JPH08225674A - Flame-retardant olefinic resin composition for forming - Google Patents

Flame-retardant olefinic resin composition for forming

Info

Publication number
JPH08225674A
JPH08225674A JP3228795A JP3228795A JPH08225674A JP H08225674 A JPH08225674 A JP H08225674A JP 3228795 A JP3228795 A JP 3228795A JP 3228795 A JP3228795 A JP 3228795A JP H08225674 A JPH08225674 A JP H08225674A
Authority
JP
Japan
Prior art keywords
foaming
resin composition
olefin resin
flame
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3228795A
Other languages
Japanese (ja)
Inventor
Masaki Tono
正樹 戸野
Kenji Iuchi
謙治 居内
Kazuyoshi Iwane
和良 岩根
Hitoshi Shirato
斉 白土
Eiji Okada
英治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3228795A priority Critical patent/JPH08225674A/en
Publication of JPH08225674A publication Critical patent/JPH08225674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: To obtain a non-halogenic flame-retardant olefinic resin composition for foaming by incorporating a mixture of specific graphite and ammonium polyphosphate in two specific non-crosslinked olefinic resins for foaming. CONSTITUTION: This flame-retardant olefinic resin composition for foaming comprises 100 pts.wt. of a foaming olefinic resin, composed of (a) 80-99wt.% of a non-crosslinked olefinic resin having a weight average molecular weight M1 and 1-20wt.% of a non-crosslinked olefinic resin having a weight average molecular weight M2 , (which satisfies at lest either of the following two conditions (i) M1 =50,000 to 500,000, M2 <=7,000,000, M2 /M1 =5 to 100, and (ii) M1 =50,000 to 500,000, M2 <=7,000,000, M2 -M1 >=300,000) and 5 to 100 pts.wt. of a mixture of neutralized heat-expandable graphite and ammonium polyphosphate. The heat-expandable graphite is, for example, of a graphite interlaminar compound formed by treating a powder of natural scaly graphite or pyrolytic graphite with an inorganic acid and a strong oxidizing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発泡用難燃性オレフィ
ン系樹脂組成物に関する。
FIELD OF THE INVENTION The present invention relates to a flame-retardant olefin resin composition for foaming.

【0002】[0002]

【従来の技術】ポリエチレンやポリプロピレン等のオレ
フィン系樹脂は、安価で物理的性質や化学的性質に優
れ、この樹脂を比較的高倍率に発泡させた発泡体は、断
熱材、緩衝材、防音材等に好適に使用されている。この
ようなオレフィン系樹脂発泡体は、一般にオレフィン系
樹脂に、発泡剤としてジクロロテトラフルオロエタン等
の低沸点有機溶媒、アゾジカルボンアミド等の熱分解型
化合物又は炭酸ガス等の不活性気体を含有させ加熱する
ことにより樹脂を溶融すると共に、発泡剤のガスにより
該樹脂を発泡することにより得られる。
2. Description of the Related Art Olefin resins such as polyethylene and polypropylene are inexpensive and have excellent physical and chemical properties. Foams obtained by expanding this resin at a relatively high ratio are heat insulating materials, cushioning materials, and soundproofing materials. It is preferably used for Such an olefin-based resin foam is generally obtained by allowing an olefin-based resin to contain a low boiling point organic solvent such as dichlorotetrafluoroethane as a foaming agent, a pyrolytic compound such as azodicarbonamide, or an inert gas such as carbon dioxide. It is obtained by melting the resin by heating and foaming the resin with the gas of the foaming agent.

【0003】しかしながら、オレフィン系樹脂は結晶性
の樹脂で、これを融点以上に加熱すると急激な粘弾性の
低下が起こるが、発泡に適する粘弾性を示す温度範囲が
狭いため、いずれの発泡剤を用いる場合でも厳しい温度
管理がなければ、均一かつ微細な気泡を有し、高倍率
(例えば10〜40倍)の安定したオレフィン系樹脂発
泡体を得ることは難しい。そこで、オレフィン系樹脂か
ら、均一かつ微細な気泡を有し、高倍率の安定した発泡
体を比較的容易に得るためには、通常、予め樹脂を有機
過酸化物や電離性放射線によって架橋させ、発泡に適し
た粘弾性を示す温度範囲を広げて発泡させる方法が採ら
れている。
However, an olefin resin is a crystalline resin, and when it is heated above its melting point, a rapid decrease in viscoelasticity occurs. However, since the temperature range showing viscoelasticity suitable for foaming is narrow, any foaming agent should be used. Even if it is used, it is difficult to obtain a stable olefin-based resin foam having uniform and fine bubbles and a high magnification (for example, 10 to 40 times) without strict temperature control. Therefore, in order to relatively easily obtain a foam having uniform and fine bubbles from an olefin resin and having a high magnification and stability, the resin is usually preliminarily crosslinked with an organic peroxide or ionizing radiation, A method of expanding the temperature range that exhibits viscoelasticity suitable for foaming is used.

【0004】ところが、オレフィン系樹脂に上述のよう
な方法で架橋を施すと、その分だけ発泡体の製造コスト
の上昇を招く上に、得られる発泡体の樹脂が架橋してい
るため、完全に加熱溶融させることが困難で、使用済み
のオレフィン系樹脂発泡体を加熱溶融させて再生樹脂と
して使用することはできなかった。
However, when the olefin resin is crosslinked by the above-mentioned method, the production cost of the foam is increased correspondingly, and the resin of the obtained foam is crosslinked, so that the resin is completely crosslinked. It was difficult to heat and melt, and it was not possible to heat and melt a used olefin resin foam and use it as a recycled resin.

【0005】また、本来易燃性であるオレフィン系樹脂
を発泡させた発泡体の用途拡大に伴い、難燃材料として
の性能が要求され、各種の方法で難燃化処理が施されて
いる。オレフィン系樹脂を難燃化する方法としては、一
般的にハロゲン含有化合物を添加する方法が用いられて
いる。ハロゲン含有化合物は確かに高度の難燃性を付与
でき、成形加工性の低下や成形品の機械的強度の低下が
比較的少ないという利点がある反面、成形加工時や燃焼
時に多量の煙を発生することがあり、特別に機器の腐食
を防止するための設備が必要であった。特に近年、ノン
ハロゲンによる難燃性が強く要求されており、とりわ
け、建築材料等に使用するには高度の難燃性付与が必要
であるが、ハロゲン含有化合物を使用せずにハロゲン並
の難燃性を得ることは難しいのが現状である。
[0005] Further, with the expansion of applications of foams obtained by foaming an olefin resin which is originally flammable, performance as a flame retardant material is required, and flame retardation treatment is performed by various methods. As a method of making an olefin resin flame-retardant, a method of adding a halogen-containing compound is generally used. Halogen-containing compounds can certainly impart a high degree of flame retardancy, and have the advantage of relatively low deterioration of molding processability and mechanical strength of molded products, but generate a large amount of smoke during molding and burning. However, it was necessary to install special equipment to prevent corrosion of the equipment. Particularly in recent years, there is a strong demand for non-halogen flame retardancy, and in particular, it is necessary to impart a high degree of flame retardancy for use in building materials, etc. The reality is that it is difficult to obtain sex.

【0006】このような状況の中で、水酸化アルミニウ
ム、水酸化マグネシウム、塩基性炭酸マグネシウム等の
燃焼時に多量の煙を発生することのない水和金属酸化物
の添加による樹脂難燃化の研究が盛んに行われるように
なっている。しかしながら、これらの水和金属酸化物の
みで易燃性であるオレフィン系樹脂に十分な難燃性を付
与するために、多量の水和金属酸化物を添加する必要が
あり、その結果、物性が低下するのみならず発泡性にも
悪影響を及ぼし、微細で均一な独立気泡構造を有する発
泡体を得ること困難であった。
Under such circumstances, research on flame retardancy of resin by addition of hydrated metal oxide which does not generate a large amount of smoke when burning aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, etc. Has become popular. However, in order to impart sufficient flame retardancy to an olefin resin that is easily flammable only with these hydrated metal oxides, it is necessary to add a large amount of hydrated metal oxides, and as a result, the physical properties are It not only lowers but also adversely affects the foamability, and it is difficult to obtain a foam having a fine and uniform closed cell structure.

【0007】また、ハロゲン含有化合物を用いずに難燃
性を付与する方法として、例えば、特開平6−2547
6号公報には、ポリオレフィン系樹脂に対して熱膨張性
黒鉛とリン化合物の二成分混合系難燃剤を用いる樹脂組
成物が開示されているが、この樹脂組成物は押出発泡で
得られるポリオレフィン系樹脂発泡体に適応されるとの
記載は見当たらない。さらに、無機酸と強酸化剤で処理
して得られる熱膨張性黒鉛をそのまま中和処理せずに樹
脂組成物に使用しているので、樹脂組成物の安定性を阻
害し、混練及び成形加工時に装置を腐食するという恐れ
があった。
Further, as a method of imparting flame retardancy without using a halogen-containing compound, for example, JP-A-6-2547 is used.
Japanese Unexamined Patent Publication No. 6 discloses a resin composition in which a two-component mixed flame retardant of thermally expansive graphite and a phosphorus compound is used for a polyolefin resin, which resin composition is obtained by extrusion foaming. There is no description that it is applied to resin foam. Furthermore, since the heat-expandable graphite obtained by treating with an inorganic acid and a strong oxidizer is used as it is in the resin composition without being subjected to neutralization treatment, it inhibits the stability of the resin composition and causes kneading and molding. At times there was a risk of corroding the equipment.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の欠点
に鑑みてなされたもので、その目的は、従来公知の発泡
方法により、ハロゲン含有化合物を全く使用せずに高度
な難燃性の付与された樹脂発泡体を比較的容易に安定し
て得ることのできる発泡用難燃性オレフィン系樹脂組成
物を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and an object thereof is to obtain a highly flame-retardant material by using a conventionally known foaming method without using any halogen-containing compound. It is an object of the present invention to provide a flame-retardant olefin resin composition for foaming, which allows a given resin foam to be obtained relatively easily and stably.

【0009】[0009]

【課題を解決するための手段】本発明の発泡用難燃性オ
レフィン系樹脂組成物は、重量平均分子量の異なる無架
橋オレフィン系樹脂(a)と無架橋オレフィン系樹脂
(b)からなる発泡用オレフィン系樹脂ならびに中和処
理された熱膨張性黒鉛及びポリリン酸アンモニウム類の
混合物よりなる。
The flame-retardant olefin resin composition for foaming of the present invention comprises a non-cross-linking olefin resin (a) and a non-cross-linking olefin resin (b) having different weight average molecular weights for foaming. It is composed of a mixture of olefin resin, neutralized thermally expandable graphite and ammonium polyphosphate.

【0010】本発明で用いられる無架オレフィン系樹脂
(a)及び(b)としては、ポリエチレン(低密度、中
密度、高密度)、ポリプロピレン、エチレン−プロピレ
ン共重合体、エチレン−酢酸ビニル共重合体、エチレン
−エチルアクリレート共重合体、エチレン−プロピレン
−ジエン共重合体等が挙げられる。
The stretchable olefin resins (a) and (b) used in the present invention include polyethylene (low density, medium density, high density), polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer. Examples include a polymer, an ethylene-ethyl acrylate copolymer, an ethylene-propylene-diene copolymer, and the like.

【0011】上記無架橋オレフィン系樹脂としては、上
記無架橋オレフィン系樹脂(a)の重量平均分子量をM
1 とし、無架橋オレフィン系樹脂(b)の重量平均分子
量をM2 としたとき、M1 とM2 との間において、 (イ)M1 =5万〜50万、M2 ≦700万、M2 /M
1 =5〜100、又は(ロ)M1 =5万〜50万、M2
≦700万、M2 −M1 ≧30万なる二つの条件のうち
いずれか一方を満足するものが使用される。
As the non-crosslinked olefin resin, the weight average molecular weight of the non-crosslinked olefin resin (a) is M
1, and when the weight average molecular weight of uncrosslinked olefin resin (b) was M 2, between the M 1 and M 2, (b) M 1 = 5 million in to 50 million in, M 2 ≦ 700 million in, M 2 / M
1 = 5 to 100, or (b) M 1 = 50,000 to 500,000, M 2
Those satisfying one of the two conditions of ≦ 7 million and M 2 −M 1 ≧ 300,000 are used.

【0012】上記無架橋オレフィン系樹脂(a)の重量
平均分子量M1 は、5万未満では溶融時の粘度が低くな
り過ぎて発泡の際に気泡が破れて良好な発泡体が得られ
ず、50万を超えると樹脂の流動性が著しく低下して押
出機での成形が難しくなるので、5万〜50万の範囲に
制限される。特に、無架橋オレフィン系樹脂(a)とし
てポリエチレンを用いる場合はM1 =5万〜20万が好
ましく、ポリプロピレンを用いる場合はM1 =30万〜
50万が好ましい。また、M2 /M1 =6〜80が好ま
しい。
If the weight average molecular weight M 1 of the non-crosslinked olefin resin (a) is less than 50,000, the viscosity at the time of melting becomes too low and the bubbles are broken during foaming, so that a good foam cannot be obtained. If it exceeds 500,000, the fluidity of the resin remarkably deteriorates and molding in an extruder becomes difficult, so the range is limited to 50,000 to 500,000. In particular, when polyethylene is used as the non-crosslinked olefin resin (a), M 1 = 50,000 to 200,000 is preferable, and when polypropylene is used, M 1 = 300,000 to
500,000 is preferable. Further, M 2 / M 1 = 6~80 are preferred.

【0013】上記無架橋オレフィン系樹脂(b)の重量
平均分子量M2 が、小さくなって(イ)又は(ロ)の条
件からはずれると、無架橋オレフィン系樹脂(a)と混
合した樹脂組成物には溶融張力の改善が余り見られず、
樹脂を高倍率に発泡させることができなくなる。また、
上記重量平均分子量M2 が、大きくなって(イ)又は
(ロ)の条件からはずれると、無架橋オレフィン系樹脂
(a)を混合する際に均一に分散せず、得られる発泡体
の発泡倍率の変動が大きくなって安定しなくなる。ま
た、重量平均分子量M2 が700万を超えると樹脂の流
動性が著しく低下して押出機での成形が難しくなる。特
に、M2 /M1 =6〜80の範囲が好ましい。
When the weight average molecular weight M 2 of the non-crosslinked olefin resin (b) becomes smaller than the condition (a) or (b), the resin composition mixed with the noncrosslinked olefin resin (a) is obtained. Has not seen much improvement in melt tension,
The resin cannot be expanded at a high magnification. Also,
When the weight average molecular weight M 2 becomes large and deviates from the condition (a) or (b), the non-crosslinked olefin resin (a) is not uniformly dispersed, and the foaming ratio of the obtained foam is increased. Fluctuates and becomes unstable. On the other hand, if the weight average molecular weight M 2 exceeds 7,000,000, the fluidity of the resin is remarkably reduced, and molding in an extruder becomes difficult. In particular, the range of M 2 / M 1 = 6~80 are preferred.

【0014】尚、上記重量平均分子量M1 及びM2 は、
ゲル透過クロマトグラフィー(GPC)により測定され
る値である。
The weight average molecular weights M 1 and M 2 are
It is a value measured by gel permeation chromatography (GPC).

【0015】上記無架橋オレフィン系樹脂(a)と
(b)からなる発泡用オレフィン系樹脂において、無架
橋オレフィン系樹脂(b)の割合は、少なくなると樹脂
組成物の溶融張力の改善がみられず、樹脂を高倍率に発
泡させることできず、多くなると樹脂組成物の溶融粘度
の上昇が大きく、発泡の際の気泡膜の張力が大きくなり
過ぎて樹脂が十分に発泡しなくなるので、1〜20重量
%に制限される。
In the foaming olefin resin comprising the above-mentioned non-crosslinked olefin resin (a) and (b), when the proportion of the non-crosslinked olefin resin (b) is decreased, the melt tension of the resin composition is improved. No, the resin cannot be foamed at a high magnification, and when the resin composition is increased, the melt viscosity of the resin composition is greatly increased, and the tension of the bubble film during foaming becomes too large, so that the resin does not sufficiently foam. Limited to 20% by weight.

【0016】上記熱膨張性黒鉛としては、従来公知の物
質が使用でき、例えば、天然の鱗片状グラファイト、熱
分解グラファイト、キッシュグラファイト等の粉末を、
濃硫酸、硝酸、セレン酸等の無機酸と濃硝酸、過塩素
酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸
化水素等の強酸化剤で処理してグラファイト層間化合物
を生成させたもので、炭素の層状構造を維持したままの
結晶化合物である。
As the above-mentioned heat-expandable graphite, conventionally known substances can be used. For example, powders of natural scaly graphite, pyrolytic graphite, quiche graphite, etc. can be used.
Inorganic acids such as concentrated sulfuric acid, nitric acid, and selenate and treated with strong oxidants such as concentrated nitric acid, perchloric acid, perchlorate, permanganate, dichromate, and hydrogen peroxide to remove graphite intercalation compounds. It is a crystalline compound that is produced and maintains the layered structure of carbon.

【0017】本発明では、上記酸処理して得られた熱膨
張性黒鉛が、更にアンモニア、脂肪族低級アミン、アル
カリ金属化合物、アルカリ土類金属化合物等で中和処理
された熱膨張性黒鉛が使用される。上記脂肪族低級アミ
ンとしては、例えば、モノメチルアミン、ジメチルアミ
ン、トリメチルアミン、エチルアミン、プロピルアミ
ン、ブチルアミン等が挙げられ、上記アルカリ金属化合
物およびアルカリ土類金属化合物としては、カリウム、
ナトリウム、カルシウム、バリウム、マグネシウム等の
水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げ
られる。
In the present invention, the heat-expandable graphite obtained by the above acid treatment is the heat-expandable graphite further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound or the like. used. Examples of the aliphatic lower amines include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, butylamine, and the like, and examples of the alkali metal compound and alkaline earth metal compound include potassium,
Examples thereof include hydroxides, oxides, carbonates, sulfates and organic acid salts of sodium, calcium, barium, magnesium and the like.

【0018】上記熱膨張性黒鉛を中和処理せずに用いた
場合、樹脂組成物の安定性が阻害されたり、混練及び成
形加工時に成形機等を腐食させる恐れがあるので好まし
くない。
When the above-mentioned thermally expandable graphite is used without being neutralized, the stability of the resin composition may be impaired and the molding machine and the like may be corroded during kneading and molding, which is not preferable.

【0019】上記熱膨張性黒鉛の粒度は、細かくなると
熱膨張性黒鉛の膨張度が小さくなって難燃性が低下し、
大きくなると難燃性付与の効果はあるがポリオレフィン
系樹脂と混合し混練する際に分散性が悪く、得られる成
形品の物性が低下するため、20〜200メッシュが好
ましい。
When the particle size of the above-mentioned thermally expandable graphite becomes finer, the expansion degree of the thermally expandable graphite becomes smaller and the flame retardancy decreases,
When it is large, the effect of imparting flame retardancy is obtained, but when it is mixed with a polyolefin resin and kneaded, the dispersibility is poor, and the physical properties of the resulting molded article deteriorate, so 20-200 mesh is preferred.

【0020】本発明で用いられるポリリン酸アンモニウ
ム類としては、ポリリン酸アンモニウム、メラミン変性
ポリリン酸アンモニウム等が挙げられ、これは単独で用
いられてもよく、二種以上が併用されてもよい。上記ポ
リリン酸アンモニウム類としては、難燃性向上の観点か
ら熱重量分析による2%重量減少温度が180〜250
℃、5%重量減少温度が270〜310℃の範囲にある
ものが好ましい。
Examples of the ammonium polyphosphates used in the present invention include ammonium polyphosphate and melamine-modified ammonium polyphosphate, which may be used alone or in combination of two or more kinds. The ammonium polyphosphates have a 2% weight loss temperature of 180 to 250 determined by thermogravimetric analysis from the viewpoint of improving flame retardancy.
The temperature at which the 5% weight loss temperature is in the range of 270 to 310 ° C is preferable.

【0021】上記2%又は5%重量減少温度は、熱重量
分析装置(略称TGA)を用いて、昇温速度10℃/
分、200ミリリットル/分の空気気流下の条件で約1
0mgの試料を30〜900℃まで昇温した際に、試料
重量が2%又は5%減少する温度をいう。
The above 2% or 5% weight loss temperature is measured by using a thermogravimetric analyzer (abbreviated as TGA) at a heating rate of 10 ° C. /
Min, about 1 under the condition of 200 ml / min air flow
The temperature at which the weight of a sample decreases by 2% or 5% when the temperature of a 0 mg sample is raised to 30 to 900 ° C.

【0022】上記中和処理された熱膨張性黒鉛とポリリ
ン酸アンモニウム類との混合割合は、重量比で9:1〜
1:9が好ましい。上記混合割合の範囲を外れると、熱
膨張性黒鉛とポリリン酸アンモニウム類とをそれぞれ単
独で使用する場合と難燃性能に殆ど差がなくなる。
The neutralizing heat-expandable graphite and ammonium polyphosphates are mixed in a weight ratio of 9: 1 to 1: 1.
1: 9 is preferable. If the mixing ratio is out of the above range, there is almost no difference in the flame retardant performance from the case where the thermally expandable graphite and the ammonium polyphosphates are used alone.

【0023】本発明の樹脂組成物において、上記中和処
理された熱膨張性黒鉛とポリリン酸アンモニウム類との
混合物の使用量は、少なくなると十分な難燃性が得られ
ず、多くなると発泡特性が阻害され均一な発泡体が得ら
れなくなるので、発泡用オレフィン系樹脂100重量部
に対して、5〜100重量部に制限され、好ましくは8
〜80重量部であり、さらに好ましくは10〜60重量
部である。
In the resin composition of the present invention, if the amount of the mixture of the neutralized heat-expandable graphite and ammonium polyphosphate used is small, sufficient flame retardancy cannot be obtained, and if it is large, the foaming property is increased. Of the olefin resin for foaming, the amount is limited to 5 to 100 parts by weight, preferably 8 parts.
To 80 parts by weight, and more preferably 10 to 60 parts by weight.

【0024】上記樹脂組成物には、発泡特性を阻害しな
い範囲で、難燃助剤として水和金属化合物が添加されて
もよい。上記水和金属酸化物としては、水酸化アルミニ
ウム、水酸化マグネシウム、塩基性炭酸マグネシウム、
ドーソナイト等が挙げられ、これらは単独で使用されて
もよく、二種以上が併用されてもよい。
A hydrated metal compound may be added to the above resin composition as a flame retardant aid within a range that does not impair foaming properties. As the hydrated metal oxide, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate,
Examples thereof include dawsonite, and these may be used alone or in combination of two or more.

【0025】上記水和金属酸化物の使用量は、上記中和
処理された熱膨張性黒鉛とポリリン酸アンモニウム類と
の混合物の量によって異なるが、多くなると発泡特性が
損なわれるため、発泡用オレフィン系樹脂100重量部
に対して、100重量部以下が好ましい。
The amount of the hydrated metal oxide used varies depending on the amount of the mixture of the neutralized heat-expandable graphite and ammonium polyphosphate, but if the amount is large, the foaming characteristics are impaired. It is preferably 100 parts by weight or less with respect to 100 parts by weight of the resin.

【0026】本発明の樹脂組成物には、さらに必要に応
じて、気泡核調整剤、酸化防止剤、紫外線吸収剤、帯電
防止剤、滑剤、着色剤剤等が添加されてもよい。上記気
泡核調整剤としては、タルク、シリカ、炭酸カルシウ
ム、ステアリン酸カルシウム、ケイ酸カルシウム、重曹
等が挙げられ、上記酸化防止剤としては、フェノール
系、有機チオ酸系、有機リン酸系、有機アミン系、有機
錫系等が挙げられる。
If necessary, the resin composition of the present invention may further contain a bubble nucleus adjusting agent, an antioxidant, an ultraviolet absorber, an antistatic agent, a lubricant, a coloring agent and the like. Examples of the bubble nucleus adjusting agent include talc, silica, calcium carbonate, calcium stearate, calcium silicate, and baking soda, and examples of the antioxidant include a phenol type, an organic thioic acid type, an organic phosphoric acid type, an organic amine. System, organic tin system, and the like.

【0027】本発明の樹脂組成物から、無架橋の難燃性
オレフィン系樹脂発泡体を製造するには、押出発泡、加
圧発泡、常圧発泡等の公知の発泡方法が採用される。こ
れらの発泡方法に用いられる発泡剤としては、低沸点有
機溶媒、不活性気体、熱分解型発泡剤等公知のものから
適宜選択される。また、発泡体の発泡倍率は10〜40
倍程度が好ましい。
In order to produce a non-crosslinked flame-retardant olefin resin foam from the resin composition of the present invention, known foaming methods such as extrusion foaming, pressure foaming and normal pressure foaming are adopted. The foaming agent used in these foaming methods is appropriately selected from known materials such as a low boiling organic solvent, an inert gas, and a thermal decomposition type foaming agent. Further, the expansion ratio of the foam is 10 to 40.
About twice is preferable.

【0028】上記押出発泡としては、例えば、本発明の
樹脂組成物を押出機のホッパーから投入し、押出機内で
溶融混練しながら、押出機の途中に設けられた発泡剤注
入孔からジクロロテトラフルオロエチレン等の低沸点有
機溶媒又は炭酸ガス等の不活性気体を圧入し、所定形状
の金型から押し出して発泡させる方法が挙げられる。ま
た、本発明の樹脂組成物とアゾジカルボンアミド等の熱
分解型発泡剤との混合物を押出機のホッパーから投入し
て押出機内で溶融混練し、所定形状の金型から押し出し
て発泡させてもよい。
As the above-mentioned extrusion foaming, for example, the resin composition of the present invention is charged from the hopper of the extruder and melt-kneaded in the extruder, while dichlorotetrafluoro is introduced from a foaming agent injection hole provided in the middle of the extruder. There may be mentioned a method in which a low boiling point organic solvent such as ethylene or an inert gas such as carbon dioxide gas is pressed in and extruded from a mold having a predetermined shape to foam. Also, a mixture of the resin composition of the present invention and a pyrolytic foaming agent such as azodicarbonamide may be charged from the hopper of an extruder, melt-kneaded in the extruder, and extruded from a mold having a predetermined shape to foam. Good.

【0029】上記加圧発泡としては、本発明の樹脂組成
物を押出機やロールで溶融混練し、これをプレス等によ
りシート状に成形し、このシートをオートクレーブ等の
耐圧容器に入れて加熱し、これにジクロロテトラフルオ
ロエチレン等の低沸点有機溶媒又は炭酸ガス等の不活性
気体を圧入した後、圧力を開放して発泡させる方法が挙
げられる。
As the above-mentioned foaming under pressure, the resin composition of the present invention is melted and kneaded by an extruder or a roll, and this is molded into a sheet by pressing or the like, and the sheet is put in a pressure resistant container such as an autoclave and heated. A method may be mentioned in which a low-boiling-point organic solvent such as dichlorotetrafluoroethylene or an inert gas such as carbon dioxide is pressed into this, and then the pressure is released to foam.

【0030】上記常圧発泡としては、本発明の樹脂組成
物とアゾジカルボンアミド等の熱分解型発泡剤との混合
物を、発泡剤が分解しない温度で押出機やロールで混練
し、これをプレス等によりシート状に成形し、この発泡
性シートを加熱熱風炉や加熱浴に入れて常圧下で加熱し
て発泡させる方法が挙げられる。
As the above-mentioned normal pressure foaming, a mixture of the resin composition of the present invention and a pyrolytic foaming agent such as azodicarbonamide is kneaded with an extruder or roll at a temperature at which the foaming agent does not decompose, and this is pressed. And the like, and the foamable sheet is placed in a heating hot air oven or a heating bath and heated under normal pressure to foam.

【0031】[0031]

【実施例】次に、本発明の実施例を説明する。 (実施例1、2)表1に示した所定量の、重量平均分子
量M1 の無架橋オレフィン系樹脂、重量平均分子量M2
の無架橋オレフィン系樹脂、中和処理された熱膨張性黒
鉛、ポリリン酸アンモニウム及び酸化防止剤をドライブ
レンドして発泡用難燃性オレフィン系樹脂組成物を調製
した。この樹脂組成物を、シリンダー温度がホッパー側
から先端に向かって、140℃、165℃、140℃、
140℃にそれぞれ設定されたベントタイプの押出機
(口径65mmφ、L/D=35)のホッパーから押出
機内へ供給した。押出機内で樹脂組成物を十分に溶融混
練しながら、押出機のベント孔から発泡剤として炭酸ガ
スを90kg/cm2 の圧力で連続して注入し、十分に
混練しながら113℃に設定された金型から15kg/
hrの押出量でロッド状に押出して発泡体を得た(押出
発泡法)。
Next, embodiments of the present invention will be described. (Examples 1 and 2) Predetermined amount of non-crosslinked olefin resin having weight average molecular weight M 1 shown in Table 1 and weight average molecular weight M 2
A non-crosslinked olefin resin, a neutralized thermally expandable graphite, ammonium polyphosphate and an antioxidant were dry blended to prepare a flame retardant olefin resin composition for foaming. This resin composition was prepared by changing the cylinder temperature from the hopper side to the tip end at 140 ° C, 165 ° C, 140 ° C,
It was supplied into the extruder from a hopper of a vent type extruder (bore diameter 65 mmφ, L / D = 35) set to 140 ° C., respectively. While sufficiently melting and kneading the resin composition in the extruder, carbon dioxide gas as a foaming agent was continuously injected at a pressure of 90 kg / cm 2 from a vent hole of the extruder, and the temperature was set to 113 ° C. while sufficiently kneading. 15kg / from mold
A foam was obtained by extruding into a rod shape at an extrusion rate of hr (extrusion foaming method).

【0032】(実施例3)表1に示した所定量の、重量
平均分子量M1 の無架橋オレフィン系樹脂、重量平均分
子量M2 の無架橋オレフィン系樹脂、中和処理された熱
膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止剤を
ドライブレンドして発泡用難燃性オレフィン系樹脂組成
物を調製した。この樹脂組成物を、140℃のロールを
用いて溶融混練した後プレスを用いて2mm厚のシート
状に成形した。次いで、このシートをオートクレーブに
入れて110℃に加熱し、これに発泡剤として炭酸ガス
を90kg/cm2 の圧力で注入し、樹脂組成物100
重量部に対して炭酸ガス5重量部を十分に溶解させた
後、オートクレーブの圧力を開放して発泡体を得た(加
圧発泡法)。
(Example 3) Predetermined amounts of the non-crosslinked olefin resin having a weight average molecular weight M 1 shown in Table 1, a noncrosslinked olefin resin having a weight average molecular weight M 2 , and a neutralized thermally expandable graphite A flame-retardant olefin resin composition for foaming was prepared by dry blending ammonium polyphosphate and an antioxidant. This resin composition was melt-kneaded using a roll at 140 ° C. and then molded into a sheet having a thickness of 2 mm using a press. Then, this sheet was put into an autoclave and heated to 110 ° C., and carbon dioxide gas as a foaming agent was injected into the resin at a pressure of 90 kg / cm 2 to obtain a resin composition 100.
After sufficiently dissolving 5 parts by weight of carbon dioxide with respect to parts by weight, the pressure in the autoclave was released to obtain a foam (pressurized foaming method).

【0033】(実施例4)まず、重量平均分子量46万
のポリプロピレン〔PP(2)〕と重量平均分子量23
0万の高密度ポリエチレン〔HDPE(1)〕の等量を
熱キシレン中に均一に溶解させた後80℃で真空乾燥
し、得られた混合物を粉砕した。この粉砕物20重量部
に重量平均分子量46万のポリプロピレン〔PP
(2)〕80重量部を加えた後、さらに表1に示した所
定量の、中和処理された熱膨張性黒鉛、ポリリン酸アン
モニウム及び酸化防止剤をドライブレンドして発泡用難
燃性オレフィン系樹脂組成物を調製した。この樹脂組成
物を、シリンダー温度がホッパー側から先端に向かっ
て、170℃、220℃、220℃、195℃にそれぞ
れ設定されたベントタイプの押出機(口径65mmφ、
L/D=35)のホッパーから押出機内へ供給した。押
出機内で樹脂組成物を十分に混練しながら、押出機のベ
ント孔から発泡剤として炭酸ガスを90kg/cm2
圧力で連続して注入し、十分に混練しながら160℃に
設定された金型から15kg/hrの押出量でロッド状
に押出して発泡体を得た(押出発泡法)。
Example 4 First, polypropylene having a weight average molecular weight of 460,000 [PP (2)] and a weight average molecular weight of 23 were used.
An equivalent amount of 0,000 of high-density polyethylene [HDPE (1)] was uniformly dissolved in hot xylene, vacuum dried at 80 ° C., and the obtained mixture was ground. 20 parts by weight of this pulverized product was added to polypropylene having a weight average molecular weight of 460,000 [PP
(2)] After adding 80 parts by weight, a predetermined amount shown in Table 1 of dry-blended neutralized thermally expandable graphite, ammonium polyphosphate and an antioxidant are added to the flame-retardant olefin for foaming. A resin composition was prepared. A vent type extruder (bore diameter 65 mmφ, whose cylinder temperature was set to 170 ° C., 220 ° C., 220 ° C., and 195 ° C., respectively, from the hopper side to the tip thereof was used.
It was fed into the extruder from a hopper of L / D = 35). While sufficiently kneading the resin composition in the extruder, carbon dioxide gas as a foaming agent was continuously injected at a pressure of 90 kg / cm 2 from the vent hole of the extruder, and the gold was set at 160 ° C. while sufficiently kneading. A foam was obtained by extruding from a mold in a rod shape at an extrusion rate of 15 kg / hr (extrusion foaming method).

【0034】(実施例5)発泡剤として炭酸ガスに代え
て、ジクロロテトラフルオロエタン(表中、「フロン」
と表示)を50kg/cm2 の圧力で、連続して押出機
内に注入したこと以外は、実施例4と同様に押出して発
泡体を得た(押出発泡法)。
(Example 5) Instead of carbon dioxide gas as a foaming agent, dichlorotetrafluoroethane (in the table, "Freon") was used.
Was displayed at a pressure of 50 kg / cm 2 and was extruded in the same manner as in Example 4 to obtain a foam (extrusion foaming method).

【0035】(実施例6、7)表2に示した所定量の、
重量平均分子量M1 の無架橋オレフィン系樹脂、重量平
均分子量M2 の無架橋オレフィン系樹脂、中和処理され
た熱膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止
剤をドライブレンドして発泡用難燃性オレフィン系樹脂
組成物を調製した後、樹脂組成物100重量部に対して
発泡剤としてアゾジカルボンアミド(表中、「ADC
A」と表示)10重量部の割合で添加し均一に混合し
た。この混合物を、シリンダー温度がホッパー側から先
端に向かって、135℃、160℃、135℃、135
℃にそれぞれ設定されたベントタイプの押出機(口径6
5mmφ、L/D=35)のホッパーから押出機内へ供
給した。押出機内で樹脂組成物を十分に混練しながら、
115℃に設定された金型から15kg/hrの押出量
でシート状に押出し、2mm厚のて発泡性シートを得
た。次いで、この発泡性シートを240℃の加熱発泡炉
に導入して加熱発泡させ、発泡体を得た(常圧発泡
法)。
(Embodiments 6 and 7) With a predetermined amount shown in Table 2,
Flame-retardant for foaming by dry-blending non-crosslinking olefin resin with weight average molecular weight M 1 , non-crosslinking olefin resin with weight average molecular weight M 2 , neutralized thermally expandable graphite, ammonium polyphosphate and antioxidant After preparing the water-soluble olefin resin composition, azodicarbonamide (in the table, "ADC
(Indicated as "A") 10 parts by weight were added and uniformly mixed. The mixture was heated at 135 ° C, 160 ° C, 135 ° C, 135 ° C from the hopper side to the tip.
Vent type extruder (caliber 6
It was supplied into the extruder from a hopper of 5 mmφ and L / D = 35). While sufficiently kneading the resin composition in the extruder,
A foaming sheet having a thickness of 2 mm was obtained by extruding into a sheet shape at an extrusion rate of 15 kg / hr from a mold set to 115 ° C. Next, this foamable sheet was introduced into a heating and foaming furnace at 240 ° C. for thermal foaming to obtain a foam (normal pressure foaming method).

【0036】(実施例8)表2に示した所定量の、重量
平均分子量M1 の無架橋オレフィン系樹脂、重量平均分
子量M2 の無架橋オレフィン系樹脂、中和処理された熱
膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止剤を
ドライブレンドして発泡用難燃性オレフィン系樹脂組成
物を調製した。この樹脂組成物を使用して、実施例4と
同様に炭酸ガスを発泡剤としてロッド状の発泡体を得た
(押出発泡法)。
(Example 8) Predetermined amounts of non-crosslinked olefin resin having a weight average molecular weight M 1 shown in Table 2, noncrosslinked olefin resin having a weight average molecular weight M 2 and neutralized thermally expandable graphite A flame-retardant olefin resin composition for foaming was prepared by dry blending ammonium polyphosphate and an antioxidant. Using this resin composition, a rod-shaped foam was obtained using carbon dioxide as a foaming agent in the same manner as in Example 4 (extrusion foaming method).

【0037】(比較例1〜4)表3に示した所定量の、
重量平均分子量M1 の無架橋オレフィン系樹脂、重量平
均分子量M2 の無架橋オレフィン系樹脂、中和処理され
た熱膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止
剤をドライブレンドして発泡用難燃性オレフィン系樹脂
組成物を調製した。この樹脂組成物を使用して、実施例
1と同様に炭酸ガスを発泡剤としてロッド状の発泡体を
得た(押出発泡法)。尚、比較例2及び4において、押
出機の負荷が増大し押出成形が不能となり、発泡体は得
られなかった。
(Comparative Examples 1 to 4) In a predetermined amount shown in Table 3,
Flame-retardant for foaming by dry-blending non-crosslinking olefin resin with weight average molecular weight M 1 , non-crosslinking olefin resin with weight average molecular weight M 2 , neutralized thermally expandable graphite, ammonium polyphosphate and antioxidant A olefin resin composition was prepared. Using this resin composition, a rod-shaped foam was obtained using carbon dioxide as a foaming agent in the same manner as in Example 1 (extrusion foaming method). In Comparative Examples 2 and 4, the load of the extruder was increased and extrusion molding was impossible, and no foam was obtained.

【0038】(比較例5、6)表4に示した所定量の、
重量平均分子量M1 の無架橋オレフィン系樹脂、重量平
均分子量M2 の無架橋オレフィン系樹脂、中和処理され
た熱膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止
剤をドライブレンドして発泡用難燃性オレフィン系樹脂
組成物を調製した。この樹脂組成物を使用して、実施例
3と同様にして発泡体を得た(加圧発泡法)。
(Comparative Examples 5 and 6) In the predetermined amount shown in Table 4,
Flame-retardant for foaming by dry-blending non-crosslinking olefin resin with weight average molecular weight M 1 , non-crosslinking olefin resin with weight average molecular weight M 2 , neutralized thermally expandable graphite, ammonium polyphosphate and antioxidant A olefin resin composition was prepared. Using this resin composition, a foam was obtained in the same manner as in Example 3 (pressure foaming method).

【0039】(比較例7、8)表4に示した所定量の、
重量平均分子量M1 の無架橋オレフィン系樹脂、重量平
均分子量M2 の無架橋オレフィン系樹脂、中和処理され
た熱膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止
剤をドライブレンドして発泡用難燃性オレフィン系樹脂
組成物を調製した。この樹脂組成物を使用して、実施例
5と同様にして発泡体を得た(押出発泡法)。尚、比較
例8において、押出機の負荷が増大し15分間で押出成
形が不能となったので、それ以前に得られた発泡体を性
能評価に使用した。
(Comparative Examples 7 and 8) With a predetermined amount shown in Table 4,
Flame-retardant for foaming by dry-blending non-crosslinking olefin resin with weight average molecular weight M 1 , non-crosslinking olefin resin with weight average molecular weight M 2 , neutralized thermally expandable graphite, ammonium polyphosphate and antioxidant A olefin resin composition was prepared. Using this resin composition, a foam was obtained in the same manner as in Example 5 (extrusion foaming method). In Comparative Example 8, the load on the extruder increased and extrusion molding was impossible in 15 minutes. Therefore, the foam obtained before that was used for performance evaluation.

【0040】(比較例9〜11)表5に示した所定量の、
重量平均分子量M1 の無架橋オレフィン系樹脂、重量平
均分子量M2 の無架橋オレフィン系樹脂、中和処理され
た熱膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止
剤をドライブレンドして発泡用難燃性オレフィン系樹脂
組成物を調製した。この樹脂組成物を使用して、実施例
6と同様にして発泡体を得た(常圧発泡法)。
(Comparative Examples 9 to 11) In the predetermined amount shown in Table 5,
Flame-retardant for foaming by dry-blending non-crosslinking olefin resin with weight average molecular weight M 1 , non-crosslinking olefin resin with weight average molecular weight M 2 , neutralized thermally expandable graphite, ammonium polyphosphate and antioxidant A olefin resin composition was prepared. Using this resin composition, a foam was obtained in the same manner as in Example 6 (normal pressure foaming method).

【0041】(比較例12)表5に示した所定量の、重量
平均分子量M1 の無架橋オレフィン系樹脂、重量平均分
子量M2 の無架橋オレフィン系樹脂、中和処理された熱
膨張性黒鉛、ポリリン酸アンモニウム及び酸化防止剤を
ドライブレンドして発泡用難燃性オレフィン系樹脂組成
物を調製した。この樹脂組成物を使用して、実施例1と
同様にして発泡体を得た(押出発泡法)。
(Comparative Example 12) Predetermined amounts of non-crosslinked olefin resin having a weight average molecular weight M 1 shown in Table 5, noncrosslinked olefin resin having a weight average molecular weight M 2 and neutralized thermally expandable graphite A flame-retardant olefin resin composition for foaming was prepared by dry blending ammonium polyphosphate and an antioxidant. Using this resin composition, a foam was obtained in the same manner as in Example 1 (extrusion foaming method).

【0042】上記実施例および比較例で得られた発泡体
を用いて下記性能評価を行い、その結果を表1〜5に示
した。 (a)発泡倍率 比重計により測定した樹脂組成物と発泡体との比重比よ
り算出した。 (b)難燃性試験 JIS D1201に準拠して酸素指数の測定によって
難燃性を評価し、酸素指数28以上を○、酸素指数28
未満を×と判定した。 (c)気泡構造及び外観 発泡体の気泡構造及び外観を目視観察して、気泡構造及
び外観共に良好なものを○、気泡構造、外観の少なくと
もいずれか一方が不良のものを×と評価した。
The following performance evaluations were performed using the foams obtained in the above Examples and Comparative Examples, and the results are shown in Tables 1-5. (A) Foaming ratio It was calculated from the specific gravity ratio of the resin composition and the foam measured by a specific gravity meter. (B) Flame retardancy test The flame retardancy was evaluated by measuring the oxygen index according to JIS D1201.
Less than was judged as x. (C) Cell Structure and Appearance The cell structure and appearance of the foam were visually observed, and those having good cell structure and appearance were evaluated as ◯, and those having at least one of cell structure and appearance as poor were evaluated as x.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】尚、表1〜5において、各成分は次のもの
を使用した。 (重量平均分子量M1 の無架橋オレフィン系樹脂) ・LDPE(1):低密度ポリエチレン(三菱化学社製
「LF440HB 」)、M1 =7.1万 ・PP(1) :ポリプロピレン(三井石油化学社製
「F601」)、M1 =18万 ・PP(2) :ポリプロピレン(三菱化学社製「E
C8」)、M1 =46万 (重量平均分子量M2 の無架橋オレフィン系樹脂) ・LDPE(2):低密度ポリエチレン(三菱化学社製
「ZC-30B」)、M2 =14万 ・HDPE(1):高密度ポリエチレン(三井石油化学
社製「ハイゼックスミリオン240M」)、M2 =230万 ・HDPE(2):高密度ポリエチレン(三井石油化学
社製「ハイゼックスミリオン320M」)、M2 =280万 ・PP(3) :ポリプロピレン(三菱化学社製「E
C9」)M2 =50.9万 ・中和処理された熱膨張性黒鉛:日本化成社製「CA−
60S」、平均粒径60メッシュ、pH=9.50 ・ポリリン酸アンモニウム:住友化学社製「スミセーフ
P」 TGAによる2%重量減少温度=214℃、 TGAによる5%重量減少温度=294℃ TGAとしてセイコー電子社製「熱重量分析装置(形
式:TG/DTA320)を使用した。 ・酸化防止剤:アデカアーガス社製「Mark328 」
In Tables 1 to 5, the following components were used. (Non-crosslinked olefin resin having a weight average molecular weight of M 1 ) LDPE (1): low density polyethylene (“LF440HB” manufactured by Mitsubishi Chemical Co., Ltd.), M 1 = 710,000 · PP (1): polypropylene (Mitsui Petrochemical (“F601” manufactured by Mfg. Co., Ltd.), M 1 = 180,000 PP (2): Polypropylene (“E” manufactured by Mitsubishi Chemical
C8 "), M 1 = 460,000 (non-crosslinked olefin resin having a weight average molecular weight of M 2 ) -LDPE (2): low density polyethylene (" ZC-30B "manufactured by Mitsubishi Chemical Corporation), M 2 = 140,000-HDPE (1): High-density polyethylene (“HIZEX Million 240M” manufactured by Mitsui Petrochemical Co., Ltd.), M 2 = 2.3 million HDPE (2): High-density polyethylene (“HIZEX Million 320M” manufactured by Mitsui Petrochemical Co., Ltd.), M 2 = 2.8 million PP (3): polypropylene ("E" manufactured by Mitsubishi Chemical Corporation
C9 ") M 2 = 50.9 man-neutralized thermally expandable graphite: manufactured by Nippon Kasei Chemical Co., Ltd." CA-
60S ", average particle size 60 mesh, pH = 9.50-Ammonium polyphosphate:" Sumisafe P "manufactured by Sumitomo Chemical Co., Ltd. 2% weight loss temperature by TGA = 214 ° C, 5% weight loss temperature by TGA = 294 ° C As TGA Seiko Denshi's "Thermogravimetric analyzer (model: TG / DTA320) was used.-Antioxidant: ADEKA ARGUS 'Mark 328"

【0049】なお、中和処理された熱膨張性黒鉛のpH
は、予め25℃の純水100cm3中に熱膨張性黒鉛1
gを投入し、スターラーで5分間攪拌した後pH計で測
定した。
The pH of the neutralized heat-expandable graphite
Is the thermally expansive graphite 1 in 100 cm 3 of pure water at 25 ° C.
g was added, the mixture was stirred with a stirrer for 5 minutes, and then measured with a pH meter.

【0050】[0050]

【発明の効果】本発明の発泡用難燃性オレフィン系樹脂
組成物の構成は、上述の通りであり、従来公知の発泡方
法で発泡させることにより、高倍率で均一微細な気泡を
有する無架橋の難燃性オレフィン系樹脂発泡体を比較的
容易に安定して得ることができる。また、得られる樹脂
発泡体は、優れた難燃性を示すと共に燃焼時にハロゲン
系ガスの発生がないので、建築材料分野を始めとして難
燃性の要求される幅広い用途に使用可能である。さら
に、得られる樹脂発泡体は無架橋物なので、使用済の発
泡体を完全に加熱溶融させることにより再生樹脂として
使用可能である。
The composition of the flame-retardant olefin resin composition for foaming of the present invention is as described above, and by foaming by a conventionally known foaming method, a non-crosslinked structure having uniform and fine bubbles at high magnification. The flame-retardant olefin resin foam can be obtained relatively easily and stably. In addition, the obtained resin foam exhibits excellent flame retardancy and does not generate a halogen-based gas during combustion, so that it can be used in a wide range of applications where flame retardancy is required, including the field of building materials. Further, since the obtained resin foam is a non-crosslinked product, it can be used as a recycled resin by completely heating and melting a used foam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白土 斉 京都市南区上鳥羽上調子町2−2 積水化 学工業株式会社内 (72)発明者 岡田 英治 京都市南区上鳥羽上調子町2−2 積水化 学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Qi Shirato 2-2 Kamitobaue Tonkocho, Minami-ku, Kyoto City Sekisui Chemical Co., Ltd. -2 Sekisui Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a)重量平均分子量M1 の無架橋オレフ
ィン系樹脂80〜99重量%と(b)重量平均分子量M
2 の無架橋オレフィン系樹脂1〜20重量%からなり、
重量平均分子量M1 とM2 の間において、 (イ)M1 =5万〜50万、M2 ≦700万、M2 /M
1 =5〜100、又は(ロ)M1 =5万〜50万、M2
≦700万、M2 −M1 ≧30万なる二つの条件のうち
少なくともいずれか一方を満足する、発泡用オレフィン
系樹脂100重量部ならびに中和処理された熱膨張性黒
鉛及びポリリン酸アンモニウム類の混合物5〜100重
量部からなることを特徴とする発泡用難燃性オレフィン
系樹脂組成物。
1. (a) 80 to 99% by weight of a non-crosslinked olefin resin having a weight average molecular weight of M 1 and (b) a weight average molecular weight of M
2 to 1 to 20% by weight of non-crosslinked olefin resin,
Between the weight average molecular weights M 1 and M 2 , (a) M 1 = 50,000 to 500,000, M 2 ≦ 7 million, M 2 / M
1 = 5 to 100, or (b) M 1 = 50,000 to 500,000, M 2
100 parts by weight of an olefin resin for foaming, and neutralized heat-expandable graphite and ammonium polyphosphates, which satisfy at least one of the two conditions of ≦ 7 million and M 2 −M 1 ≧ 300,000. A flame-retardant olefin resin composition for foaming, which comprises 5 to 100 parts by weight of a mixture.
JP3228795A 1995-02-21 1995-02-21 Flame-retardant olefinic resin composition for forming Pending JPH08225674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3228795A JPH08225674A (en) 1995-02-21 1995-02-21 Flame-retardant olefinic resin composition for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3228795A JPH08225674A (en) 1995-02-21 1995-02-21 Flame-retardant olefinic resin composition for forming

Publications (1)

Publication Number Publication Date
JPH08225674A true JPH08225674A (en) 1996-09-03

Family

ID=12354756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3228795A Pending JPH08225674A (en) 1995-02-21 1995-02-21 Flame-retardant olefinic resin composition for forming

Country Status (1)

Country Link
JP (1) JPH08225674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084024A (en) * 2018-11-26 2020-06-04 住友化学株式会社 Molded body and gasket for building component
JP2021054913A (en) * 2019-09-27 2021-04-08 積水化学工業株式会社 Polyolefin resin foam sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084024A (en) * 2018-11-26 2020-06-04 住友化学株式会社 Molded body and gasket for building component
JP2021054913A (en) * 2019-09-27 2021-04-08 積水化学工業株式会社 Polyolefin resin foam sheet

Similar Documents

Publication Publication Date Title
JP3523943B2 (en) Foamable resin composition for highly foamed insulated polyethylene and high foamed insulated polyethylene coated wire made by coating the same
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
JP6752463B2 (en) Method for manufacturing flame-retardant foam and flame-retardant foam
EP0072536A1 (en) Foamable electroconductive polyolefin resin compositions
JP3320575B2 (en) Highly flame-retardant resin foam
JPH08302056A (en) Production of flame-retardant foam
JPH08225674A (en) Flame-retardant olefinic resin composition for forming
CN109689750B (en) Resin composition for preparing polyolefin flame-retardant foamed product and flame-retardant foamed product formed by same
JP3354674B2 (en) Method for producing polyolefin resin foam
JPH08217910A (en) Flame-retardant thermoplastic resin composition
JPH08269223A (en) Expandable flame-retardant olefin resin composition
JP4756957B2 (en) Extruded foam
JP2541719B2 (en) Flame-retardant resin foam composition, flame-retardant resin foam and method for producing flame-retardant resin foam
JP2009209170A (en) Flame retardant, non-crosslinked polypropylene-based resin foamed board and method for producing the same
EP3926001A1 (en) Halogen-free, flame-retardant foamed thermoplastic polymer
JPH08113671A (en) Flame-retardant thermoplastic resin composition
JP2581354B2 (en) Composition for flame-retardant resin foam, flame-retardant resin foam, and method for producing flame-retardant resin foam
JPH08208875A (en) Foamed material of flame-retardant polyolefin resin
JP2576315B2 (en) Composition for flame-retardant resin foam, flame-retardant material, flame-retardant resin foam, and method for producing flame-retardant resin foam
JPH08245820A (en) Polyolefin resin foam and production thereof
WO2014132439A1 (en) Polyolefin-type resin foam
JP2009275198A (en) Flame-retardant polyolefin-based resin pre-foamed particle, method of manufacturing the same, and flame-retardant polyolefin-based in-mold foam molding
JP3763879B2 (en) Polyolefin resin cross-linked foam
JP2668198B2 (en) Polymer composition for foam extrusion
JPH08193142A (en) Preparation of polyolefin resin foam