JPH08226984A - Circulation warm-up device for control rod drive system and its warm-up control method - Google Patents
Circulation warm-up device for control rod drive system and its warm-up control methodInfo
- Publication number
- JPH08226984A JPH08226984A JP7033207A JP3320795A JPH08226984A JP H08226984 A JPH08226984 A JP H08226984A JP 7033207 A JP7033207 A JP 7033207A JP 3320795 A JP3320795 A JP 3320795A JP H08226984 A JPH08226984 A JP H08226984A
- Authority
- JP
- Japan
- Prior art keywords
- control rod
- water source
- rod drive
- drive system
- circulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は原子力発電プラントの制
御棒駆動系の循環昇温装置及び昇温制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating heating apparatus and a heating control method for a control rod drive system of a nuclear power plant.
【0002】[0002]
【従来の技術】一般に、原子力発電プラントには、原子
炉の出力調整や緊急停止の目的で原子炉内に制御棒を挿
入・引抜しており、この制御棒は制御棒駆動系(以下C
RD系という)によって操作されている。2. Description of the Related Art Generally, in a nuclear power plant, a control rod is inserted into / removed from the reactor for the purpose of adjusting the output of the nuclear reactor or for an emergency stop.
RD system).
【0003】このCRD系について図5を参照して説明
する。CRD系は、原子炉の出力調整を行うための制御
棒の位置調整を行うための系統であり、CRDポンプ
2、水圧制御ユニット9、制御棒駆動機構13等から構
成される。This CRD system will be described with reference to FIG. The CRD system is a system for adjusting the position of the control rod for adjusting the output of the nuclear reactor, and includes a CRD pump 2, a water pressure control unit 9, a control rod drive mechanism 13, and the like.
【0004】このCRD系においては、通常運転中、制
御棒駆動機構13が制御棒(図示せず)を駆動して原子
炉の出力を調整するが、制御棒駆動機構13内部には原
子炉圧力容器14内の炉水が制御棒駆動機構13外に漏
洩しないように、シール材(図示せず)が設けられてい
る。そしてこのシール材の熱に対する保護のため、通常
運転時にはCRD系によって制御棒駆動機構13に冷却
水が供給されており、冷却水は制御棒駆動機構13内で
除熱した後、原子炉圧力容器14内に注入される。この
冷却水の温度は、シール材の保護、原子炉圧力容器14
内に注入されることから炉水との温度差による原子炉圧
力容器14の熱疲労防止、あるいは原子炉格納容器10
内に存在する冷却水の供給配管15の表面における結露
防止等の条件を満たす温度として約40℃に制御される
必要がある。In this CRD system, during normal operation, the control rod drive mechanism 13 drives a control rod (not shown) to adjust the output of the reactor. A sealant (not shown) is provided to prevent the reactor water in the container 14 from leaking out of the control rod drive mechanism 13. In order to protect the sealing material against heat, cooling water is supplied to the control rod drive mechanism 13 by the CRD system during normal operation. After cooling water is removed from heat in the control rod drive mechanism 13, the reactor pressure vessel is cooled. Injected into 14. The temperature of this cooling water depends on the protection of the sealing material, the reactor pressure vessel 14
Since it is injected into the reactor, thermal fatigue of the reactor pressure vessel 14 due to the temperature difference with the reactor water is prevented, or the reactor containment vessel 10
It is necessary to control the temperature to about 40 ° C. as a temperature that satisfies conditions such as dew condensation prevention on the surface of the cooling water supply pipe 15 present therein.
【0005】冷却水は復水貯蔵槽1等の水源からCRD
ポンプ2によって水圧制御ユニット9を介して制御棒駆
動機構13に供給される。このときCRDポンプ2の下
流側に設けられた流量調整弁11によって、冷却水流量
を制御し、また、圧力調整弁12によって冷却水圧力を
制御する。The cooling water is CRD from a water source such as the condensate storage tank 1.
It is supplied to the control rod drive mechanism 13 by the pump 2 via the water pressure control unit 9. At this time, the flow rate adjusting valve 11 provided on the downstream side of the CRD pump 2 controls the flow rate of the cooling water, and the pressure adjusting valve 12 controls the pressure of the cooling water.
【0006】次に、この冷却水の従来の循環水制御シス
テム及び昇温制御方法について、図6を参照して説明す
る。図6において、CRD系の通常運転時にはCRDポ
ンプ2により供給される冷却水の一部(以下循環水とい
う)は供給配管15から分岐する循環配管16を介して
再びCRDポンプ2の吸い込み側へ供給される。この循
環水はCRDポンプ2の吐出圧力で循環配管16に流入
し、オリフィス3で減圧した後、加熱器5によって所定
の温度に加熱されCRDポンプ2の吸い込み側へ循環さ
れる。この循環水の流量は絞り弁4によって調整され
る。ただし、循環のみによってもCRDポンプ2からの
入熱等によって循環水の温度は上昇するので、必要な昇
温の程度によっては加熱器5は必ずしも必要ではない。Next, a conventional circulating water control system and a temperature rise control method for this cooling water will be described with reference to FIG. In FIG. 6, during normal operation of the CRD system, part of the cooling water supplied by the CRD pump 2 (hereinafter referred to as “circulation water”) is supplied to the suction side of the CRD pump 2 again via the circulation pipe 16 branched from the supply pipe 15. To be done. The circulating water flows into the circulation pipe 16 at the discharge pressure of the CRD pump 2, is decompressed by the orifice 3, is heated to a predetermined temperature by the heater 5, and is circulated to the suction side of the CRD pump 2. The flow rate of this circulating water is adjusted by the throttle valve 4. However, since the temperature of the circulating water rises due to heat input from the CRD pump 2 or the like only by circulation, the heater 5 is not always necessary depending on the required degree of temperature rise.
【0007】また、循環水の温度が上昇し、所定の温度
以上になった場合には、温度スイッチ6によって、水源
移送配管17に設けられた弁7を開放して循環配管16
を流れる循環水の一部を復水貯蔵槽1へ移送する。この
ように復水貯蔵槽1へ循環水の一部を移送すれば、所定
の温度以上となった循環水のCRDポンプ2の吸い込み
側への流入量が減り、さらに復水貯蔵槽1からは低温の
冷却水が移送された量だけ増量されるので、全体として
の冷却水温度を低下させることができる。When the temperature of the circulating water rises and exceeds a predetermined temperature, the temperature switch 6 opens the valve 7 provided in the water source transfer pipe 17 to open the circulating pipe 16.
A part of the circulating water flowing through is transferred to the condensate storage tank 1. If a part of the circulating water is transferred to the condensate storage tank 1 in this way, the amount of the circulating water that has reached a predetermined temperature or higher to the suction side of the CRD pump 2 is reduced, and further, from the condensate storage tank 1. Since the low-temperature cooling water is increased by the transferred amount, the cooling water temperature as a whole can be lowered.
【0008】このようにして、供給配管15に供給され
る冷却水の温度は所定の温度に制御される。図7はCR
Dポンプが2系列設けられている場合の従来例であり、
CRDポンプ2a,2bの吐出側に逆止弁18a,18
bを設けた後に供給配管15a,15bを合流させ、C
RDポンプ2a,2bの内1系統運転時に他の系統への
冷却水の逆流を防止する。そして、供給配管15a,1
5bの各々から循環配管16a,16bを分岐点22
a,22bにおいて分岐させ、その分岐点22a,22
b後の循環配管16a,16bの各々に逆止弁19a,
19bを設けることによって、1系統のCRDポンプの
運転中に他の循環配管に同様に冷却水が逆流しないよう
にしている。循環配管16a,16bは合流後、分岐点
21にて水源移送配管17が分岐する。水源移送配管1
7には弁7が、循環配管16には絞り弁4が図6と同様
に設けられている。2系列のCRDポンプ2a,2bが
設けられているのは、CRDポンプ2a,2bの単一故
障を考慮したものであり、通常は1系列による運転を行
っている。In this way, the temperature of the cooling water supplied to the supply pipe 15 is controlled to a predetermined temperature. Figure 7 shows CR
This is a conventional example in which two D pumps are provided,
Check valves 18a, 18 on the discharge side of the CRD pumps 2a, 2b
After providing b, the supply pipes 15a and 15b are merged, and C
When one of the RD pumps 2a and 2b is operated, the backflow of cooling water to the other system is prevented. And the supply pipes 15a, 1
From each of 5b, connect the circulation pipes 16a and 16b to a branch point 22.
a, 22b, and branch points 22a, 22
The check valves 19a, 19a,
By providing 19b, the cooling water is prevented from flowing backward to other circulation pipes during the operation of the CRD pump of one system. After merging the circulation pipes 16a and 16b, the water source transfer pipe 17 branches at a branch point 21. Water source transfer pipe 1
7 is provided with a valve 7, and the circulation pipe 16 is provided with a throttle valve 4 as in FIG. The fact that two series of CRD pumps 2a and 2b are provided takes into consideration a single failure of the CRD pumps 2a and 2b, and normally one series of operations is performed.
【0009】[0009]
【発明が解決しようとする課題】上述の従来のCRD系
の循環水昇温システム及び昇温制御方法においては、循
環配管16の循環水流量を絞り弁4によって調整する
が、そのときの調整範囲は、上流側のオリフィス3の製
作誤差(通常20〜40kg/cm2 )を補う必要があ
り、実際の絞り弁4の使用状態は約30kg/cm2 程
度の高い差圧がかかる状態となる可能性があった。とこ
ろが、そのような場合には、絞り弁4における圧力回復
係数(=弁差圧÷(入口側絶対圧力−飽和水蒸気圧))
が0.65以上となってしまう可能性があった。この圧
力回復係数は一般的には0.65以下が好ましく、これ
以上の値ではキャビテーションが発生するという欠点を
有する。なお、キャビテーションは、弁の弁体直後で流
体の局所静圧が飽和水蒸気圧より低下し、蒸気泡を発生
する現象であり、エロージョンの原因ともなる。In the above-described conventional circulating water temperature raising system and temperature raising control method of the CRD system, the circulating water flow rate of the circulating pipe 16 is adjusted by the throttle valve 4, but the adjustment range at that time is adjusted. Is required to compensate for the manufacturing error of the orifice 3 on the upstream side (usually 20 to 40 kg / cm 2 ), and the actual use state of the throttle valve 4 can be a state where a high differential pressure of about 30 kg / cm 2 is applied. There was a nature. However, in such a case, the pressure recovery coefficient in the throttle valve 4 (= valve differential pressure / (absolute pressure on inlet side-saturated steam pressure))
Was likely to be 0.65 or more. Generally, the pressure recovery coefficient is preferably 0.65 or less, and if it is more than this value, cavitation occurs. Cavitation is a phenomenon in which the local static pressure of the fluid is lower than the saturated steam pressure immediately after the valve body of the valve to generate vapor bubbles, which also causes erosion.
【0010】ここで、図8に図6に示されるCRDポン
プ2の吸い込み側からオリフィス3及び絞り弁4を介し
て再びCRDポンプ2の吸い込み側に戻る循環配管16
内の圧力分布を示す。図8において、P1はCRDポン
プ2の入り口圧力、P2はオリフィス3の出口圧力、P
3はCRDポンプ2の出口圧力、Pvは飽和水蒸気圧
力、Pvcは絞り弁4内の最低圧力(局所静圧)を示
す。CRDポンプ2の吸い込み側でP1だった圧力は、
吐出側ではCRDポンプ2によってP3まで昇圧され、
オリフィス3によってP2まで減圧される。しかし、こ
のP2は前述のとおり、オリフィス3の製作精度によっ
て、変動する値である。図8においては、オリフィス3
の製作精度がよい場合を示しており、オリフィス3によ
って十分に減圧されているため、図中aで示される絞り
弁4の弁差圧(P2−P1)は図中bで示される(入口
側絶対圧力−飽和水蒸気圧)に対して0.65以上とな
っている。従って、キャビテーションが発生する可能性
が高い。Here, the circulation pipe 16 is returned from the suction side of the CRD pump 2 shown in FIG. 8 to the suction side of the CRD pump 2 again via the orifice 3 and the throttle valve 4.
The pressure distribution inside is shown. In FIG. 8, P1 is the inlet pressure of the CRD pump 2, P2 is the outlet pressure of the orifice 3, and P2 is
3 is the outlet pressure of the CRD pump 2, Pv is the saturated steam pressure, and Pvc is the minimum pressure (local static pressure) in the throttle valve 4. The pressure that was P1 on the suction side of CRD pump 2
On the discharge side, the CRD pump 2 boosts the pressure to P3,
The pressure is reduced to P2 by the orifice 3. However, this P2 is a value that varies depending on the manufacturing accuracy of the orifice 3, as described above. In FIG. 8, the orifice 3
Shows a case where the manufacturing accuracy is good and the pressure is sufficiently reduced by the orifice 3. Therefore, the valve differential pressure (P2-P1) of the throttle valve 4 shown by a in the figure is shown by b in the figure (inlet side). It is 0.65 or more relative to (absolute pressure-saturated water vapor pressure). Therefore, cavitation is likely to occur.
【0011】よって、絞り弁4においてキャビテーショ
ンの発生を防止するためにはオリフィス3において圧力
損失を大きくとる必要がある。一方、循環配管16内の
循環水の温度が所定の温度まで上昇して弁7を開放して
水源移送配管17への循環水の移送を行う場合について
考える。この場合、絞り弁4の差圧は、前述のとおり2
0〜40kg/cm2 程度の範囲でオリフィス3の製作
精度によって変化する。従って、オリフィス3の圧力損
失が大きい場合には、絞り弁4の差圧は低くして使用で
き、上述のとおりキャビテーションの発生という点では
好ましいが、この場合には循環配管16の分岐点21か
らの圧力損失が、水源移送配管17の圧力損失に比べ小
さくなり、水源移送配管17への循環水流量が少なくな
るので必要移送流量を確保できない可能性があった。Therefore, in order to prevent the occurrence of cavitation in the throttle valve 4, it is necessary to make a large pressure loss in the orifice 3. On the other hand, consider a case where the temperature of the circulating water in the circulating pipe 16 rises to a predetermined temperature and the valve 7 is opened to transfer the circulating water to the water source transfer pipe 17. In this case, the differential pressure of the throttle valve 4 is 2 as described above.
It varies depending on the manufacturing accuracy of the orifice 3 within a range of 0 to 40 kg / cm 2 . Therefore, when the pressure loss of the orifice 3 is large, the differential pressure of the throttle valve 4 can be used with a low pressure, which is preferable in terms of the occurrence of cavitation as described above, but in this case, from the branch point 21 of the circulation pipe 16. Since the pressure loss of 1 is smaller than the pressure loss of the water source transfer pipe 17, and the circulating water flow rate to the water source transfer pipe 17 is small, there is a possibility that the required transfer flow rate cannot be secured.
【0012】本発明は係る従来の事情に対処してなされ
たものであり、その目的は、キャビテーションの発生を
防止し、また、水源移送配管への移送流量を確保して制
御棒駆動系の循環昇温装置の保守性、運転性及び信頼性
を向上させることにある。The present invention has been made in view of the conventional circumstances, and an object thereof is to prevent the occurrence of cavitation and to secure a transfer flow rate to a water source transfer pipe to circulate a control rod drive system. It is to improve the maintainability, operability, and reliability of the temperature raising device.
【0013】[0013]
【課題を解決するための手段】上記目的を達成するた
め、本発明の制御棒駆動系の循環昇温装置と昇温制御方
法においては、請求項1記載の発明では、原子炉出力を
制御する制御棒を挿入・引抜する制御棒駆動機構に必要
な冷却水を水源に接続されて供給する供給配管と、この
供給配管の途中に設けられ前記冷却水を昇圧する制御棒
駆動系ポンプと、前記供給配管の制御棒駆動系ポンプの
下流側から分岐され制御棒駆動系ポンプの上流側の供給
配管に接続される循環配管と、前記制御棒駆動系ポンプ
によって昇圧される流体の圧力を減圧する第1の圧力損
失要素と、前記流体の流量を調節する絞り弁と、前記循
環配管から分岐され前記水源に接続される水源移送配管
と、この水源移送配管に設けられた弁とを有する制御棒
駆動系の循環昇温装置において、前記絞り弁を前記第1
の圧力損失要素の上流に設け、前記水源移送配管との分
岐点より下流側の循環配管に第2の圧力損失要素を設け
ている。In order to achieve the above object, in the circulation rod temperature raising apparatus and the temperature raising control method for the control rod drive system of the present invention, the invention of claim 1 controls the reactor output. A supply pipe connected to a water source to supply cooling water required for a control rod drive mechanism for inserting / pulling out a control rod, a control rod drive system pump provided in the middle of this supply pipe for boosting the cooling water, and A circulation pipe branched from a downstream side of the control rod drive system pump of the supply pipe and connected to a supply pipe upstream of the control rod drive system pump; and a pressure reducing unit for reducing the pressure of the fluid boosted by the control rod drive system pump. Control rod drive having a pressure loss element No. 1, a throttle valve for adjusting the flow rate of the fluid, a water source transfer pipe branched from the circulation pipe and connected to the water source, and a valve provided in the water source transfer pipe Circulation heating system In the said throttle valve first
The second pressure loss element is provided upstream of the pressure loss element and the second pressure loss element is provided in the circulation pipe downstream from the branch point with the water source transfer pipe.
【0014】また、請求項2記載の発明は、請求項1記
載の制御棒駆動系の循環昇温装置において第2の圧力損
失要素を、前記水源移送配管との分岐点から下流側の循
環配管の圧力損失が、前記水源移送配管に前記冷却水の
昇温防止上必要な流量の供給を可能となるように設定さ
れるものである。According to a second aspect of the present invention, in the circulation rod temperature raising device for a control rod drive system according to the first aspect, the second pressure loss element is provided in the circulation pipe downstream from the branch point with the water source transfer pipe. Is set so that the flow rate necessary for preventing the temperature rise of the cooling water can be supplied to the water source transfer pipe.
【0015】さらに、請求項3記載の発明では、原子炉
出力を制御する制御棒を挿入・引抜する制御棒駆動機構
に必要な冷却水を水源に接続されて供給する2系統の供
給配管と、この2系統の供給配管の途中に設けられ前記
冷却水を昇圧する2系統の制御棒駆動系ポンプと、前記
供給配管の2系統の制御棒駆動系ポンプの下流側から各
々分岐され制御棒駆動系ポンプの上流側の供給配管に接
続される2系統の循環配管と、前記2系統の制御棒駆動
系ポンプによって昇圧される流体の圧力を減圧する第1
の圧力損失要素と、前記流体の流量を調節する絞り弁
と、前記2系統の循環配管から分岐され前記水源に接続
される水源移送配管と、この水源移送配管に設けられた
弁とを有する制御棒駆動系の循環昇温装置において、前
記第1の圧力損失要素を前記2系統の循環配管の各々に
設け、前記絞り弁を各々設けられた第1の圧力損失要素
の上流側に各々設け、前記水源移送配管との分岐点より
下流側の2系統の循環配管に第2の圧力損失要素を各々
設けるとともに、前記各々分岐される水源移送配管を分
岐点よりも下流側に逆止弁を有してこの逆止弁の下流側
で合流するように設けている。Further, in the invention according to claim 3, two systems of supply pipes are connected to the water source to supply the cooling water required for the control rod drive mechanism for inserting and withdrawing the control rod for controlling the reactor output, Two control rod drive system pumps provided in the middle of these two supply pipes for boosting the cooling water, and a control rod drive system branched from the downstream side of the two control rod drive system pumps of the supply pipes. A first system for reducing the pressure of the fluid boosted by the two systems of circulation piping connected to the upstream supply piping of the pump and the two systems of control rod drive system pumps.
A pressure loss element, a throttle valve for adjusting the flow rate of the fluid, a water source transfer pipe branched from the two circulation pipes and connected to the water source, and a valve provided in the water source transfer pipe. In a rod drive system circulation heating device, the first pressure loss element is provided in each of the two systems of circulation piping, and the throttle valve is provided on the upstream side of each provided first pressure loss element, A second pressure loss element is provided in each of the two circulation pipes downstream from the branch point with the water source transfer pipe, and each of the branched water source transfer pipes has a check valve downstream from the branch point. Then, the check valve is provided so as to meet on the downstream side.
【0016】請求項4記載の発明は、請求項3記載の発
明において、第2の圧力損失要素を、前記水源移送配管
との分岐点から下流側の2系統各々の循環配管の圧力損
失が、前記水源移送配管に前記冷却水の昇温防止上必要
な流量の供給を可能となるように設定されるものであ
る。According to a fourth aspect of the present invention, in the third aspect of the invention, the second pressure loss element is provided with a pressure loss in each of the circulation pipes on the downstream side from the branch point with the water source transfer pipe, The water source transfer pipe is set so as to be able to supply a flow rate necessary for preventing the temperature rise of the cooling water.
【0017】最後に、請求項5記載の発明では、原子炉
出力を制御する制御棒を挿入・引抜する制御棒駆動機構
に必要な冷却水を水源に接続されて供給する供給配管
と、この供給配管の途中に設けられ前記冷却水を昇圧す
る制御棒駆動系ポンプと、前記供給配管の制御棒駆動系
ポンプの下流側から分岐され制御棒駆動系ポンプの上流
側の供給配管に接続される循環配管と、前記循環配管か
ら分岐され前記水源に接続される水源移送配管とを用い
る冷却水の昇温制御方法において、前記制御棒駆動系ポ
ンプから前記循環配管と水源移送配管との分岐点までの
圧力損失を調整し、この分岐点から前記制御棒駆動系ポ
ンプの吸い込み側までの圧力損失を前記水源移送配管の
圧力損失よりも大きくすることによって水源移送配管へ
冷却水の昇温防止上必要な流量を確保して冷却水の温度
を下げるものである。Finally, in the invention described in claim 5, a supply pipe connected to a water source for supplying cooling water required for a control rod drive mechanism for inserting / pulling out a control rod for controlling a reactor output, and this supply A control rod drive system pump provided in the middle of the pipe for boosting the cooling water, and a circulation connected to a supply pipe upstream of the control rod drive system pump branched from a downstream side of the control rod drive system pump of the supply pipe. In a cooling water temperature raising control method using a pipe and a water source transfer pipe branched from the circulation pipe and connected to the water source, from the control rod drive system pump to a branch point between the circulation pipe and the water source transfer pipe. By adjusting the pressure loss and making the pressure loss from this branch point to the suction side of the control rod drive system pump larger than the pressure loss of the water source transfer pipe, it is possible to prevent the temperature rise of the cooling water to the water source transfer pipe. To ensure the essential flow rate is intended to lower the temperature of the cooling water.
【0018】[0018]
【作用】上記構成の制御棒駆動系の循環昇温装置におい
ては、絞り弁のキャビテーションを防止可能であり、さ
らに、請求項2及び請求項4記載の発明では循環水を水
源移送配管に移送する場合においても、第1の圧力損失
要素たるオリフィスの製作誤差を考慮しても確実に移送
流量を確保できる。In the circulation rod temperature raising device for the control rod drive system configured as described above, cavitation of the throttle valve can be prevented. Further, in the inventions of claims 2 and 4, the circulating water is transferred to the water source transfer pipe. Even in this case, the transfer flow rate can be reliably ensured even in consideration of the manufacturing error of the orifice which is the first pressure loss element.
【0019】[0019]
【実施例】以下に本発明に係る制御棒駆動系の循環昇温
装置の第1の実施例を図1に基づき説明する。図1にお
いて、図4と構成が同一のものについては同一の符号を
付し、その構成の説明は省略する。図1において供給配
管15に供給される冷却水は、その一部を循環水として
循環配管16に導かれる。この循環水は、まず絞り弁4
によって所定の流量に調節される。その後、水源移送配
管17との分岐点21前に設けられたオリフィス3によ
って減圧され、さらに分岐点21後、別のオリフィス8
によって減圧される。このオリフィス8は予め水源移送
配管17の圧力損失分を考慮して設計されており、分岐
点21以下の圧力損失は循環水の移送時において水源移
送配管17側の圧力損失が過大にならないように設定さ
れている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a circulating rod temperature raising system for a control rod drive system according to the present invention will be described below with reference to FIG. In FIG. 1, the same components as those in FIG. 4 are designated by the same reference numerals, and the description of the components will be omitted. In FIG. 1, a part of the cooling water supplied to the supply pipe 15 is guided to the circulation pipe 16 as circulating water. The circulating water is first fed to the throttle valve 4
Is adjusted to a predetermined flow rate. After that, the pressure is reduced by the orifice 3 provided before the branch point 21 with the water source transfer pipe 17, and after the branch point 21, another orifice 8 is provided.
Decompressed by. The orifice 8 is designed in advance in consideration of the pressure loss of the water source transfer pipe 17, so that the pressure loss at the branch point 21 and below does not cause an excessive pressure loss on the water source transfer pipe 17 side when the circulating water is transferred. It is set.
【0020】次に、本発明に係る制御棒駆動系の循環昇
温装置の第2の実施例について図2を用いて説明する。
図2は、CRDポンプ2が2系列設けられている場合の
実施例であり、CRDポンプ2a,2bの吐出側に逆止
弁18a,18bを設けた後に供給配管15a,15b
を合流させ、CRDポンプ2a,2bの内1系統運転時
に他の系統への冷却水の逆流を防止する。そして、供給
配管15a,15bの各々から循環配管16a,16b
を分岐点22a,22bにおいて分岐させ、その分岐点
22a,22b後の循環配管16a,16bの各々に逆
止弁19a,19bを設けることによって、1系統のC
RDポンプの運転中に他の循環配管に同様に冷却水が逆
流しないようにしている。Next, a second embodiment of the circulating rod temperature raising system for the control rod drive system according to the present invention will be described with reference to FIG.
FIG. 2 shows an embodiment in which two series of CRD pumps 2 are provided, and supply pipes 15a, 15b are provided after check valves 18a, 18b are provided on the discharge side of CRD pumps 2a, 2b.
Of the CRD pumps 2a and 2b to prevent the reverse flow of the cooling water to the other system. The circulation pipes 16a and 16b are connected to the supply pipes 15a and 15b, respectively.
Is branched at branch points 22a and 22b, and check valves 19a and 19b are provided on the circulation pipes 16a and 16b after the branch points 22a and 22b, respectively.
Similarly, the cooling water is prevented from flowing backward to the other circulation pipes while the RD pump is operating.
【0021】また、これらの循環配管16a,16bに
はそれぞれ絞り弁4a,4b及びオリフィス3a,3b
が設けられ、その後合流して分岐点21にて水源移送配
管17と分岐する。Further, these circulation pipes 16a and 16b are respectively provided with throttle valves 4a and 4b and orifices 3a and 3b.
Is provided, and then merges and branches at the branch point 21 with the water source transfer pipe 17.
【0022】さらに、循環配管16には第1の実施例と
同様にオリフィス8が設けられている。このように構成
された第1の実施例及び第2の実施例の制御棒駆動系の
循環昇温装置においては、絞り弁4,4a,4bがオリ
フィス3,3a,3bの上流に設けられているため、絞
り弁4,4a,4bの入口圧力はCRDポンプ2,2
a,2bの吐出圧力となり圧力回復係数の改善を図るこ
とができる。従って、絞り弁4,4a,4bでキャビテ
ーションの発生を抑制することが可能である。Further, the circulation pipe 16 is provided with the orifice 8 as in the first embodiment. In the circulation rod temperature raising device for the control rod drive system of the first and second embodiments configured as described above, the throttle valves 4, 4a, 4b are provided upstream of the orifices 3, 3a, 3b. Therefore, the inlet pressures of the throttle valves 4, 4a, 4b are CRD pumps 2, 2
The discharge pressures of a and 2b are obtained, and the pressure recovery coefficient can be improved. Therefore, it is possible to suppress the occurrence of cavitation with the throttle valves 4, 4a, 4b.
【0023】ここで、絞り弁4,4a,4bでキャビテ
ーションの発生を抑制できることを図4を参照して説明
する。図4は図1あるいは図2に示されるCRDポンプ
2,2a,2bの吸い込み側から絞り弁4,4a,4
b、オリフィス3,3a,3b、オリフィス8を介して
再びCRDポンプ2,2a,2bの吸い込み側に戻る循
環配管16内の圧力分布を示す。図4において、P4は
絞り弁4,4a,4bの出口圧力を示す。また、その他
の符号の圧力については図8と同一の圧力を示すので説
明は省略する。Here, it will be described with reference to FIG. 4 that the occurrence of cavitation can be suppressed by the throttle valves 4, 4a, 4b. FIG. 4 shows the throttle valves 4, 4a, 4 from the suction side of the CRD pumps 2, 2a, 2b shown in FIG. 1 or 2.
The pressure distribution in the circulation pipe 16 returning to the suction side of the CRD pumps 2, 2a, 2b again via b, the orifices 3, 3a, 3b, and the orifice 8 is shown. In FIG. 4, P4 indicates the outlet pressure of the throttle valves 4, 4a, 4b. Further, pressures indicated by other reference numerals are the same as those in FIG. 8, and thus description thereof will be omitted.
【0024】図4において、CRDポンプ2,2a,2
bの吸い込み側でP1だった圧力は、吐出側ではCRD
ポンプ2,2a,2bによってP3まで昇圧され、高圧
のまま絞り弁4,4a,4bによってP4まで減圧され
る。その後、オリフィス3によってP2まで減圧され、
さらにオリフィス8,8a,8bによってP1まで減圧
される。In FIG. 4, CRD pumps 2, 2a, 2 are shown.
The pressure that was P1 on the suction side of b is CRD on the discharge side.
The pressure is increased to P3 by the pumps 2, 2a and 2b, and reduced to P4 by the throttle valves 4, 4a and 4b while maintaining the high pressure. After that, the pressure is reduced to P2 by the orifice 3,
Further, the pressure is reduced to P1 by the orifices 8, 8a, 8b.
【0025】オリフィス3,3a,3bの圧力損失はそ
の製作精度によって左右されるものの、絞り弁4,4
a,4bをオリフィス3,3a,3bの上流に設けるこ
とによって圧力回復係数の改善を図ることが可能であ
る。具体的には、図中aで示される絞り弁4,4a,4
bの弁差圧(P3−P4)は図中bで示される〔(入口
側絶対圧力−飽和水蒸気圧)=(P3−Pv)〕に対し
て0.65以下となっている。従って、キャビテーショ
ンの発生を抑制することが可能である。Although the pressure loss of the orifices 3, 3a, 3b depends on the manufacturing accuracy, the throttle valves 4, 4
By providing a and 4b upstream of the orifices 3, 3a and 3b, it is possible to improve the pressure recovery coefficient. Specifically, the throttle valves 4, 4a, 4 shown by a in the figure
The valve differential pressure (P3-P4) of b is 0.65 or less with respect to [(inlet absolute pressure-saturated steam pressure) = (P3-Pv)] shown by b in the figure. Therefore, it is possible to suppress the occurrence of cavitation.
【0026】一方、循環水の温度が上昇し、水源移送配
管17によって循環水の移送を行う場合には、オリフィ
ス8,8a,8bによって分岐点21より下流の循環配
管16と水源移送配管17の流量バランスが保たれるた
め水源移送配管17の流量が小さくなることはない。す
なわち、たとえオリフィス3,3a,3bの製作精度が
悪く、オリフィス3,3a,3bにおける圧力損失が大
きくとも、水源移送配管17の圧力損失よりも循環配管
16の圧力損失が大きくなるように固定されたオリフィ
ス8,8a,8bを有しているので流量バランスを維持
することが可能である。また、水源移送配管17に流入
する循環水の微量調整は絞り弁4,4a,4bによって
行うことができる。この微量調整はオリフィス8,8
a,8bによっては吸収できない微量の調整や循環水の
温度上昇の程度によって生じる移送流量の調整を意味す
る。このような微量調整を行っても分岐点21より下流
側では、それぞれの配管の圧力損失のバランスは一定で
あり、水源移送配管17に流入する循環水の流量が循環
配管16に比べて減少することはない。On the other hand, when the circulating water temperature rises and the circulating water is transferred by the water source transfer pipe 17, the circulation pipe 16 and the water source transfer pipe 17 downstream of the branch point 21 are moved by the orifices 8, 8a, 8b. Since the flow rate balance is maintained, the flow rate of the water source transfer pipe 17 does not decrease. That is, even if the manufacturing accuracy of the orifices 3, 3a, 3b is poor and the pressure loss in the orifices 3, 3a, 3b is large, the pressure loss in the circulation pipe 16 is fixed so as to be larger than the pressure loss in the water source transfer pipe 17. Since it has the orifices 8, 8a, 8b, it is possible to maintain the flow rate balance. Further, the minute adjustment of the circulating water flowing into the water source transfer pipe 17 can be performed by the throttle valves 4, 4a, 4b. This fine adjustment is done with orifices 8 and 8
It means the adjustment of a very small amount that cannot be absorbed by a and 8b and the adjustment of the transfer flow rate caused by the degree of temperature rise of circulating water. Even if such a minute adjustment is performed, the balance of the pressure loss of each pipe is constant on the downstream side of the branch point 21, and the flow rate of the circulating water flowing into the water source transfer pipe 17 is smaller than that of the circulating pipe 16. There is no such thing.
【0027】従って、このような制御棒駆動系の循環昇
温装置の第1及び第2の実施例によれば、オリフィス
3,3a,3bの製作精度による圧力損失の変動に対し
て、絞り弁4,4a,4bにおけるキャビテーションの
発生を防止可能であると同時に、循環水の移送時におい
ても昇温防止上必要な流量を確保することができる。Therefore, according to the first and second embodiments of the circulating temperature raising device for the control rod drive system, the throttle valve is adapted to the fluctuation of the pressure loss due to the manufacturing accuracy of the orifices 3, 3a and 3b. It is possible to prevent the occurrence of cavitation in 4, 4a and 4b, and at the same time, to secure the flow rate necessary for preventing the temperature rise even when the circulating water is transferred.
【0028】次に本発明に係る制御棒駆動系の循環昇温
装置の第3の実施例について図3を用いて説明する。図
3においては、CRDポンプの2系列による並列運転時
でもそれぞれのCRDポンプの保護上必要な流量を確保
することができるものである。Next, a third embodiment of the circulating rod temperature raising system for the control rod drive system according to the present invention will be described with reference to FIG. In FIG. 3, the flow rate required for protection of each CRD pump can be ensured even when two CRD pumps are operated in parallel.
【0029】CRDポンプ2a,2bの吐出側の逆止弁
18a,18bの上流側にそれぞれ循環配管16a,1
6bを分岐させて設けている。この循環配管16a,1
6bには、それぞれ第2の実施例の構成と同様に、逆止
弁19a,19b、絞り弁4a,4b、オリフィス3
a,3bが設けられている。ただし、それぞれの循環配
管16a,16bにオリフィス8a,8bが設けられ、
その下流側で循環配管16a,16bが合流している。
また、オリフィス3a,3bとオリフィス8a,8bの
間で、水源移送配管17a,17bがそれぞれ分岐し、
逆止弁20a,20bを介して水源移送配管17として
合流している。水源移送配管17には弁7が設けられて
いる。Circulation pipes 16a, 1 are provided upstream of the check valves 18a, 18b on the discharge side of the CRD pumps 2a, 2b, respectively.
6b is provided in a branched manner. This circulation piping 16a, 1
The check valves 6a and 19b, the throttle valves 4a and 4b, and the orifice 3 are provided at 6b, respectively, similarly to the configuration of the second embodiment.
a and 3b are provided. However, the orifices 8a and 8b are provided in the respective circulation pipes 16a and 16b,
The circulation pipes 16a and 16b join together on the downstream side.
Further, the water source transfer pipes 17a and 17b branch between the orifices 3a and 3b and the orifices 8a and 8b, respectively,
The water source transfer pipes 17 are joined together via the check valves 20a and 20b. The water source transfer pipe 17 is provided with a valve 7.
【0030】このような第3の実施例の構成において
は、CRDポンプの万一の並列運転の場合におけるそれ
ぞれの循環配管16a,16bを流れる循環水流量は1
系列運転時の流量とほぼ同じである。これは、流量が圧
力バランスによって決定されるものであるからであり、
従って、循環水の流量としては、1系列の通常運転時の
2倍となる。第2の実施例のような構成であれば、2倍
の循環水流量は単一のオリフィス8を通過することにな
るのでオリフィス8における圧力損失は4倍となってし
まう。実際には、この圧力損失による影響で循環配管1
6全体の圧力損失が増えるので流量は減少してバランス
するが、それでも実施例2ではオリフィス8における圧
力損失が過大となってしまう可能性がある。従って、C
RDポンプ2a,2bにそれぞれ最小限必要とされる流
量を循環配管16に確保できない可能性がある。In the structure of the third embodiment, the flow rate of the circulating water flowing through the circulating pipes 16a and 16b is 1 in case of parallel operation of the CRD pumps.
It is almost the same as the flow rate during series operation. This is because the flow rate is determined by the pressure balance,
Therefore, the flow rate of the circulating water is double that of one series of normal operation. In the case of the configuration of the second embodiment, the double circulating water flow rate passes through the single orifice 8, so the pressure loss at the orifice 8 becomes four times. Actually, the circulation pipe 1 is affected by this pressure loss.
Since the pressure loss of 6 as a whole increases, the flow rate decreases and balances. However, in the second embodiment, the pressure loss at the orifice 8 may be excessive. Therefore, C
There is a possibility that the circulation pipe 16 cannot have the minimum required flow rate for the RD pumps 2a and 2b.
【0031】しかし、第3の実施例のようにオリフィス
8a,8bを並列に設けておくと各々の流量に対して減
圧するのでそのような不都合はない。オリフィス8a,
8bの下流側では合流するが、循環配管16における圧
力損失はほとんど絞り弁4a,4b、オリフィス3a,
3b、オリフィス8a,8bによって生じるため合流後
に流量が通常運転時の2倍となっても全体としての圧力
損失にはほとんど影響はなくCRDポンプ2a,2bに
ポンプの保護上必要な流量は確保される。However, if the orifices 8a and 8b are provided in parallel as in the third embodiment, the pressure is reduced with respect to each flow rate, so that there is no such inconvenience. Orifice 8a,
Although they merge at the downstream side of 8b, most of the pressure loss in the circulation pipe 16 is caused by the throttle valves 4a, 4b, the orifice 3a,
3B and the orifices 8a and 8b, even if the flow rate after merging doubles that in normal operation, it has almost no effect on the pressure loss as a whole and the CRD pumps 2a and 2b have the flow rate necessary for protecting the pumps. It
【0032】また、絞り弁の圧力回復係数は第2の実施
例と同様に小さく抑えられ、絞り弁4a,4bのキャビ
テーションが防止され、弁のエロージョンの防止も可能
となる。Further, the pressure recovery coefficient of the throttle valve is suppressed to be small as in the second embodiment, cavitation of the throttle valves 4a and 4b is prevented, and erosion of the valve can be prevented.
【0033】なお、逆止弁20a,20bはCRDポン
プ2a,2bの並列運転時のために設けられたものでは
なく、通常の1系列運転時に循環水が両方のオリフィス
8a,8bに分散されないために設けられたものであ
る。すなわち、循環水がオリフィス8a,8bに分散さ
れると1系列分の循環流量の半分の流量がそれぞれのオ
リフィス8a,8bに流入し、圧力損失は流量の2分の
1で効くので4分の1となってしまい、これでは循環配
管16a,16b全体の圧力損失が下がってしまう。循
環配管16a,16b全体の圧力損失が低下すると水源
移送配管17の圧力損失とのバランスの関係で、昇温防
止のための水源移送配管17への循環水移送が十分にで
きない可能性があるからである。The check valves 20a and 20b are not provided for the parallel operation of the CRD pumps 2a and 2b, and the circulating water is not dispersed to both orifices 8a and 8b during the normal 1-series operation. It was installed in. That is, when the circulating water is dispersed in the orifices 8a and 8b, half the flow rate of the circulation flow for one series flows into the respective orifices 8a and 8b, and the pressure loss is effective at 1/2 of the flow rate, so that it is a quarter However, the pressure loss of the entire circulation pipes 16a and 16b is reduced. If the pressure loss of the entire circulation pipes 16a and 16b decreases, there is a possibility that the circulation water cannot be sufficiently transferred to the water source transfer pipe 17 for preventing the temperature rise due to the balance with the pressure loss of the water source transfer pipe 17. Is.
【0034】[0034]
【発明の効果】以上説明したように本発明の制御棒駆動
系の循環昇温装置においては、絞り弁の圧力回復係数を
小さく抑え、キャビテーションの発生を抑制することに
よってエロージョンの発生を防止する。また、第1の圧
力損失要素たるオリフィスの製作精度による水源移送流
量への影響を低下させ、循環水の昇温防止上必要な流量
を確実に確保することができる。As described above, in the control rod drive system circulation temperature raising apparatus of the present invention, the erosion is prevented by suppressing the pressure recovery coefficient of the throttle valve and suppressing the cavitation. Further, it is possible to reduce the influence of the manufacturing accuracy of the orifice, which is the first pressure loss element, on the flow rate of the water source transfer, and to reliably secure the flow rate necessary for preventing the temperature rise of the circulating water.
【図1】本発明に係る制御棒駆動系の循環昇温装置の第
1の実施例の系統構成図。FIG. 1 is a system configuration diagram of a first embodiment of a circulating heating apparatus for a control rod drive system according to the present invention.
【図2】本発明に係る制御棒駆動系の循環昇温装置の第
2の実施例の系統構成図。FIG. 2 is a system configuration diagram of a second embodiment of a circulating rod heating system for a control rod drive system according to the present invention.
【図3】本発明に係る制御棒駆動系の循環昇温装置の第
3の実施例の系統構成図。FIG. 3 is a system configuration diagram of a third embodiment of a circulating heating apparatus for a control rod drive system according to the present invention.
【図4】第1の実施例及び第2の実施例における循環配
管内の圧力分布を示す線図。FIG. 4 is a diagram showing the pressure distribution in the circulation pipe in the first and second embodiments.
【図5】制御棒駆動系の構成図。FIG. 5 is a configuration diagram of a control rod drive system.
【図6】制御棒駆動系の循環昇温装置の従来例の系統構
成図。FIG. 6 is a system configuration diagram of a conventional example of a circulating heating device for a control rod drive system.
【図7】制御棒駆動系の循環昇温装置の従来例の系統構
成図。FIG. 7 is a system configuration diagram of a conventional example of a circulation heating device for a control rod drive system.
【図8】従来例における循環配管内の圧力分布を示す線
図。FIG. 8 is a diagram showing a pressure distribution in a circulation pipe in a conventional example.
1…復水貯蔵槽 2,2a,2b…CR
Dポンプ 3,3a,3b…オリフィス 4,4a,4b…絞り
弁 5…加熱器 6…温度スイッチ 7…弁 8…オリフィス 9…水圧制御ユニット 10…原子炉格納容器 11…流量調整弁 12…圧力調整弁 13…制御棒駆動機構 14…原子炉圧力容器 15,15a,15b…供給配管16,16a,16b
…循環配管 17…水源移送配管 18a,18b…逆止
弁 19a,19b…逆止弁 20a,20b…逆止
弁 21…分岐点 22a,22b…分岐
点1 ... Condensate storage tank 2, 2a, 2b ... CR
D pump 3,3a, 3b ... orifice 4,4a, 4b ... throttle valve 5 ... heater 6 ... temperature switch 7 ... valve 8 ... orifice 9 ... water pressure control unit 10 ... reactor containment vessel 11 ... flow rate adjusting valve 12 ... pressure Regulator valve 13 ... Control rod drive mechanism 14 ... Reactor pressure vessel 15, 15a, 15b ... Supply piping 16, 16a, 16b
... Circulation piping 17 ... Water source transfer piping 18a, 18b ... Check valves 19a, 19b ... Check valves 20a, 20b ... Check valves 21 ... Branch points 22a, 22b ... Branch points
Claims (5)
抜する制御棒駆動機構に必要な冷却水を水源に接続され
て供給する供給配管と、この供給配管の途中に設けられ
前記冷却水を昇圧する制御棒駆動系ポンプと、前記供給
配管の制御棒駆動系ポンプの下流側から分岐され制御棒
駆動系ポンプの上流側の供給配管に接続される循環配管
と、前記制御棒駆動系ポンプによって昇圧される流体の
圧力を減圧する第1の圧力損失要素と、前記流体の流量
を調節する絞り弁と、前記循環配管から分岐され前記水
源に接続される水源移送配管と、この水源移送配管に設
けられた弁とを有する制御棒駆動系の循環昇温装置にお
いて、前記絞り弁は前記第1の圧力損失要素の上流に設
けられ、前記水源移送配管との分岐点より下流側の循環
配管に第2の圧力損失要素を設けることを特徴とする制
御棒駆動系の循環昇温装置。1. A supply pipe connected to a water source for supplying cooling water required for a control rod drive mechanism for inserting / pulling out a control rod for controlling a reactor output, and the cooling water provided in the middle of this supply pipe. A control rod drive system pump, a circulation pipe branched from a downstream side of the control rod drive system pump of the supply pipe and connected to a supply pipe upstream of the control rod drive system pump, and the control rod drive system pump A first pressure loss element for reducing the pressure of the fluid boosted by the pressure reducing valve, a throttle valve for adjusting the flow rate of the fluid, a water source transfer pipe branched from the circulation pipe and connected to the water source, and the water source transfer pipe In the circulation rod temperature raising device for a control rod drive system, the throttle valve is provided upstream of the first pressure loss element, and the circulation pipe is located downstream of a branch point with the water source transfer pipe. To the second pressure loss A circulating rod temperature raising device for a control rod drive system, characterized in that a loss element is provided.
送配管との分岐点から下流側の循環配管の圧力損失を、
前記水源移送配管に前記冷却水の昇温防止上必要な流量
の供給を可能とするように設定されることを特徴とする
請求項1記載の制御棒駆動系の循環昇温装置。2. The second pressure loss element measures the pressure loss of the circulation pipe downstream from the branch point with the water source transfer pipe,
2. The circulating temperature raising device for a control rod drive system according to claim 1, wherein the water source transfer pipe is set so as to be able to supply a flow rate necessary for preventing the temperature rise of the cooling water.
抜する制御棒駆動機構に必要な冷却水を水源に接続され
て供給する2系統の供給配管と、この2系統の供給配管
の途中に設けられ前記冷却水を昇圧する2系統の制御棒
駆動系ポンプと、前記供給配管の2系統の制御棒駆動系
ポンプの下流側から各々分岐され制御棒駆動系ポンプの
上流側の供給配管に接続される2系統の循環配管と、前
記2系統の制御棒駆動系ポンプによって昇圧される流体
の圧力を減圧する第1の圧力損失要素と、前記流体の流
量を調節する絞り弁と、前記2系統の循環配管から分岐
され前記水源に接続される水源移送配管と、この水源移
送配管に設けられた弁とを有する制御棒駆動系の循環昇
温装置において、前記第1の圧力損失要素は前記2系統
の循環配管に各々設けられ、前記絞り弁は各々設けられ
た第1の圧力損失要素の上流側に各々設けられ、前記水
源移送配管との分岐点より下流側の2系統の循環配管に
第2の圧力損失要素を各々設けるとともに、前記各々分
岐される水源移送配管は分岐点よりも下流側に逆止弁を
有してこの逆止弁の下流側で合流するように設けられた
ことを特徴とする制御棒駆動系の循環昇温装置。3. A two-system supply pipe for supplying cooling water required for a control-rod drive mechanism for inserting and withdrawing a control rod for controlling a reactor output to a water source, and a middle of these two-system supply pipes. And a control rod drive system pump for boosting the cooling water, and a supply pipe upstream of the control rod drive system pump branched from the downstream side of the control pipe drive system pump of the two system of the supply pipe. Two connected circulation pipes, a first pressure loss element for reducing the pressure of the fluid boosted by the two control rod drive system pumps, a throttle valve for adjusting the flow rate of the fluid, and In a circulation heating device of a control rod drive system, which has a water source transfer pipe branched from a system circulation pipe and connected to the water source, and a valve provided in the water source transfer pipe, the first pressure loss element is the Installed in each of the two circulation pipes The throttle valve is provided on the upstream side of each of the first pressure loss elements provided, and the second pressure loss element is provided on the two circulation pipes downstream from the branch point with the water source transfer pipe. A control rod drive characterized in that each of the water source transfer pipes branched from each branch has a check valve on the downstream side of the branch point, and is provided so as to join the downstream side of the check valve. System circulation heating device.
送配管との分岐点から下流側の2系統各々の循環配管の
圧力損失を、前記水源移送配管に前記冷却水の昇温防止
上必要な流量の供給を可能とするように設定されること
を特徴とする請求項3記載の制御棒駆動系の循環昇温装
置。4. The second pressure loss element prevents the pressure loss of the circulation pipe of each of the two systems on the downstream side from the branch point of the water source transfer pipe from flowing in the water source transfer pipe to prevent the temperature rise of the cooling water. The circulating heating apparatus for a control rod drive system according to claim 3, wherein the circulating rod temperature raising apparatus is set so that a required flow rate can be supplied.
抜する制御棒駆動機構に必要な冷却水を水源に接続され
て供給する供給配管と、この供給配管の途中に設けられ
前記冷却水を昇圧する制御棒駆動系ポンプと、前記供給
配管の制御棒駆動系ポンプの下流側から分岐され制御棒
駆動系ポンプの上流側の供給配管に接続される循環配管
と、前記循環配管から分岐され前記水源に接続される水
源移送配管とを用いる冷却水の昇温制御方法において、
前記制御棒駆動系ポンプから前記循環配管と水源移送配
管との分岐点までの圧力損失を調整し、この分岐点から
前記制御棒駆動系ポンプの吸い込み側までの圧力損失を
前記水源移送配管の圧力損失よりも大きくすることによ
って水源移送配管へ冷却水の昇温防止上必要な流量を確
保して冷却水の温度を下げることを特徴とする昇温制御
方法。5. A supply pipe connected to a water source for supplying cooling water required for a control rod drive mechanism for inserting / pulling out a control rod for controlling a reactor output, and the cooling water provided in the middle of this supply pipe. A control rod drive system pump for boosting pressure, a circulation pipe branched from a downstream side of the control rod drive system pump of the supply pipe and connected to a supply pipe upstream of the control rod drive system pump, and a circulation pipe branched from the circulation pipe. In a method of controlling temperature rise of cooling water using a water source transfer pipe connected to the water source,
The pressure loss from the control rod drive system pump to the branch point between the circulation pipe and the water source transfer pipe is adjusted, and the pressure loss from this branch point to the suction side of the control rod drive system pump is adjusted to the pressure of the water source transfer pipe. A temperature raising control method characterized in that a flow rate necessary for preventing a temperature rise of cooling water is secured to a water source transfer pipe by making the loss larger than the loss to lower the temperature of the cooling water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03320795A JP3392563B2 (en) | 1995-02-22 | 1995-02-22 | Circulation heater for control rod drive system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03320795A JP3392563B2 (en) | 1995-02-22 | 1995-02-22 | Circulation heater for control rod drive system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08226984A true JPH08226984A (en) | 1996-09-03 |
JP3392563B2 JP3392563B2 (en) | 2003-03-31 |
Family
ID=12380026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03320795A Expired - Fee Related JP3392563B2 (en) | 1995-02-22 | 1995-02-22 | Circulation heater for control rod drive system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3392563B2 (en) |
-
1995
- 1995-02-22 JP JP03320795A patent/JP3392563B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3392563B2 (en) | 2003-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0410037B2 (en) | ||
JPS6337844B2 (en) | ||
JP3392563B2 (en) | Circulation heater for control rod drive system | |
JP4542992B2 (en) | Residual heat removal system and operation method thereof | |
JPS62287192A (en) | Purge water feeder for nuclear reactor inside circulating pump | |
JP7223173B2 (en) | Hydrogenation system for pressurized water reactor and corresponding method | |
JPH08338607A (en) | Cavitation prevention apparatus for feed water pump | |
JPH059760B2 (en) | ||
JPH0574036B2 (en) | ||
JPS5915890A (en) | Auxiliary cooling device for atomic power plant | |
JPS6066194A (en) | Method and device for cooling control rod drive | |
JP3130662B2 (en) | Power plant water supply equipment | |
JPS6227692A (en) | Flow and pressure controller to control-rod driving hydraulic mechanism | |
JPH04262091A (en) | Cooling water circulating facility for re-circulating pump | |
JPS58216774A (en) | Control system of heat transfer system which connect nuclear power installation and sea water desalting device | |
JPH0949606A (en) | Variable pressure once-through boiler | |
JPS646716B2 (en) | ||
JPS58100795A (en) | Bwr type reactor power plant | |
JPS63251703A (en) | Feedwater-heater drain system oxygen-concentration controller | |
JPH07248101A (en) | Boiler system | |
JP2001525551A (en) | Apparatus for injecting neutron absorbing fluid into primary circuit of pressurized water reactor and method of increasing neutron absorption in the primary circuit | |
JPS59191810A (en) | Slurry heating device | |
JPH0350404A (en) | Control of feed water/condensate pump | |
JPH04319698A (en) | Internally installed recirculation pump system | |
JPS63187194A (en) | Nuclear reactor pressure controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |