JPH08225888A - Production of corrosion resistant steel sheet excellent in chemical convertibility and cold rolled steel sheet therefrom - Google Patents

Production of corrosion resistant steel sheet excellent in chemical convertibility and cold rolled steel sheet therefrom

Info

Publication number
JPH08225888A
JPH08225888A JP5040895A JP5040895A JPH08225888A JP H08225888 A JPH08225888 A JP H08225888A JP 5040895 A JP5040895 A JP 5040895A JP 5040895 A JP5040895 A JP 5040895A JP H08225888 A JPH08225888 A JP H08225888A
Authority
JP
Japan
Prior art keywords
steel sheet
chemical conversion
corrosion resistance
corrosion
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5040895A
Other languages
Japanese (ja)
Other versions
JP3191603B2 (en
Inventor
Akimasa Kido
章雅 木戸
Masaya Morita
正哉 森田
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP05040895A priority Critical patent/JP3191603B2/en
Publication of JPH08225888A publication Critical patent/JPH08225888A/en
Application granted granted Critical
Publication of JP3191603B2 publication Critical patent/JP3191603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To provide a method for producing a steel sheet excellent in both of chemical convertibility and corrosion resistance without executing special surface modifying and to provide a method for producing a cold rolled steel sheet therefrom. CONSTITUTION: This corrosion resistant steel sheet has a chemical componental compsn. contg., by weight, 0.0003 to 0.005% C, <=0.1% Si, 0.1 to 2.0% Mn, 0.002 to 0.03% P, 0.003 to 0.020% S, 0.01 to 0.1% sol.Al, 0.05 to 0.5% Cu, <=0.10% Cr (contg. the case of no addition) and 0.0002 to 0.0020% B and furthermore satisfying 24×S/32+2×P/31>=Cu/63>=2×S/32. The surface of this steel sheet is moreover provided with an oxidized film having 10 to 100Å thickness. In the production of the cold rooled steel sheet, annealing is executed at >=500 deg.C for <=10min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋼板ままの耐食性、
特に、耐大気腐食性に優れ、かつ、塗装下地処理として
の化成処理性にも優れた鋼板、および、その冷延鋼板の
製造方法に関するものである。
This invention relates to the corrosion resistance of a steel sheet as it is,
In particular, the present invention relates to a steel sheet excellent in atmospheric corrosion resistance and also excellent in chemical conversion treatment as a coating base treatment, and a method for manufacturing the cold rolled steel sheet.

【0002】[0002]

【従来の技術】従来、鋼板の耐食性を高める手段とし
て、主に、メッキ鋼板が用いられている。しかし、メッ
キ鋼板には、プレス加工時にメッキ層が剥離してこの部
分より錆が発生すること、および、亜鉛が鋼板の表面に
あるためにスポット溶接時に電極を劣化させること等の
問題がある。
2. Description of the Related Art Conventionally, plated steel sheets have been mainly used as means for improving the corrosion resistance of steel sheets. However, the plated steel sheet has problems that the plating layer peels off during press working to cause rust from this portion, and that zinc is on the surface of the steel sheet, which deteriorates the electrode during spot welding.

【0003】近年、Cu−P添加型の耐食性鋼板が登場
した。この鋼板の特徴は、錆を表層部だけに生成させ、
内部への進行を防ぐことにより、耐食性の向上を図って
いる。しかしながら、これらの鋼板にはPが添加されて
いるので、鋼材の脆化および加工性劣化等の問題が顕在
化している。
In recent years, Cu-P-added corrosion-resistant steel plates have appeared. The characteristic of this steel plate is that rust is generated only on the surface layer,
The corrosion resistance is improved by preventing the inward progress. However, since P is added to these steel sheets, problems such as embrittlement and workability deterioration of steel materials have become apparent.

【0004】これに対して、例えば、特開昭61−11
7249号公報、特開昭63−203747号公報およ
び特開平2−50940号公報には、耐食性を高めるた
めにCrを添加した鋼板についての技術が開示されてい
る。しかしながら、このようなCrを含む鋼材において
は、塩素イオンによる孔食の問題が潜在している。
On the other hand, for example, Japanese Patent Laid-Open No. 61-11
Japanese Patent No. 7249, Japanese Patent Laid-Open No. 63-203747, and Japanese Patent Laid-Open No. 2-50940 disclose a technique for a steel sheet to which Cr is added in order to improve corrosion resistance. However, such a steel material containing Cr has a potential problem of pitting corrosion due to chlorine ions.

【0005】また、薄鋼板の主な用途である自動車、電
気機器および建材等の分野における鋼板は、そのまま使
用されることは少なく、通常はその表面を塗装して使用
する。そして、塗装する場合には下地処理として燐酸塩
処理、所謂化成処理を施すことによって、塗料と下地鋼
板との密着性を高めることが一般的に行われている。鋼
板表面に対する上記化成処理性を良好にすることによ
り、塗装後の耐食性が良好になる。しかしながら、耐食
性鋼板においては、化成処理性を著しく劣化させるCu
が添加されているのみならず、表面が電気化学的に比較
的安定しているために、化成処理性は極めて悪い。
Further, a steel sheet used in the fields of automobiles, electric equipment, building materials, etc., which is a main application of a thin steel sheet, is rarely used as it is, and its surface is usually coated and used. In the case of coating, a phosphate treatment, that is, a so-called chemical conversion treatment is performed as a base treatment to increase the adhesion between the paint and the base steel sheet. By making the above chemical conversion treatability of the steel sheet surface good, the corrosion resistance after coating becomes good. However, in the corrosion-resistant steel plate, Cu which significantly deteriorates the chemical conversion treatment property.
Is not only added, but the surface is relatively electrochemically stable, so the chemical conversion treatability is extremely poor.

【0006】[0006]

【発明が解決しようとする課題】従って、この発明の目
的は、上述した問題を解決するために、種々の鋼種の鋼
板中における各化学成分の挙動を把握し、S、Pおよび
Cuの含有量を適正な範囲内に制御することにより、特
別な表面改質をしなくても化成処理性および耐食性の両
方が良好であるという、本来両立し難い性質を備えた鋼
板、および、その冷延鋼板の好適な製造方法を提供する
ことにある。
Therefore, in order to solve the above-mentioned problems, the object of the present invention is to grasp the behavior of each chemical component in steel sheets of various steel types, and to determine the contents of S, P and Cu. By controlling within a proper range, both the chemical conversion treatability and the corrosion resistance are good without special surface modification, the steel sheet having the originally difficult compatibility properties, and its cold rolled steel sheet. To provide a preferred manufacturing method of

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
に、本発明者等は鋭意研究を重ねた結果、下記知見を得
た。一般に、耐食性鋼板は、表面の反応性が低下せしめ
られることにより耐食性が向上する。従って、耐食性鋼
板においては、化成処理初期における核の形成にとって
有効なミクロセルの生成が起こりにくく、化成処理性が
悪い。従って、鋼板表面の電気化学的反応性に大きな影
響を及ぼす元素であるS、PおよびCu含有量を適正な
範囲内に制御することが化成処理性および耐食性を両立
させるためには重要であるとの結論を得た。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have earnestly studied and obtained the following findings. Generally, the corrosion resistance of a corrosion-resistant steel sheet is improved by reducing the reactivity of the surface. Therefore, in the corrosion-resistant steel sheet, the formation of microcells effective for the formation of nuclei in the initial stage of chemical conversion treatment hardly occurs, and the chemical conversion treatment property is poor. Therefore, it is important to control the contents of S, P and Cu, which are elements that have a great influence on the electrochemical reactivity of the steel sheet surface, within an appropriate range in order to achieve both chemical conversion treatability and corrosion resistance. I came to the conclusion.

【0008】かかる結論をもとに、上記目的を達成する
ためのS、PおよびCu含有量の適正な範囲を検討した
結果、下記事項が明らかになった。即ち、化成処理皮膜
の生成過程においては、その初期に、燐酸亜鉛結晶の核
が鋼板の表面に生成する。この核発生サイトは、鋼板の
Feイオンが溶出しているアノ−ドの付近である。そし
て、上記核発生サイトの近傍付近の他の多数の核発生サ
イトの各々からも核が発生し、各々の核が成長し、これ
らが結合して燐酸亜鉛皮膜が形成される。
On the basis of the above conclusion, as a result of examining the proper range of the S, P and Cu contents for achieving the above object, the following matters have been clarified. That is, in the process of forming the chemical conversion treatment film, nuclei of zinc phosphate crystals are formed on the surface of the steel sheet at the initial stage. This nucleation site is near the anode where Fe ions in the steel sheet are eluted. Then, nuclei are also generated from each of a large number of other nucleation sites in the vicinity of the nucleation site, each nuclei grows, and these nuclei combine to form a zinc phosphate film.

【0009】Sは鋼材中で硫化物として存在し、この硫
化物がカソ−ド点として作用する。ところが、Cuはア
ノ−ド点から溶出し、カソ−ド点近傍に析出してカソ−
ド点を安定化し耐食性を高める作用をする。このように
してCuはカソ−ド点を減少させるので、ミクロセルの
生成数が減少する。即ち、ミクロセルの生成数がカソ−
ド点の数の減少に従って減少し、その結果、化成処理に
有効な活性点として働くアノ−ド点が減少し、化成処理
性が劣化する。
S exists as a sulfide in the steel material, and this sulfide acts as a cathode point. However, Cu elutes from the anode point and precipitates in the vicinity of the cathode point.
It acts to stabilize the corrosion point and enhance corrosion resistance. In this way, Cu reduces the cathode point, so that the number of microcells produced is reduced. That is, the number of microcells generated is
The number of the anodic points decreases as the number of the anodic points decreases, and as a result, the anodic points serving as active points effective for the chemical conversion treatment decrease and the chemical conversion treatment property deteriorates.

【0010】一方、P含有量が増加するに従い、鋼板表
面に存在するPの量は多くなり、化成処理性は良好にな
る。ところで、大気中における腐食試験を行なった場
合、P含有量を増加させるに従い、表層に錆を発生させ
内部への進行を防ぐことは知られているが、本発明者等
は、この場合、腐食減量が増加することを見い出した。
これは、鋼板中のPが初期発銹性に対しては悪影響を与
えており、また、安定錆が生成するまでは腐食減量の抑
制をすべきであるという観点からは、悪影響要因として
作用しているからであると考えられる。
On the other hand, as the P content increases, the amount of P existing on the surface of the steel sheet increases and the chemical conversion treatability becomes better. By the way, it is known that when a corrosion test is performed in the atmosphere, as the P content is increased, rust is generated in the surface layer to prevent the rust from progressing into the interior. We have found that weight loss increases.
This acts as an adverse factor from the viewpoint that P in the steel sheet has an adverse effect on the initial rusting property and that the corrosion weight loss should be suppressed until stable rust is formed. It is thought to be because it is.

【0011】上述したことから、鋼板中のS、Pおよび
Cuの含有量を適正な範囲内に限定することが、鋼板の
耐食性と化成処理性とを両立させるために重要であるこ
とがわかった。
From the above, it was found that limiting the contents of S, P and Cu in the steel sheet to within an appropriate range is important for achieving both corrosion resistance and chemical conversion treatability of the steel sheet. .

【0012】次に、通常、鋼板の表面酸化皮膜は化成処
理を行なう上では有害であると考えられているが、自然
界において、金属表面には表面酸化皮膜が存在している
のが通常であり、また、緻密な酸化皮膜の存在は鋼材自
体の耐食性を高めるためには有効であるので、これを除
去するよりはその存在下において良好な化成処理性を得
ることができることが一層望ましい。
Next, it is generally considered that the surface oxide film of the steel sheet is harmful in performing the chemical conversion treatment, but in nature, the surface oxide film is usually present on the metal surface. Moreover, since the presence of a dense oxide film is effective for enhancing the corrosion resistance of the steel material itself, it is more desirable to obtain good chemical conversion treatability in the presence thereof, rather than removing it.

【0013】そこで、酸化層形成に重要な影響を与え
る、Si、MnおよびAlの含有量を変化させると共
に、S、PおよびCuの含有量等をも変化させ、耐食性
および化成処理性の評価を行なった結果、これらの元素
の含有量を適正な範囲内に制御することにより、良好な
耐食性と良好な化成処理性とが両立する酸化皮膜を得る
ことが可能であることがわかった。
Therefore, the contents of Si, Mn and Al, which have an important influence on the formation of the oxide layer, are changed, and the contents of S, P and Cu are also changed to evaluate the corrosion resistance and the chemical conversion treatability. As a result, it was found that by controlling the contents of these elements within an appropriate range, it is possible to obtain an oxide film having both good corrosion resistance and good chemical conversion treatability.

【0014】先ず、本発明者等は、種々の化学成分組成
を有する耐食性鋼板から調製された試験材を用いて耐食
性試験を行った。その結果、良好な耐食性を得るために
は、Cu含有量とS含有量との間に、原子量比でCu含
有量がS含有量の2倍以上含有されていること、即ち、
Cu(wt.%)/63 ≧2 ×S(wt.%)/32 の関係式を満たすこ
とが必要であることがわかった。
First, the present inventors conducted a corrosion resistance test using test materials prepared from corrosion resistant steel plates having various chemical composition. As a result, in order to obtain good corrosion resistance, the Cu content is at least twice the S content in terms of atomic weight ratio between the Cu content and the S content, that is,
It was found that it is necessary to satisfy the relational expression of Cu (wt.%) / 63 ≧ 2 × S (wt.%) / 32.

【0015】次に、上述した試験材と実質的に同じもの
を用いて、化成処理性の試験を行なった。化成処理性の
評価は、所定の試験片に、日本パ−カライジング株式会
社製のPBL−3080により30秒間の化成処理を施
した後のP比によって行なった。但し、P比は、下記
(2)式: によって表わされる。なお、試験片を化成処理するとホ
パイト(hopeite:Zn3(PO4)2 ・4H2 O)およびフ
ォスフォフィライト(phosphophyllite:Zn2 Fe(P
4)2 ・4H2 O)が生成するが、フォスフォフィライ
トの生成量が多い方が化成処理性としては望ましく、従
って、P比は高い方が望ましい。
Next, a chemical conversion treatability test was conducted using substantially the same test material as described above. The chemical conversion treatability was evaluated by P ratio after subjecting a predetermined test piece to a chemical conversion treatment for 30 seconds by PBL-3080 manufactured by Nippon Parkerizing Co., Ltd. However, the P ratio is expressed by the following formula (2): Represented by When the test piece was subjected to a chemical conversion treatment, it was hopite (Zn 3 (PO 4 ) 2 .4H 2 O) and phosphophyllite (Zn 2 Fe (P).
O 4) 2 · 4H 2 O ) is generated, phosphophyllite desirable as it is chemical convertibility is large the amount of light, therefore, P ratio is higher is preferable.

【0016】図1は、鋼板のS、PおよびCu含有量と
化成処理性との関係を示すグラフである。SおよびPは
適正量の添加によって化成処理性を向上させ、過剰の添
加によって耐食性を劣化させるのに対して、Cuはこれ
らとは逆に、適正量の添加によって耐食性を向上させ、
過剰の添加によって化成処理性を劣化させる。即ち、S
およびPとCuとは、化成処理性の向上に対して相反す
る影響を及ぼすことを考慮し、これら各元素の化成処理
性の向上に対する寄与度について検討した。
FIG. 1 is a graph showing the relationship between the S, P and Cu contents of the steel sheet and the chemical conversion treatability. S and P improve chemical conversion treatability by adding an appropriate amount and deteriorate corrosion resistance by adding excessively, whereas Cu improves corrosion resistance by adding an appropriate amount, contrary to these.
Excessive addition deteriorates chemical conversion treatability. That is, S
Considering that P and Cu have contradictory effects on the improvement of the chemical conversion treatability, the contribution of each of these elements to the improvement of the chemical conversion treatability was examined.

【0017】図1は、このような観点からこの化成処理
性評価の試験結果をまとめたものである。その結果、同
図から明らかなように、優れた化成処理性を得るために
は、S、PおよびCu含有量が、{24×S(wt.%)/32 +
2 ×P(wt.%)/31 }−Cu(wt.%)/63 ≧0の関係を満た
すことが必要であるとの知見が得られた。
FIG. 1 summarizes the test results of this chemical conversion treatment evaluation from this point of view. As a result, as is clear from the figure, in order to obtain excellent chemical conversion treatability, the contents of S, P and Cu were {24 × S (wt.%) / 32 +
It was found that it is necessary to satisfy the relationship of 2 × P (wt.%) / 31} -Cu (wt.%) / 63 ≧ 0.

【0018】更に、化学成分組成が一定(後述する表1
中の本発明鋼No.16の化学成分組成である)であっ
て、鋼板表面の酸化皮膜の厚さのみを変化させた耐食性
鋼板から調製された試験材を用いて腐食試験を行ない、
その結果を検討した結果、鋼板ままの耐食性(裸耐食
性)には酸化皮膜が有効に作用するが、塗装剥離部から
腐食が進行する場合には、酸化皮膜が厚い鋼板ほど極く
細い膨れ部が進行していることがわかった。即ち、極度
に厚い酸化皮膜が存在する場合の方が、薄い酸化皮膜が
存在する場合よりも、鋼板表面に刻まれたクロスカット
部分からの燐酸塩皮膜の溶出、および、これに起因する
酸化が促進され、塗装後耐食性に悪影響をもたらしてい
るものと考えられる。一方、酸化皮膜を極度に薄くする
と、鋼板自体の耐食性が著しく悪化する。
Furthermore, the chemical composition is constant (see Table 1 below).
Which is the chemical composition of the steel No. 16 of the present invention) in which the corrosion test is performed using a test material prepared from a corrosion-resistant steel plate in which only the thickness of the oxide film on the steel plate surface is changed,
As a result of studying the results, the oxide film effectively acts on the corrosion resistance of the steel sheet as it is (bare corrosion resistance), but when corrosion progresses from the paint peeling portion, the steel sheet with a thick oxide film has a very narrow bulge. I knew it was going on. That is, in the case where an extremely thick oxide film is present, the elution of the phosphate film from the cross-cut portion carved on the surface of the steel sheet and the oxidation caused by this are more than in the case where a thin oxide film is present. It is believed that this has been promoted and that the corrosion resistance after painting has been adversely affected. On the other hand, if the oxide film is extremely thin, the corrosion resistance of the steel sheet itself is significantly deteriorated.

【0019】図2は、上記試験結果をまとめて、耐食性
鋼板の表面の酸化皮膜の厚さと化成処理性および耐食性
との関係を示したグラフである。鋼板表面の酸化皮膜の
厚さは、所謂還元法により測定した。同図から明らかな
ように、耐食性および化成処理性の両方に優れた耐食性
鋼板を得るためには、鋼板表面の酸化皮膜の厚さが、1
0〜100Åの範囲内にある場合に達成されるとの知見
が得られた。
FIG. 2 is a graph showing the relationship between the thickness of the oxide film on the surface of the corrosion-resistant steel sheet, the chemical conversion treatment property, and the corrosion resistance, summarizing the above test results. The thickness of the oxide film on the surface of the steel sheet was measured by the so-called reduction method. As is clear from the figure, in order to obtain a corrosion-resistant steel sheet excellent in both corrosion resistance and chemical conversion treatability, the thickness of the oxide film on the steel sheet surface is 1
It was found that it was achieved when it was in the range of 0 to 100Å.

【0020】この発明の耐食性鋼板およびその冷延鋼板
の製造方法は、上述した知見によって完成したものであ
り、下記構成からなる。
The corrosion-resistant steel sheet and the method for manufacturing the cold-rolled steel sheet according to the present invention have been completed based on the above-mentioned findings, and have the following constitutions.

【0021】第1発明の耐食性鋼板は、炭素(C):0.
0003〜0.005 wt.% 、シリコン(Si):0.1 wt.% 以
下、マンガン(Mn):0.1 〜2.0 wt.% 、燐(P):
0.002 〜0.03 wt.% 、硫黄(S):0.003 〜0.020 wt.
% 、酸可溶性アルミニウム(sol.Al):0.01〜0.1 w
t.% 、銅(Cu):0.05〜0.5 wt.% 、クロム(C
r):0.10 wt.% 以下(無添加の場合を含む)、およ
び、ボロン(B):0.0002〜0.0020 wt.% を含有し、か
つ、硫黄(S)、燐(P)および銅(Cu)含有量が、
下記(1)式: 24×S(wt.%)/32 +2 ×P(wt.%)/31 ≧Cu(wt.%)/63 ≧2 ×S(wt.%)/32 --------(1) を満たす化学成分組成を有することに特徴を有するもの
である。
The corrosion-resistant steel sheet of the first invention is carbon (C): 0.
0003 to 0.005 wt.%, Silicon (Si): 0.1 wt.% Or less, manganese (Mn): 0.1 to 2.0 wt.%, Phosphorus (P):
0.002 to 0.03 wt.%, Sulfur (S): 0.003 to 0.020 wt.%
%, Acid-soluble aluminum (sol.Al): 0.01 to 0.1 w
t.%, copper (Cu): 0.05 to 0.5 wt.%, chromium (C
r): 0.10 wt.% or less (including no addition), and boron (B): 0.0002 to 0.0020 wt.% and containing sulfur (S), phosphorus (P) and copper (Cu) The content is
Formula (1) below: 24 × S (wt.%) / 32 + 2 × P (wt.%) / 31 ≧ Cu (wt.%) / 63 ≧ 2 × S (wt.%) / 32 ---- ---- It is characterized by having a chemical composition that satisfies (1).

【0022】第2発明の耐食性鋼板は、第1発明の化学
成分組成を有することに付加して、更に、前記鋼板の少
なくとも一方の表面に、厚さ10〜100 Åの酸化皮膜を有
することに特徴を有するものである。
In addition to having the chemical composition of the first aspect of the invention, the corrosion-resistant steel sheet of the second aspect further comprises an oxide film having a thickness of 10 to 100 Å on at least one surface of the steel sheet. It has characteristics.

【0023】第3発明の耐食性冷延鋼板の製造方法は、
第1発明に記載の化学成分組成を有する鋼を冷間圧延し
て冷延鋼板を調製し、そして、次いで、前記冷延鋼板に
焼鈍を施して耐食性冷延鋼板を製造する方法であって、
前記焼鈍は、500 ℃以上での温度が10分以下であること
に特徴を有するものである。
The method for producing a corrosion-resistant cold-rolled steel sheet according to the third invention is
A method of cold-rolling a steel having the chemical composition according to the first aspect of the invention to prepare a cold-rolled steel sheet, and then annealing the cold-rolled steel sheet to produce a corrosion-resistant cold-rolled steel sheet,
The annealing is characterized in that the temperature at 500 ° C. or higher is 10 minutes or less.

【0024】[0024]

【作用】この発明の耐食性鋼板の化学成分組成の限定理
由を説明する。
The reason for limiting the chemical composition of the corrosion-resistant steel sheet of the present invention will be described.

【0025】(1)C:Cは、耐食性を上昇させるため
には、少ない方が望ましい。しかしながら、その含有量
を0.0003 wt.% 未満にすると多大なコストがかか
る。一方、C含有量が0.005 wt.% を超えると、耐
食性が劣化する。従って、C含有量を0.0003〜
0.005 wt.% の範囲内に限定すべきである。
(1) C: The content of C is preferably as small as possible in order to increase the corrosion resistance. However, if the content is less than 0.0003 wt.%, A large cost is required. On the other hand, when the C content exceeds 0.005 wt.%, The corrosion resistance deteriorates. Therefore, the C content is 0.0003-
It should be limited to the range of 0.005 wt.%.

【0026】(2)Si:Siは、容易に酸化されて安
定な酸化物のSiO2 になる。これは非導電性でかつ難
溶性であり、化成処理性を著しく悪化させる。従って、
少ない方が望ましく、Si含有量が0.1 wt.% を超え
ると化成処理性が悪化する。従って、Si含有量を0.
1 wt.% 以下に限定すべきである。
(2) Si: Si is easily oxidized into stable oxide SiO 2 . This is non-conductive and hardly soluble, and significantly deteriorates the chemical conversion treatment property. Therefore,
It is desirable that the amount be small, and if the Si content exceeds 0.1 wt.%, The chemical conversion treatability deteriorates. Therefore, the Si content is set to 0.
It should be limited to 1 wt.% Or less.

【0027】(3)Mn:Mnは、鋼板の表面に析出し
易い元素であり、鋼板の表層で酸化物となる。これは導
電性を有するため化成処理時には初期付着の核として有
効に働く。しかしながら、Mn含有量が0.1 wt.% 未
満では上述した効果がなく化成処理性が劣化する。一
方、上記酸化物は腐食の核になり、耐食性に悪影響をも
たらし、Mn含有量が2.0 wt.% 超では、耐食性を著
しく劣化させる。従って、Mn含有量を0.1〜2.0
wt.% の範囲内に限定すべきである。
(3) Mn: Mn is an element that easily precipitates on the surface of the steel sheet and becomes an oxide in the surface layer of the steel sheet. Since it has conductivity, it works effectively as a nucleus of initial adhesion during chemical conversion treatment. However, if the Mn content is less than 0.1 wt. On the other hand, the above oxide becomes a nucleus of corrosion and adversely affects the corrosion resistance, and if the Mn content exceeds 2.0 wt.%, The corrosion resistance is significantly deteriorated. Therefore, the Mn content is 0.1 to 2.0.
It should be limited to the range of wt.%.

【0028】(4)P:Pは、化成処理性向上に有効な
元素である。しかしながら、その含有量が0.002 w
t.% 未満ではその効果が十分発揮されない。一方、P含
有量が過剰であると、大気下腐食においては腐食減量が
増加し、0.03 wt.% 超ではその腐食減量が著しい。
従って、P含有量を0.002〜0.03 wt.% の範囲
内に限定すべきである。
(4) P: P is an element effective in improving chemical conversion treatability. However, its content is 0.002 w
If it is less than t.%, the effect is not sufficiently exerted. On the other hand, if the P content is excessive, the corrosion weight loss increases in atmospheric corrosion, and if it exceeds 0.03 wt.%, The corrosion weight loss is remarkable.
Therefore, the P content should be limited to the range of 0.002 to 0.03 wt.%.

【0029】(5)S:Sは、耐食性向上に有効な緻密
な表面酸化層の形成を阻害する。また、鋼中で硫化物を
形成するが、これがカソ−ド介在物となり、鋼板表面が
活性化する。その結果、Sは鋼板ままの耐食性を劣化さ
せる。ところが、Sは化成処理性向上のためには有効な
元素である。しかしながら、S含有量が0.003 wt.
% 未満では化成処理性が悪く、一方、その含有量が0.
020 wt.% 超では耐食性が極度に劣化する。従って、
S含有量を0.003〜0.020 wt.% の範囲内に限
定すべきである。
(5) S: S hinders the formation of a dense surface oxide layer which is effective in improving corrosion resistance. Further, sulfides are formed in the steel, which act as cathode inclusions and activate the steel sheet surface. As a result, S deteriorates the corrosion resistance of the steel sheet as it is. However, S is an effective element for improving the chemical conversion treatability. However, the S content is 0.003 wt.
If it is less than 0.1%, the chemical conversion treatability is poor, while its content is 0.
If it exceeds 020 wt.%, The corrosion resistance is extremely deteriorated. Therefore,
The S content should be limited to the range of 0.003 to 0.020 wt.%.

【0030】(6)sol.Al:sol.Alは、溶鋼の脱酸
元素として有効である。しかしながら、sol.Al含有量
が0.01 wt.% 以下ではではその効果が小さく、一
方、その含有量が0.1wt.% 超では鋼板表面にアルミ
ナ系酸化物が多量に生成し、また、酸化膜が厚くなり過
ぎて化成処理性を悪化させる。従って、sol.Al含有量
を0.01〜0.1 wt.% の範囲内に限定すべきであ
る。
(6) sol.Al: sol.Al is effective as a deoxidizing element for molten steel. However, if the sol.Al content is less than 0.01 wt.%, The effect is small, while if the content exceeds 0.1 wt.%, A large amount of alumina-based oxide is formed on the surface of the steel sheet, and The oxide film becomes too thick and chemical conversion treatability deteriorates. Therefore, the sol.Al content should be limited to the range of 0.01 to 0.1 wt.%.

【0031】(7)Cu:Cuは、ミクロセルのアノ−
ド部から溶出し、カソ−ド点である硫化物近傍に析出す
ることにより、カソ−ド点の活性化を低下させる。従っ
て、鋼板の耐食性を高めるためには有効な元素である
が、化成処理性には悪影響を与える。Cu含有量が0.
05 wt.% 未満では有効な耐食性を得ることができな
い。一方、その含有量が0.5 wt.% 超では、耐食性向
上効果が飽和するだけでなく化成処理性の著しい劣化を
招く。従って、Cu含有量を0.05〜0.5 wt.% の
範囲内に限定すべきである。
(7) Cu: Cu is a micro cell anode.
The elution from the cathode portion and the precipitation near the sulfide, which is the cathode point, reduce the activation of the cathode point. Therefore, although it is an effective element for increasing the corrosion resistance of the steel sheet, it adversely affects the chemical conversion treatability. Cu content is 0.
If it is less than 05 wt.%, Effective corrosion resistance cannot be obtained. On the other hand, if the content exceeds 0.5 wt.%, Not only the effect of improving the corrosion resistance is saturated, but also the chemical conversion treatability is significantly deteriorated. Therefore, the Cu content should be limited to the range of 0.05 to 0.5 wt.%.

【0032】(8)Cr:Crは、耐食性向上には有効
な元素であるが、融雪塩の散布等、塩素イオンが存在す
る環境においては、孔食の問題が発生する。また、Cu
と同様の理由により化成処理性を劣化させる。そして、
必ずしもCrを添加しなくても耐食性を確保することが
できる。一方、Cr含有量が0.10 wt.% 超では、上
述した各問題が発生する。従って、Cr含有量を0.1
0 wt.% 以下(無添加の場合を含む)に限定すべきであ
る。
(8) Cr: Cr is an element effective for improving the corrosion resistance, but in the environment where chlorine ions are present such as spraying of snow melting salt, the problem of pitting corrosion occurs. Also, Cu
For the same reason as above, the chemical conversion treatability is deteriorated. And
Corrosion resistance can be ensured without necessarily adding Cr. On the other hand, if the Cr content exceeds 0.10 wt.%, The above-mentioned problems will occur. Therefore, the Cr content is 0.1
It should be limited to 0 wt.% Or less (including no addition).

【0033】(9)B:Bは、粒界からの腐食を抑制す
るのに有効な元素である。しかしながら、その含有量が
0.0002 wt.% 未満では上記効果を発揮しない。一
方、B含有量が0.0020 wt.% 超では、熱間変形抵
抗を上昇させ、また、過剰な添加は製造コストを増加さ
せ実用上問題となる。従って、B含有量を0.0002
〜0.0020 wt.% の範囲内に限定すべきである。
(9) B: B is an element effective in suppressing corrosion from the grain boundary. However, if the content is less than 0.0002 wt.%, The above effect is not exhibited. On the other hand, if the B content exceeds 0.0020 wt.%, The hot deformation resistance increases, and excessive addition increases the manufacturing cost and poses a practical problem. Therefore, the B content is 0.0002.
It should be limited to the range of 0.0020 wt.%.

【0034】(10)S、PおよびCuの間の関係:前
述したように、SおよびPは適正量の添加によって化成
処理性を向上させ、過剰の添加によって耐食性を劣化さ
せるのに対して、Cuはこれらとは逆に、適正量の添加
によって耐食性を向上させ、過剰の添加によって化成処
理性を劣化させる。ところで、良好な耐食性を得るため
には、前述したように、Cu含有量とS含有量との間
に、原子量比でCu含有量がS含有量の2倍以上含有さ
れていることが必要である。一方、優れた化成処理性を
備えた鋼板を得るためには、前述したように、前記図1
からわかるように、{24×S(wt.%)/32 +2 ×P(wt.%)
/31 }−Cu(wt.%)/63 ≧0の関係を満たすことが必要
である。従って、良好な耐食性と良好な化成処理性とが
両立する酸化皮膜を有する鋼板を得るためには、S、P
およびCu含有量が、下記(1)式: 24×S(wt.%)/32 +2 ×P(wt.%)/31 ≧Cu(wt.%)/63 ≧2 ×S(wt.%)/32 ---------------(1) を満たすべきである。
(10) Relationship between S, P and Cu: As described above, S and P improve chemical conversion treatability by adding an appropriate amount and deteriorate corrosion resistance by adding excessively, Contrary to these, Cu improves corrosion resistance by adding an appropriate amount, and deteriorates chemical conversion treatment property by adding excessively. By the way, in order to obtain good corrosion resistance, as described above, it is necessary that the Cu content is at least twice the S content in terms of atomic weight ratio between the Cu content and the S content. is there. On the other hand, in order to obtain a steel sheet having excellent chemical conversion treatability, as described above,
As can be seen from {24 x S (wt.%) / 32 + 2 x P (wt.%)
It is necessary to satisfy the relationship of /31}-Cu(wt.%)/63≧0. Therefore, in order to obtain a steel sheet having an oxide film in which good corrosion resistance and good chemical conversion treatment are compatible, S, P
And the Cu content is the following formula (1): 24 × S (wt.%) / 32 + 2 × P (wt.%) / 31 ≧ Cu (wt.%) / 63 ≧ 2 × S (wt.%) / 32 --------------- (1) should be satisfied.

【0035】(11)その他の元素:鋼片および鋼板の
表面性状の改善、並びに、加工性の確保等を目的として
Niを添加してもその含有量が1 wt.% 以下であれば、
また、これら目的のためにTi、Nb、Zr、V、Hf
およびTa等のうち少なくとも1種を添加してもこれら
元素の各々の含有量が0.1 wt.% 以下であれば、この
発明の鋼板が有する良好な化成処理性および耐食性に対
して何ら影響を及ぼさない。その他、製鋼工程における
スクラップ投入等によって混入する不純物成分、例え
ば、SnおよびPb等の元素がこの発明の鋼板に微量含
有される場合でも、上記良好な化成処理性および耐食性
に対して何ら影響を及ぼさない。従って、これらの元素
が上述した含有量の範囲内で含有される場合もこの発明
の範囲内のものである。
(11) Other elements: Even if Ni is added for the purpose of improving the surface properties of steel slabs and steel sheets and ensuring workability, if the content is 1 wt.% Or less,
For these purposes, Ti, Nb, Zr, V, Hf
And at least one of Ta and the like, if the content of each of these elements is 0.1 wt.% Or less, there is no effect on the good chemical conversion treatment and corrosion resistance of the steel sheet of the present invention. Does not reach. In addition, even when a small amount of impurities such as Sn and Pb mixed in by the scrap input in the steelmaking process is contained in the steel sheet of the present invention, it does not have any influence on the good chemical conversion treatability and corrosion resistance. Absent. Therefore, the case where these elements are contained within the above range of content is also within the scope of the present invention.

【0036】更に、この発明の鋼板は、鋳鋼板、熱間圧
延鋼板および冷延鋼板のいずれであってもよい。
Further, the steel sheet of the present invention may be any of cast steel sheet, hot rolled steel sheet and cold rolled steel sheet.

【0037】次に、この発明の耐食性冷延鋼板の製造方
法の限定理由を説明する。上述した本発明の範囲内の化
学成分組成(後述する表1中の本発明鋼No.16と同じ
化学成分組成)を有するスラブを調製し、スラブの加熱
温度、熱間圧延条件および焼鈍条件の違いが鋼板に及ぼ
す影響を調査した結果、下記知見が得られた。即ち、常
法で冷延鋼板を製造する場合、熱間圧延後に鋼板表面の
酸化スケ−ルを酸洗して除去するので、これ以前の工程
が鋼板の表面性状に及ぼす影響は小さい。これに対し
て、その後の工程における製造条件、特に、焼鈍条件は
鋼板表面への元素の濃化および鋼板表面の酸化皮膜の厚
さ等に大きな影響を及ぼす。即ち、焼鈍において鋼板が
500℃以上の温度にあっては、鋼板中のSi等の化成
処理性を劣化させる元素が鋼板の表面に偏析し易くな
る。従って、焼鈍においては、鋼板が500℃以上の高
温にある時間を短くした方が上記偏析を防止するために
は有利であり、この時間が10分以下であると特に望ま
しい表面酸化皮膜が得られる。
Next, the reasons for limiting the method of manufacturing the corrosion-resistant cold-rolled steel sheet according to the present invention will be described. A slab having the above-described chemical composition within the scope of the present invention (the same chemical composition as the steel No. 16 of the present invention in Table 1 described later) was prepared, and the slab heating temperature, hot rolling condition and annealing condition As a result of investigating the effect of the difference on the steel sheet, the following findings were obtained. That is, when a cold-rolled steel sheet is manufactured by a conventional method, the oxide scale on the surface of the steel sheet is pickled and removed after hot rolling, so that the influence of the previous steps on the surface properties of the steel sheet is small. On the other hand, the manufacturing conditions in the subsequent steps, especially the annealing conditions, have a great influence on the concentration of elements on the steel sheet surface and the thickness of the oxide film on the steel sheet surface. That is, when the steel sheet is at a temperature of 500 ° C. or higher during annealing, elements such as Si in the steel sheet that deteriorate the chemical conversion treatment tend to segregate on the surface of the steel sheet. Therefore, in annealing, it is advantageous to shorten the time for which the steel sheet is at a high temperature of 500 ° C. or higher in order to prevent the segregation, and if this time is 10 minutes or less, a particularly desirable surface oxide film is obtained. .

【0038】図3は、上述した冷延鋼板の焼鈍条件検討
の試験から得られた、鋼板が500℃以上の温度にあっ
た時間が鋼板の化成処理性に及ぼす影響を示すグラフで
ある。同図から明らかなように、500℃以上の時間が
10分以下において特に優れた化成処理性を示すことが
わかる。従って、一層化成処理性に優れた耐食性鋼板を
製造するためには、冷延鋼板の焼鈍において500℃以
上の温度にある時間を10分以下に限定すべきである。
FIG. 3 is a graph showing the influence of the time during which the steel sheet was at a temperature of 500 ° C. or higher on the chemical conversion treatability of the steel sheet, which was obtained from the above-described test for examining the annealing conditions of the cold-rolled steel sheet. As is clear from the figure, particularly excellent chemical conversion treatability is exhibited when the temperature is 500 ° C. or higher for 10 minutes or less. Therefore, in order to manufacture a corrosion-resistant steel sheet having further excellent chemical conversion treatability, the time at which the temperature of 500 ° C. or higher in the annealing of the cold rolled steel sheet should be limited to 10 minutes or less.

【0039】なお、酸洗鋼板を得るまでの製造工程であ
る、高炉法および溶融還元法等の製銑工程、電気炉法お
よび転炉法等の製鋼工程、連続鋳造法、造塊法およびス
トリップキャステイング法等の鋳造または鋳鋼板工程、
熱間圧延工程、並びに、酸洗工程の各々の工程における
製造条件は、通常の操業条件の範囲内であれば、この発
明の鋼板が有すべき良好な化成処理性および耐食性に対
して何ら影響を及ぼさない。また、この発明の鋼板は、
メッキ等の表面処理原板としても使用することができ
る。
It is to be noted that, in the manufacturing steps until obtaining the pickled steel sheet, the iron making steps such as the blast furnace method and the smelting reduction method, the steel making steps such as the electric furnace method and the converter method, the continuous casting method, the ingot making method and the strip. Casting or cast steel plate process such as casting method,
The hot rolling step, and the production conditions in each step of the pickling step are within the range of normal operating conditions, and have no influence on the good chemical conversion treatability and corrosion resistance that the steel sheet of the present invention should have. Does not reach. Further, the steel sheet of the present invention,
It can also be used as an original plate for surface treatment such as plating.

【0040】[0040]

【実施例】次に、この発明を実施例により更に詳細に説
明する。表1に示す本発明の範囲内の化学成分組成を有
する本発明鋼No.1〜16、および、本発明の範囲外の
化学成分組成を有する比較用鋼No.1〜14の鋼を調製
した。
Next, the present invention will be described in more detail with reference to Examples. Steels No. 1 to 16 of the present invention having chemical composition within the range of the present invention shown in Table 1 and steels of comparative steel No. 1 to 14 having chemical composition outside the range of the present invention were prepared. .

【0041】[0041]

【表1】 [Table 1]

【0042】次いで、前記各鋼に常法の熱間圧延を施
し、熱延鋼板を調製した。このようにして得られた熱延
鋼板の各々に対して、酸洗および冷間圧延を常法により
施して冷延鋼板を調製し、次いで、このようにして得ら
れた各々の冷延鋼板に820℃の温度で120秒間の焼
鈍を施した後、所定の調質圧延を施して板厚0.8mm
の冷延焼鈍鋼板を調製した。このようにして得られた各
冷延焼鈍鋼板の化学成分組成を分析試験した結果、いず
れの冷延焼鈍鋼板についても、表1に示した各鋼片の化
学成分組成に一致していることを確認した。
Then, each of the above steels was hot-rolled by a conventional method to prepare hot-rolled steel sheets. For each of the hot-rolled steel sheets thus obtained, a cold-rolled steel sheet was prepared by subjecting the steel to pickling and cold rolling by a conventional method, and then, to each of the cold-rolled steel sheets thus obtained, After annealing for 120 seconds at a temperature of 820 ° C, temper tempering is applied to obtain a plate thickness of 0.8 mm.
The cold-rolled annealed steel sheet of was prepared. As a result of an analytical test of the chemical composition of each cold-rolled annealed steel sheet thus obtained, it was confirmed that all the cold-rolled annealed steel sheets were in agreement with the chemical composition of each of the steel pieces shown in Table 1. confirmed.

【0043】このようにして本発明の範囲内の化学成分
組成を有する、本発明鋼No.1〜16の鋼から本発明の
範囲内の製造条件によって得られた冷延焼鈍鋼板(以
下、「本発明供試体」No.1〜16という)、および、
本発明の範囲外の化学成分組成を有する、比較用鋼No.
1〜14の鋼から本発明の範囲内の製造条件によって得
られた冷延焼鈍鋼板(以下、「比較用供試体」No.1〜
14という)の各々の、各No.の供試体についての、鋼
板表面の酸化層の厚さの測定、鋼板ままおよび塗装後の
各々についての耐食性試験、並びに、化成処理性試験を
行なった。各試験方法および評価方法は次の通りであ
る。
Thus, the cold-rolled annealed steel sheet (hereinafter, referred to as "hereinafter referred to as" steel No. 1 to 16 of the present invention "having the chemical composition within the range of the present invention, obtained by the manufacturing conditions within the range of the present invention. The present invention specimen "No. 1 to 16", and
Comparative steel No. 3 having a chemical composition outside the scope of the present invention.
Cold rolled annealed steel sheets (hereinafter, referred to as “Comparative Specimen” No. 1
14), the thickness of the oxide layer on the surface of the steel sheet was measured, the corrosion resistance test was performed on the as-steel sheet and after coating, and the chemical conversion treatment test was performed. The test methods and evaluation methods are as follows.

【0044】酸化層の厚さ測定には、還元法を用いた。
この方法は、鋼板の表面酸化層を、4硼酸ナトリウムお
よび希塩酸からなるpH8.0に調整した水溶液中にお
いて、電流密度6.2mA/cm2 で電気化学的に還元
し、還元に要する時間から酸化層の厚さを測定するもの
である。
A reduction method was used to measure the thickness of the oxide layer.
In this method, the surface oxide layer of the steel sheet is electrochemically reduced at a current density of 6.2 mA / cm 2 in an aqueous solution of sodium tetraborate and dilute hydrochloric acid adjusted to pH 8.0, and oxidation is performed from the time required for the reduction. It is a measure of the layer thickness.

【0045】鋼板ままの耐食性の試験は、塩水散布大気
暴露試験方法によって行なった。この耐食性の評価は、
0.5%NaCl水溶液を1回/日、鋼板に噴霧し、3
0日後における腐食減量値をもって行なった。
The corrosion resistance of the as-steel plate was tested by the salt water spraying atmospheric exposure test method. The evaluation of this corrosion resistance is
Spray 0.5% NaCl aqueous solution onto the steel sheet once / day, and
The corrosion weight loss value after 0 days was used.

【0046】塗装後耐食性の試験は、屋外促進暴露試験
方法によって行なった。この耐食性の評価は、鋼板に
5.0 wt.% NaCl水溶液を2回/週、鋼板に噴霧
し、35週後におけるクロスカット部分に発生した最大
膨れ幅で評価した。
The post-painting corrosion resistance test was carried out by the outdoor accelerated exposure test method. The corrosion resistance was evaluated by spraying the steel sheet with a 5.0 wt.% NaCl aqueous solution twice / week and evaluating the maximum swollen width generated in the cross-cut portion after 35 weeks.

【0047】化成処理性の試験方法および評価方法は、
前述した方法により、前記(2)式に示したP比、およ
び、電子顕微鏡による化成処理皮膜の結晶組織の観察に
よって行なった。
The chemical conversion treatment test method and evaluation method are as follows:
According to the above-mentioned method, the P ratio shown in the above formula (2) and the crystal structure of the chemical conversion coating by an electron microscope were observed.

【0048】図4は、化成処理により形成された燐酸塩
皮膜の電子顕微鏡による結晶組織を示す。同図におい
て、全面が微細な燐酸塩皮膜で覆われた結晶組織を「特
に良好」なものとして◎印で、微細な燐酸塩皮膜で覆わ
れているが、やや結晶粒径が大きい結晶組織を「良好」
なものとして○印で、一部に粗大な燐酸塩結晶の皮膜が
存在する結晶組織を「やや不良」なものとして△印で、
そして、粗大な燐酸塩結晶の皮膜のみである結晶組織を
「不良」なものとして×印で表わした。なお、同図にお
いて、◎および○印はそれぞれ本発明供試体No.16お
よび6についての、そして、△および×印はそれぞれ比
較用供試体No.3および7についての結晶組織の例であ
る。
FIG. 4 shows an electron microscopic crystal structure of the phosphate film formed by the chemical conversion treatment. In the figure, a crystal structure whose entire surface is covered with a fine phosphate film is marked as "excellently good", and a crystal structure which is covered with a fine phosphate film but has a slightly large crystal grain size is shown. "Good"
A circle indicates that the crystal structure has a coarse phosphate crystal film partially present, and a circle indicates that the crystal structure is “somewhat poor”.
Then, the crystal structure, which is only a coarse phosphate crystal film, is represented by "X" as "poor". In the figure, ⊚ and ∘ are examples of the crystal structures of the samples of the present invention No. 16 and 6, and Δ and × are examples of the crystal structures of the comparative samples No. 3 and 7, respectively.

【0049】本発明供試体および比較用供試体の各々に
ついての上記試験結果、即ち、鋼板表面の酸化皮膜の厚
さ、並びに、耐食性および化成処理性の評価結果を、表
2に示した。表2から下記事項がわかる。
Table 2 shows the above-mentioned test results for each of the test specimen of the present invention and the test specimen for comparison, that is, the evaluation results of the thickness of the oxide film on the steel sheet surface and the corrosion resistance and the chemical conversion treatment property. The following items can be seen from Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】本発明供試体No.1〜16のすべてについ
て、腐食減量値が300g/m2 以下でしかも最大膨れ
幅が3.5mm以下であり、鋼板ままおよび塗装後のい
ずれの場合についても耐食性に優れており、更に、化成
処理皮膜の結晶組織が◎印または○印でしかもP比が9
0%以上であり、化成処理性にも優れていた。しかも、
これらの内、酸化皮膜の厚さが10〜100Åの範囲内
にある本発明供試体No.1、3〜5、7〜14および1
6のすべてについて、P比が94%以上でしかも化成処
理皮膜の結晶組織が特に良好(◎印)であり、化成処理
性に一層優れており、しかも、最大膨れ幅が3.0mm
以下であり、塗装後耐食性にも一層優れていた。
For all the samples No. 1 to 16 of the present invention, the corrosion weight loss value was 300 g / m 2 or less and the maximum bulge width was 3.5 mm or less, and the corrosion resistance was satisfied both in the as-steel plate and after coating. In addition, the crystal structure of the chemical conversion coating is ◎ or ○, and the P ratio is 9
It was 0% or more and was excellent in chemical conversion treatability. Moreover,
Among these, the sample No. 1, 3 to 5, 7 to 14 and 1 of the present invention in which the thickness of the oxide film is in the range of 10 to 100Å
For all of the 6 types, the P ratio was 94% or more, and the crystal structure of the chemical conversion treatment film was particularly good (marked with ⊚), the chemical conversion treatment was further excellent, and the maximum swelling width was 3.0 mm.
It was below, and the corrosion resistance after coating was further excellent.

【0052】これに対して、比較用供試体は化学成分組
成の各元素毎の含有量の内少なくとも1つについて本発
明の範囲外にあるか、または、化学成分組成の各元素毎
の含有量は本発明の範囲内にあるが、前記(1)を満た
さないために、耐食性および化成処理性の両方に優れた
鋼板は得られなかった。即ち、比較用供試体の試験結果
は下記の通りである。
On the other hand, in the comparative sample, at least one of the contents of each element of the chemical composition is outside the scope of the present invention, or the content of each element of the chemical composition is Is within the scope of the present invention, but since it does not satisfy the above (1), a steel sheet excellent in both corrosion resistance and chemical conversion treatability was not obtained. That is, the test results of the comparative specimen are as follows.

【0053】比較用供試体No.1は、C含有量のみが本
発明の範囲外に高いので、耐食性に劣っていた。比較用
供試体No.2は、Si含有量のみが本発明の範囲外に高
かったので、化成処理性に劣っていた。比較用供試体N
o.3は、Mn含有量のみが本発明の範囲外に高かったの
で、耐食性に劣っていた。比較用供試体No.4は、P含
有量のみが本発明の範囲外に高かったので、化成処理性
には良好であったが耐食性に劣っていた。比較用供試体
No.5は、S含有量のみが本発明の範囲外に高かったの
で、耐食性に劣っていた。
Comparative sample No. 1 was inferior in corrosion resistance because only the C content was outside the range of the present invention. Comparative sample No. 2 was inferior in chemical conversion treatability because only the Si content was high outside the range of the present invention. Comparative specimen N
O.3 was inferior in corrosion resistance because only Mn content was high outside the range of the present invention. Comparative sample No. 4 had a high P content only outside the range of the present invention, and therefore had good chemical conversion treatability but poor corrosion resistance. Comparative sample No. 5 was inferior in corrosion resistance because only the S content was high outside the range of the present invention.

【0054】比較用供試体No.6は、Mn含有量のみが
本発明の範囲外に低かったので、化成処理性に優れず、
また、表面酸化皮膜が薄過ぎたために耐食性に劣ってい
た。比較用供試体No.7は、Cu含有量のみが本発明の
範囲外に高かったので、耐食性には優れていたが、化成
処理性に劣っていた。比較用供試体No.8は、sol.Al
含有量のみが、本発明の範囲外に高かったので、化成処
理性に劣っていた。比較用供試体No.9は、Cu含有量
のみが、本発明の範囲外に低かったので、化成処理性に
は優れていたが、耐食性に劣っていた。比較用供試体N
o.10は、B含有量のみが本発明の範囲外に低かったの
で、粒界腐食の進行により耐食性に劣っていた。比較用
供試体No.11は、S含有量のみが、本発明の範囲外に
低かったので、化成処理性に劣っていた。
Since the comparative sample No. 6 had a low Mn content only outside the range of the present invention, it was not excellent in chemical conversion treatability.
In addition, the surface oxide film was too thin, resulting in poor corrosion resistance. Comparative sample No. 7 was excellent in corrosion resistance but inferior in chemical conversion treatability because only the Cu content was high outside the range of the present invention. Comparative sample No. 8 is sol. Al
Since only the content was high outside the range of the present invention, the chemical conversion treatability was poor. Comparative sample No. 9 was excellent in chemical conversion treatability, but poor in corrosion resistance, since only the Cu content was low outside the range of the present invention. Comparative specimen N
In o.10, only the B content was low outside the range of the present invention, so the corrosion resistance was poor due to the progress of intergranular corrosion. Comparative sample No. 11 was inferior in chemical conversion treatability because only the S content was low outside the range of the present invention.

【0055】比較用供試体No.12および13は、各化
学成分組成毎の含有量は本発明の範囲内にあったが、前
記(1)式の右側の関係を満たさなかったので、耐食性
に劣っていた。比較用供試体No.14は、各化学成分組
成毎の含有量は本発明の範囲内にあったが、前記(1)
式の左側の関係を満たさなかったので、化成処理性に劣
っていた。
The comparative specimens Nos. 12 and 13 were within the range of the present invention for each chemical component composition, but did not satisfy the relationship on the right side of the above formula (1), and therefore, had no corrosion resistance. It was inferior. In the comparative sample No. 14, the content of each chemical component composition was within the range of the present invention, but the above (1)
Since the relationship on the left side of the formula was not satisfied, the chemical conversion treatability was poor.

【0056】次に、本発明の範囲内の化学成分組成を有
する本発明鋼No.16の鋼片に常法の熱間圧延を施し、
熱延鋼板を調製した。このようにして得られた熱延鋼板
に対して、酸洗および冷間圧延を常法により施して冷延
鋼板を調製し、次いで、このようにして得られた冷延鋼
板に、所定の8種の条件で焼鈍を施した後、所定の調質
圧延を施して板厚0.8mmの冷延焼鈍鋼板を調製し
た。このようにして調製された冷延焼鈍鋼板(以下、
「本発明供試体」No.30−A〜30−Hという)の各
々の供試体についての、鋼板表面の酸化層の厚さの測
定、鋼板ままおよび塗装後の各々についての耐食性試
験、並びに、化成処理性試験を行なった。各試験方法お
よび評価方法は前述したものと同じである。
Next, the billet of the steel No. 16 of the present invention having a chemical composition within the range of the present invention was subjected to a conventional hot rolling,
A hot rolled steel sheet was prepared. The hot-rolled steel sheet thus obtained is subjected to pickling and cold rolling by a conventional method to prepare a cold-rolled steel sheet, and then the cold-rolled steel sheet thus obtained is subjected to a predetermined 8 After annealing under various conditions, a predetermined temper rolling was performed to prepare a cold rolled annealed steel sheet having a sheet thickness of 0.8 mm. The cold-rolled annealed steel sheet thus prepared (hereinafter,
"Invention specimen" No. 30-A to 30-H), measurement of the thickness of the oxide layer on the surface of the steel sheet, corrosion resistance test for each of the steel sheet and after coating, and A chemical conversion treatment test was conducted. Each test method and evaluation method are the same as those described above.

【0057】表3に、本発明供試体No.30−A〜30
−Hについての上記焼鈍条件および試験結果を示した。
本発明供試体No.30−C、30−E、30−G、およ
び30−Hにあっては、焼鈍で500℃以上の温度にあ
った時間が10分以下であり、その他の本発明供試体に
あっては、上記時間が10分超であった。
Table 3 shows the samples No. 30-A to 30 of the present invention.
The above annealing conditions and test results for -H are shown.
In the present invention specimens No. 30-C, 30-E, 30-G, and 30-H, the time of annealing at a temperature of 500 ° C. or higher is 10 minutes or less, and the other invention specimens In the sample, the above time was more than 10 minutes.

【0058】[0058]

【表3】 [Table 3]

【0059】表3から、下記事項がわかる。即ち、本発
明供試体No.30−A〜30−Hはすべてについて、耐
食性および化成処理性の両方に優れていた。即ち、化学
成分組成の各元素毎の含有量が本発明の範囲内にあり、
かつ、S、PおよびCu含有量が、前記(1)式を満た
す場合には、常法による製造方法によった場合および本
発明の範囲内の製造方法によった場合のいずれでも、耐
食性および化成処理性の両方に優れた鋼板を得ることが
でき、この内、本発明の範囲内の製造方法により、一層
すぐれた耐食性および化成処理性を有する鋼板を製造す
ることができた。
The following matters can be seen from Table 3. That is, all the samples No. 30-A to 30-H of the present invention were excellent in both corrosion resistance and chemical conversion treatability. That is, the content of each element of the chemical composition is within the scope of the present invention,
In addition, when the S, P and Cu contents satisfy the above formula (1), the corrosion resistance and the corrosion resistance can be obtained both by the conventional manufacturing method and by the manufacturing method within the scope of the present invention. It was possible to obtain a steel sheet having both excellent chemical conversion treatability, and among these, by the production method within the scope of the present invention, it was possible to produce a steel sheet having further superior corrosion resistance and chemical conversion treatability.

【0060】[0060]

【発明の効果】以上述べたように、この発明によれば、
特別な設備を増設せずに化成処理性に優れた耐食性鋼板
およびその冷延鋼板の製造方法を提供することができ
る。従って、特に、自動車、電気機器および建材製品
等、耐食性が要求される製品に使用される場合、鋼板の
まま用いられても好適であるし、あるいはまた、防食の
ため塗装して用いられても好適であるという、化成処理
性に優れた耐食性鋼板およびその冷延鋼板の製造方法を
提供することができ、工業上極めて有用な効果がもたら
される。
As described above, according to the present invention,
It is possible to provide a corrosion-resistant steel sheet excellent in chemical conversion treatability and a method for manufacturing a cold-rolled steel sheet thereof without adding special equipment. Therefore, in particular, when it is used for products requiring corrosion resistance such as automobiles, electric equipment and building material products, it is suitable to be used as it is as a steel plate, or it may be used by coating for corrosion protection. It is possible to provide a corrosion-resistant steel sheet having excellent chemical conversion treatability and a method for manufacturing the cold-rolled steel sheet, which is suitable, and brings an extremely useful effect industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼板のS、PおよびCu含有量と化成処理性と
の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between S, P and Cu contents of a steel sheet and chemical conversion treatability.

【図2】耐食性鋼板の表面の酸化皮膜の厚さと化成処理
性および耐食性との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the thickness of an oxide film on the surface of a corrosion-resistant steel sheet and chemical conversion treatability and corrosion resistance.

【図3】冷延鋼板の焼鈍において、鋼板が500℃以上
の温度にあった時間が鋼板の化成処理性に及ぼす影響を
示すグラフである。
FIG. 3 is a graph showing the influence of the time during which the steel sheet was at a temperature of 500 ° C. or higher on the chemical conversion treatability of the steel sheet during annealing of the cold rolled steel sheet.

【図4】化成処理により形成された燐酸塩皮膜の電子顕
微鏡による結晶組織を示す。
FIG. 4 shows an electron microscopic crystal structure of a phosphate film formed by chemical conversion treatment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素(C) :0.0003〜0.005 w
t.% 、 シリコン(Si) :0.1 wt.% 以下、 マンガン(Mn) :0.1 〜2.0 wt.% 、 燐(P) :0.002 〜0.03 wt.% 、 硫黄(S) :0.003 〜0.020 wt.% 、 酸可溶性アルミニウム(sol.Al):0.01〜0.1 wt.%
、 銅(Cu) :0.05〜0.5 wt.% 、 クロム(Cr) :0.10 wt.% 以下(無添加の場合を
含む)、および、 ボロン(B) :0.0002〜0.0020 wt.%を含有し、
かつ、硫黄(S)、燐(P)および銅(Cu)含有量
が、下記(1)式: 24×S(wt.%)/32 +2 ×P(wt.%)/31 ≧Cu(wt.%)/63 ≧2 ×S(wt.%)/32 ---------------(1) を満たす化学成分組成を有することを特徴とする、化成
処理性に優れた耐食性鋼板。
1. Carbon (C): 0.0003 to 0.005 w
t.%, silicon (Si): 0.1 wt.% or less, manganese (Mn): 0.1 to 2.0 wt.%, phosphorus (P): 0.002 to 0.03 wt.%, sulfur (S): 0.003 to 0.020 wt.% , Acid soluble aluminum (sol.Al): 0.01-0.1 wt.%
, Copper (Cu): 0.05 to 0.5 wt.%, Chromium (Cr): 0.10 wt.% Or less (including no addition), and boron (B): 0.0002 to 0.0020 wt.%,
In addition, the content of sulfur (S), phosphorus (P) and copper (Cu) is expressed by the following formula (1): 24 × S (wt.%) / 32 + 2 × P (wt.%) / 31 ≧ Cu (wt) .%) / 63 ≧ 2 × S (wt.%) / 32 --------------- Chemical conversion composition characterized by having a chemical composition satisfying (1) Excellent corrosion resistance steel plate.
【請求項2】 請求項1記載の化学成分組成を有するこ
とに付加して、更に、前記鋼板の少なくとも一方の表面
に、厚さ10〜100 Åの酸化皮膜を有することを特徴とす
る、化成処理性に優れた耐食性鋼板。
2. In addition to having the chemical composition as set forth in claim 1, further comprising an oxide film having a thickness of 10 to 100 Å on at least one surface of the steel sheet. Corrosion resistant steel plate with excellent processability.
【請求項3】 請求項1記載の化学成分組成を有する鋼
を冷間圧延して冷延鋼板を調製し、そして、次いで、前
記冷延鋼板に焼鈍を施して耐食性鋼板を製造する方法で
あって、前記焼鈍は、500 ℃以上での温度が10分以下で
あることを特徴とする、化成処理性に優れた耐食性冷延
鋼板の製造方法。
3. A method for producing a corrosion-resistant steel sheet by cold rolling steel having the chemical composition according to claim 1 to prepare a cold-rolled steel sheet, and then annealing the cold-rolled steel sheet. In the method for producing a corrosion-resistant cold-rolled steel sheet having excellent chemical conversion treatability, the annealing is performed at a temperature of 500 ° C. or higher for 10 minutes or less.
JP05040895A 1995-02-14 1995-02-14 Corrosion-resistant steel sheet excellent in chemical conversion treatment and method for producing the cold-rolled steel sheet Expired - Fee Related JP3191603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05040895A JP3191603B2 (en) 1995-02-14 1995-02-14 Corrosion-resistant steel sheet excellent in chemical conversion treatment and method for producing the cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05040895A JP3191603B2 (en) 1995-02-14 1995-02-14 Corrosion-resistant steel sheet excellent in chemical conversion treatment and method for producing the cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH08225888A true JPH08225888A (en) 1996-09-03
JP3191603B2 JP3191603B2 (en) 2001-07-23

Family

ID=12858047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05040895A Expired - Fee Related JP3191603B2 (en) 1995-02-14 1995-02-14 Corrosion-resistant steel sheet excellent in chemical conversion treatment and method for producing the cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3191603B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066093A1 (en) * 1998-06-17 1999-12-23 Kawasaki Steel Corporation Weatherable steel material
WO2000061829A1 (en) * 1999-04-08 2000-10-19 Kawasaki Steel Corporation Atmospheric corrosion resistant steel product
US6699338B2 (en) 1999-04-08 2004-03-02 Jfe Steel Corporation Method of manufacturing corrosion resistant steel materials
JP2008069445A (en) * 2006-08-18 2008-03-27 Nippon Steel Corp High tensile strength steel sheet excellent in chemical convertibility
JP2008121045A (en) * 2006-11-09 2008-05-29 Nippon Steel Corp High-tensile strength steel sheet having excellent chemical convertibility
WO2022168167A1 (en) * 2021-02-02 2022-08-11 日本製鉄株式会社 Thin steel sheet
CN116083987A (en) * 2022-11-25 2023-05-09 盐城吉瓦新材料科技有限公司 Electroplating diamond wire with protective layer and preparation process thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066093A1 (en) * 1998-06-17 1999-12-23 Kawasaki Steel Corporation Weatherable steel material
AU749066B2 (en) * 1998-06-17 2002-06-20 Kawasaki Steel Corporation Weatherable steel material
KR100501781B1 (en) * 1998-06-17 2005-07-18 제이에프이 스틸 가부시키가이샤 Weatherable steel
WO2000061829A1 (en) * 1999-04-08 2000-10-19 Kawasaki Steel Corporation Atmospheric corrosion resistant steel product
EP1094126A1 (en) * 1999-04-08 2001-04-25 Kawasaki Steel Corporation Atmospheric corrosion resistant steel product
EP1094126A4 (en) * 1999-04-08 2003-03-05 Kawasaki Steel Co Atmospheric corrosion resistant steel product
US6699338B2 (en) 1999-04-08 2004-03-02 Jfe Steel Corporation Method of manufacturing corrosion resistant steel materials
JP2008069445A (en) * 2006-08-18 2008-03-27 Nippon Steel Corp High tensile strength steel sheet excellent in chemical convertibility
JP2008121045A (en) * 2006-11-09 2008-05-29 Nippon Steel Corp High-tensile strength steel sheet having excellent chemical convertibility
WO2022168167A1 (en) * 2021-02-02 2022-08-11 日本製鉄株式会社 Thin steel sheet
CN116083987A (en) * 2022-11-25 2023-05-09 盐城吉瓦新材料科技有限公司 Electroplating diamond wire with protective layer and preparation process thereof

Also Published As

Publication number Publication date
JP3191603B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
EP3045558A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
EP3045559A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
JP6855678B2 (en) Steel sheet manufacturing method
JP2010047808A (en) High-strength cold-rolled steel sheet and method for producing the same
KR101538240B1 (en) High strength steel sheet and method for manufacturing the same
EP2821515B1 (en) Production method for a si-containing high strength cold rolled steel sheet
WO2019021695A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
JP3191603B2 (en) Corrosion-resistant steel sheet excellent in chemical conversion treatment and method for producing the cold-rolled steel sheet
CN112996937B (en) Cold-rolled steel sheet for zirconium-based chemical conversion treatment and method for producing same, and zirconium-based chemical conversion treated steel sheet and method for producing same
CN111954727B (en) Cold-rolled steel sheet, method for producing same, and cold-rolled steel sheet for annealing
WO2022168167A1 (en) Thin steel sheet
EP3115482B1 (en) Cold-rolled steel sheet, manufacturing method therefor, and car part
RU2768905C1 (en) Method of producing electrotechnical steel sheet with oriented grain structure
US20240043955A1 (en) Steel sheet with excellent phosphatability and manufacturing method therefor
JP3362943B2 (en) Steel plate with excellent perforated corrosion resistance
JP2532180B2 (en) Surface-treated steel sheet with excellent formability
JP2900748B2 (en) High corrosion resistance steel with excellent weldability
EP4119695A1 (en) Plated steel plate for hot stamping
JP3440079B2 (en) Surface-treated steel sheet for deep drawing with excellent perforation resistance
JP2020125535A (en) Cold-rolled steel sheet and method for producing the same
JPS62243738A (en) Steel material having high corrosion resistance
JP2002180182A (en) Steel having excellent pitting resistance
JPH08209301A (en) Steel sheet for deep drawing, excellent in pin holing resistance, and surface treated steel sheet
JPH08291368A (en) Cold rolled steel sheet for porcelain enamelling and its production
JPH0565676A (en) Surface treated steel sheet excellent in formability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090525

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110525

LAPS Cancellation because of no payment of annual fees