capacitor electrodes according to the present invention, the precipitation amount of Fe contained in the foil is regulated within a specific range.
By performing the etching process, it is possible to stably obtain an electrode foil having a high capacitance. Furthermore, when the amount of each precipitate of Si or Cu is regulated within a specific range,
It is possible to more stably obtain an electrode foil having a high capacitance.
In addition, when the size and number of each precipitate are specified in a specific range, or when the size of the average crystal grain size in the aluminum foil and the cubic orientation ratio are specified in a specific range, it is more stable and high static. An effect that an electrode foil having a capacitance can be obtained is obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム純度が99.9重量%以上
であって、Fe:0.0010〜0.0100重量%、
Si:0.0015〜0.0150重量%、Cu:0.
0001〜0.0050重量%、その他不可避不純物元
素を含有し、熱フェノール溶解法によって測定されるF
eの析出量が、Feの含有量に対して、10〜70%の
範囲に規制されていることを特徴とする電解コンデンサ
電極用アルミニウム箔。
1. The aluminum purity is 99.9% by weight or more, and Fe: 0.0010 to 0.0100% by weight,
Si: 0.0015 to 0.0150% by weight, Cu: 0.
F, which contains 0001 to 0.0050% by weight and other unavoidable impurity elements and is measured by a hot phenol dissolution method
The aluminum foil for electrolytic capacitor electrodes, wherein the amount of e deposited is regulated in the range of 10 to 70% with respect to the content of Fe.
【請求項2】 熱フェノール溶解法によって測定される
Siの析出量が、Siの含有量に対して、5〜50%の
範囲に規制されている請求項1記載の電解コンデンサ電
極用アルミニウム箔。
2. The aluminum foil for an electrolytic capacitor electrode according to claim 1, wherein the amount of Si deposited measured by the hot phenol dissolution method is regulated within the range of 5 to 50% with respect to the Si content.
【請求項3】 熱フェノール溶解法によって測定される
Cuの析出量が、Fe,Si及びCuの析出量の合計に
対して、1〜20%の範囲に規制されている請求項1又
は2記載の電解コンデンサ電極用アルミニウム箔。
3. The deposition amount of Cu measured by the hot phenol dissolution method is regulated within the range of 1 to 20% with respect to the total deposition amount of Fe, Si and Cu. Aluminum foil for electrolytic capacitor electrodes.
【請求項4】 2μm以下の析出物の数が、析出物全体
の数に対して、50%以上を占めている請求項1及至3
のいずれか一項に記載の電解コンデンサ電極用アルミニ
ウム箔。
4. The number of precipitates of 2 μm or less accounts for 50% or more of the total number of precipitates.
The aluminum foil for an electrolytic capacitor electrode according to any one of 1.
【請求項5】 平均結晶粒径が0.02〜5mmであ
り、且つ立方体方位を有する結晶粒が全結晶粒に対して
60%以上を占めて存在している請求項1及至4のいず
れか一項に記載の電解コンデンサ電極用アルミニウム
箔。
5. The average crystal grain size is 0.02 to 5 mm, and the crystal grains having a cubic orientation account for 60% or more of all the crystal grains, and are present. An aluminum foil for an electrolytic capacitor electrode according to the item 1.
JP05508195A 1995-02-20 1995-02-20 Aluminum foil for electrode of electrolytic capacitor Expired - Lifetime JP3454485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05508195A JP3454485B2 (en) 1995-02-20 1995-02-20 Aluminum foil for electrode of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05508195A JP3454485B2 (en) 1995-02-20 1995-02-20 Aluminum foil for electrode of electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH08227829A true JPH08227829A (en) 1996-09-03
JP3454485B2 JP3454485B2 (en) 2003-10-06

Family

ID=12988767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05508195A Expired - Lifetime JP3454485B2 (en) 1995-02-20 1995-02-20 Aluminum foil for electrode of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3454485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144122A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Aluminum material for electrolytic capacitor and its production method, production method of electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2006169629A (en) * 2004-11-22 2006-06-29 Showa Denko Kk Aluminum alloy material for electrolytic capacitor, method for producing the same, method for producing electrode material for electrolytic capacitor, anode material for electrolytic capacitor and aluminum electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144122A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Aluminum material for electrolytic capacitor and its production method, production method of electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2006169629A (en) * 2004-11-22 2006-06-29 Showa Denko Kk Aluminum alloy material for electrolytic capacitor, method for producing the same, method for producing electrode material for electrolytic capacitor, anode material for electrolytic capacitor and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP3454485B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US4164434A (en) Aluminum alloy capacitor foil and method of making
JP3480210B2 (en) Aluminum alloy for electrolytic capacitor anode
JPH0931579A (en) Aluminum foil for high pressure electrode of electrolytic capacitor
JP3454485B2 (en) Aluminum foil for electrode of electrolytic capacitor
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH08209275A (en) Aluminum foil for electrode of electrolytic capacitor
JP6752110B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors
JP2826590B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JP3959106B2 (en) Hard aluminum foil for electrolytic capacitor electrodes
JP5036740B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JP3393607B2 (en) Aluminum alloy foil for electrolytic capacitor electrodes
JPH0931578A (en) Aluminum hard foil for low pressure electrode of electrolytic capacitor
JP3473683B2 (en) Aluminum foil for electrolytic capacitors
JP2778665B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4462518B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JP4033539B2 (en) Aluminum alloy foil for electrolytic capacitor electrode
JPH07169657A (en) Aluminum alloy foil for electrolytic capacitor anode
JP3244131B2 (en) Aluminum alloy foil for electrolytic capacitor electrode and method for producing the same
JP2778663B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2000282158A (en) Aluminum alloy sheet and its manufacture
JP3830300B2 (en) Aluminum alloy plate and manufacturing method thereof
JP2777355B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JPH0971832A (en) Aluminum alloy foil for low pressure anode in electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term