JPH08225387A - Production of coated granular fertilizer - Google Patents

Production of coated granular fertilizer

Info

Publication number
JPH08225387A
JPH08225387A JP7035633A JP3563395A JPH08225387A JP H08225387 A JPH08225387 A JP H08225387A JP 7035633 A JP7035633 A JP 7035633A JP 3563395 A JP3563395 A JP 3563395A JP H08225387 A JPH08225387 A JP H08225387A
Authority
JP
Japan
Prior art keywords
fertilizer
coated
coating
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7035633A
Other languages
Japanese (ja)
Inventor
Koichi Adachi
浩一 足立
Yasushi Terada
泰史 寺田
Kengo Zensei
健吾 前正
Yuka Oota
由香 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7035633A priority Critical patent/JPH08225387A/en
Publication of JPH08225387A publication Critical patent/JPH08225387A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • C05G5/37Layered or coated, e.g. dust-preventing coatings layered or coated with a polymer

Abstract

PURPOSE: To obtain a coated granular fertilizer having a low initial elution rate during the period of preventing its elution and a relatively thin membrane, and capable of reducing membrane defects. CONSTITUTION: This method for producing a coated granular fertilizer using a thermoplastic resin as a coating material, comprises forming a membrane on the surface of the fertilizer at <=(Tm-10) deg.C material temperature and then heat-treating the membrane at >=(Tm-30) deg.C for 0.05-10hr by taking Tm as the melting point of the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒状肥料を熱可塑性樹
脂の皮膜で被覆して、溶解速度を制御する被覆粒状肥料
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing coated granular fertilizer in which granular fertilizer is coated with a thermoplastic resin film to control the dissolution rate.

【0002】[0002]

【従来の技術】近年、農業人口の減少や肥料の流失によ
る環境問題の深刻化に伴い、唯一度の施肥のみで作物の
全生育期間に渡って肥料成分を連続的に供給する様な持
続性肥料の開発が望まれている。この様な持続性肥料は
従来から種々開発され、中でも最近、高分子物質の薄い
皮膜で肥料表面を被覆した被覆肥料が注目されている。
さらに、その肥料成分溶出パターンでみると、特に水稲
用には、30〜70日間程度の一定期間経てから肥料成
分の溶出が始まるいわゆるタイムカプセル型あるいはシ
グモイド型(以下S型と略す)と呼ばれるタイプの需要
が増加してきている。この様なS型の皮膜材料として、
従来、熱可塑性樹脂が使われ、中でも透水性の低いポリ
オレフィン系樹脂やポリ塩化ビニリデン系樹脂などが知
られている。
2. Description of the Related Art In recent years, the sustainability of continuously supplying fertilizer components over the entire growing period of a crop with only one application of fertilizer, as environmental problems have become more serious due to a decrease in agricultural population and runoff of fertilizer. Fertilizer development is desired. Various types of such sustainable fertilizers have been developed in the past, and recently, coated fertilizers in which the surface of the fertilizer is coated with a thin film of a polymeric substance have attracted attention.
Furthermore, looking at the fertilizer component elution pattern, especially for paddy rice, the so-called time capsule type or sigmoid type (hereinafter abbreviated as S type) in which the fertilizer component begins to elute after a certain period of about 30 to 70 days. The demand for is increasing. As such an S-type coating material,
Conventionally, thermoplastic resins have been used, and among them, polyolefin resins and polyvinylidene chloride resins having low water permeability are known.

【0003】[0003]

【発明が解決しようとする問題点】さて、かかるS型被
覆肥料の要件の1つとして、前記の30〜70日に渡る
肥料成分が溶出しない期間(以下、「溶出防止期間」と
呼ぶ)中の溶出率をできるだけ低くすることが挙げられ
る。この様な溶出防止期間中の肥料成分の「洩れ出し」
(以下、「初期溶出」と呼ぶ)は、多過ぎると、当然な
がら、後に溶出が始まった時の肥料成分が不足するので
好ましくない。もちろん、ある程度の初期溶出は、被覆
肥料の施肥量を増やすことにより補正可能であるが、こ
れは被覆肥料の本来の目的に反することであり、できる
限り初期溶出の低い被覆肥料を作ることが望まれてい
る。
[Problems to be Solved by the Invention] As one of the requirements for such S-type coated fertilizers, during the period during which the fertilizer components are not eluted during the aforementioned 30 to 70 days (hereinafter referred to as "elution prevention period"). The elution rate can be as low as possible. "Leakage" of fertilizer components during such elution prevention period
Too much (hereinafter, referred to as “initial elution”) is not preferable because, of course, the fertilizer component will be insufficient when elution is started later. Of course, some initial dissolution can be corrected by increasing the amount of coated fertilizer applied, but this is against the original purpose of coated fertilizer, and it is desirable to make coated fertilizer with as low initial dissolution as possible. It is rare.

【0004】初期溶出の原因は、主として、ピンホール
などの皮膜欠陥部分から水が侵入することであるため、
初期溶出を減らすためには、欠陥の少ない皮膜を作る必
要がある。一方、被覆肥料の製造方法を見ると、熱可塑
性樹脂の皮膜の場合、適当な溶剤に溶かした樹脂を熱気
流下で粒状肥料に噴霧し、溶剤を乾燥除去する事により
皮膜を積層して作る方法(いわゆるスプレーコーティン
グ)が従来用いられている。しかし、この方法では、
噴霧中に粒子同士の接着が起こり、これが乾燥中に剥離
する 噴霧中の周囲のガスを巻き込みや、溶剤蒸気の
残留などの原因で皮膜中にできた気泡が破裂する 熱
気流で飛ばされた被覆粒子が装置の器壁に衝突し、皮膜
に亀裂が生じる、などの原因で皮膜欠陥が出来易いとい
う問題がある。この対策として、従来、皮膜厚みを増や
す方法が取られているが、これでは、皮膜材料費が高く
つく上、被覆肥料の肥料有効成分量がその皮膜厚み分減
ることになり、商品価値が下がる。また、溶出防止期間
はある程度皮膜厚みに比例しているため、必要以上に皮
膜を厚くすることは肥料成分の溶出制御の観点からも好
ましくない。かかる問題点は、S型被覆肥料について深
刻であるが、その他のタイプ、例えば、溶出防止期間を
持たず施肥の時点から時間に比例して肥料成分が溶出す
るようないわゆる直線溶出型の被覆肥料においても、初
期の溶出パターンが乱れるという点で、皮膜欠陥の発生
は問題となる。
The cause of the initial dissolution is that water mainly intrudes from the film defects such as pinholes.
In order to reduce the initial dissolution, it is necessary to form a film with few defects. On the other hand, looking at the manufacturing method of coated fertilizer, in the case of a thermoplastic resin film, a method in which a resin dissolved in an appropriate solvent is sprayed on granular fertilizer under a hot air stream, and the film is laminated by removing the solvent by drying. (So-called spray coating) is conventionally used. But with this method,
Particles adhere to each other during spraying, and they peel off during drying.Breakage of the surrounding gas during spraying and bursting of bubbles in the film due to residual solvent vapor, etc. There is a problem that a film defect is likely to occur due to particles colliding with the vessel wall of the apparatus and cracking of the film. As a countermeasure to this, a method of increasing the film thickness has been conventionally taken, but this would increase the cost of the film material and reduce the amount of fertilizer active ingredient of the coated fertilizer by the film thickness, thus reducing the commercial value. . Further, since the dissolution prevention period is proportional to the film thickness to some extent, making the film thicker than necessary is not preferable from the viewpoint of elution control of fertilizer components. Although such a problem is serious for S-type coated fertilizers, other types, for example, so-called linear elution-type coated fertilizers in which the fertilizer component is eluted in proportion to the time from the time of fertilization without the elution prevention period. In this case, the occurrence of the film defect becomes a problem because the initial dissolution pattern is disturbed.

【0005】[0005]

【問題を解決するための手段】本発明者らは、以上の事
実に鑑み、比較的薄い皮膜を有し、なおかつ皮膜欠陥を
持つ粒子が少ない被覆肥料の製造方法を検討した結果、
熱可塑性樹脂の皮膜をスプレーコーティングにより形成
する際、粒状肥料の品温を樹脂の融点から下げれば下げ
るほど、先に挙げたによる外観から識別できる皮
膜欠陥は減少することが分かった。しかし、低品温ほ
ど、噴霧乾燥により積み重ねられる皮膜層間の融着が不
十分となり、均一な樹脂層を形成しなくなる。このた
め、樹脂層間の隙間から徐々に水が浸透し、溶出防止期
間が目的より短くなったり、再現性がなくなる問題点が
生じた。そこで、一旦低温で皮膜を作った後、融点近い
温度で熱処理したところ、樹脂層間の微細な隙間が融着
し、その結果、皮膜に孔がなく、かつ均一な樹脂層から
なる被覆肥料ができることを見いだし、本発明に到っ
た。すなわち、本発明の要旨は熱可塑性樹脂を被覆材料
として被覆肥料を製造する際、その樹脂の融点をTm と
するとき、(Tm −10)℃以下の品温で肥料表面に皮
膜を形成させた後、(Tm −30)℃以上の温度で0.
05〜10時間熱処理を行う事を特徴とする被覆粒状肥
料の製造方法に存する。
In view of the above facts, the present inventors have studied a method for producing a coated fertilizer having a relatively thin film and having few particles having film defects, as a result,
It has been found that, when the coating film of the thermoplastic resin is formed by spray coating, the coating defects which can be recognized from the appearance as described above are reduced as the product temperature of the granular fertilizer is lowered from the melting point of the resin. However, the lower the product temperature, the insufficient fusion between the film layers stacked by spray drying, and the formation of a uniform resin layer becomes difficult. As a result, water gradually penetrates through the gaps between the resin layers, resulting in a problem that the elution prevention period becomes shorter than intended, and reproducibility is lost. Therefore, once the film was formed at a low temperature and then heat-treated at a temperature close to the melting point, the fine gaps between the resin layers were fused, and as a result, a coated fertilizer having a uniform resin layer with no holes in the film could be obtained. The present invention was found out and the present invention was reached. That is, the gist of the present invention is that when a coated fertilizer is produced by using a thermoplastic resin as a coating material, a film is formed on the fertilizer surface at a product temperature of (Tm −10) ° C. or lower, where the melting point of the resin is Tm. Then, at a temperature of (Tm -30) ° C or higher,
It exists in the manufacturing method of the coated granular fertilizer characterized by performing heat processing for 05 to 10 hours.

【0006】以下、本発明を詳細に説明する。 (1)被覆する粒状肥料 本発明で使用される肥料は、特に限定されない。尿素、
硫安、塩安、塩化加里、硫酸加里、燐酸アンモニア等の
粒状の単肥の他に、N2 、K2 O、P2 5 等の多成分
を含む粒状の肥料が本発明品の原肥に使用される。肥料
の粒径、形状は特に限定されないが、一般に1〜4mm
で、角張った形態や大変不規則な形態のものより、球状
または球状に近い形態の粒子の方が好ましい。
The present invention will be described in detail below. (1) Coated granular fertilizer The fertilizer used in the present invention is not particularly limited. urea,
In addition to granular simple fertilizers such as ammonium sulfate, ammonium chloride, potassium chloride, potassium sulfate, and ammonium phosphate, granular fertilizers containing multiple components such as N 2 , K 2 O and P 2 O 5 are the original fertilizers of the present invention. Used for. The particle size and shape of fertilizer are not particularly limited, but generally 1 to 4 mm
Then, particles having a spherical shape or a shape close to a spherical shape are preferable to those having an angular shape or a very irregular shape.

【0007】(2)被覆材料 被覆材料として熱可塑性樹脂を用いるが、その種類は、
特に限定されない。例として、ポリオレフィン、ポリ塩
化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリスチレン
樹脂、ポリカーボネート、ナイロン、ポリメタクリル酸
メチル、ポリウレタン等が挙げられるが、中でも、透水
性が低いため少量でも溶出防止効果の高い、ポリエチレ
ンやポリプロピレン等のポリオレフィン樹脂が適してい
る。これらの樹脂は単独でも、2種以上の混合物として
用いることも可能である。また、被覆する目的を損なわ
なければ、熱可塑性樹脂に加えて他の無機物や有機物を
共存させて被覆しても構わない。例えば、上記の様な透
水性の高い樹脂で被覆した場合には、溶出性の調整や樹
脂の増量等の目的で、タルク、炭酸カルシウム、クレ
イ、ケイソウ土、シリヤ、金属酸化物、イオウ等の無機
質の他、界面活性剤、ワックス等の有機物質を加えても
構わない。
(2) Coating material A thermoplastic resin is used as the coating material.
There is no particular limitation. Examples include polyolefin, polyvinylidene chloride resin, polyvinyl chloride resin, polystyrene resin, polycarbonate, nylon, polymethylmethacrylate, polyurethane, and the like. Polyolefin resins such as polypropylene and polypropylene are suitable. These resins can be used alone or as a mixture of two or more kinds. In addition to the thermoplastic resin, other inorganic substances or organic substances may coexist and be coated as long as the purpose of coating is not impaired. For example, in the case of coating with a resin having high water permeability as described above, talc, calcium carbonate, clay, diatomaceous earth, siliae, metal oxides, sulfur, etc., for the purpose of adjusting the elution property and increasing the amount of resin, etc. In addition to inorganic substances, surfactants and organic substances such as wax may be added.

【0008】(3)溶剤 溶剤種は特に限定されないが、様々な条件を考慮して適
宜選択される。その判断材料としては、皮膜材料となる
熱可塑性樹脂の溶解力、溶解温度、ハンドリング性、回
収の容易さ、毒性、安全性、価格等が挙げられる。例え
ば、皮膜材料としてポリオレフィン系樹脂、特に低密度
のポリエチレンを用いる場合は、ヘキサン、オクタン、
トルエン、キシレン、テトラリン等の炭化水素系溶剤、
トリクロロエチレン、パークロロエチレン等の塩素化炭
化水素系溶剤が好ましい。溶液の濃度についても特に限
定されない。例えば、濃度を高くすると溶剤の使用量が
低減しかつ処理時間が短くなるので好ましい。また、濃
度を低くすると溶液の粘度が低くなりハンドリング性が
良好になる。ただし、スプレーコーティングする場合
は、使用するスプレーノズルおよび噴霧圧力に応じ、適
当な噴霧状態が得られる粘度になるよう濃度を調整する
必要がある。具体的な例を挙げると、皮膜材料として低
密度ポリエチレンを用い、溶剤としてパークロロエチレ
ンを用いる場合、溶液の濃度は1〜12重量%、好まし
くは3〜10重量%である。また、一般に高分子化合物
は冷時には、溶剤不溶のものが多いため、溶解するには
通常加熱攪拌が必要である。
(3) Solvent The solvent species is not particularly limited, but is appropriately selected in consideration of various conditions. Examples of the judgment material include the dissolving power, the melting temperature, the handling property, the ease of recovery, the toxicity, the safety, and the price of the thermoplastic resin that is the film material. For example, when using a polyolefin resin as a coating material, especially low-density polyethylene, hexane, octane,
Hydrocarbon solvents such as toluene, xylene, tetralin,
Chlorinated hydrocarbon solvents such as trichlorethylene and perchlorethylene are preferred. The concentration of the solution is also not particularly limited. For example, a higher concentration is preferable because the amount of solvent used is reduced and the processing time is shortened. Further, when the concentration is lowered, the viscosity of the solution is lowered and the handleability is improved. However, in the case of spray coating, it is necessary to adjust the concentration according to the spray nozzle used and the spray pressure so that the viscosity is such that an appropriate spray state is obtained. As a specific example, when low-density polyethylene is used as the coating material and perchlorethylene is used as the solvent, the concentration of the solution is 1 to 12% by weight, preferably 3 to 10% by weight. Further, in general, many polymer compounds are insoluble in a solvent when they are cold, so that heating and stirring are usually required to dissolve them.

【0009】(4)被覆装置 本発明に適用できる被覆装置としては、粒状物質を混合
攪拌し、かつ気流と十分接触せしめる構造、機能を持っ
た装置であれば特に限定されない。混合攪拌方式で分類
すると、攪拌翼を用いて混合攪拌するタイプの装置とし
ては、例えば、ヘンシェルミキサーやナウターミキサー
等が挙げられる。装置自身の運動に付随して粒状物質を
攪拌するものとしては、回転ドラム式コーター(特開昭
52−61216)、回転パン式コーター(特開平5−
85873)、回転落下式コーター(特願平5−139
376,5−185612,5−342527)などが
挙げられる。また、振動力で攪拌する振動流動装置(特
開平1−245847)は、大量の粒状物質を激しく攪
拌できるので好ましい。気力で攪拌するタイプとして
は、粒子を吹き飛ばして循環混合するワースター型また
は噴流層型コーター、粒子を浮遊流動させる方式とし
て、流動層型コーター(特公平4−61840)などが
挙げられる。被覆溶液の粒状物質への添着は、通常、一
流体もしくは二流体スプレーノズルを用い、攪拌粒子中
の適切な位置に噴霧することによって行う。また溶剤除
去は上述の通り熱気流で行うが、そのガスとしては、空
気のほかに、安全面から窒素、炭酸ガスなどの不活性気
体も使用できる。
(4) Coating Device The coating device applicable to the present invention is not particularly limited as long as it is a device having a structure and a function of mixing and stirring the particulate matter and sufficiently bringing it into contact with the air flow. When classified according to the mixing and stirring method, examples of the type of apparatus for mixing and stirring using a stirring blade include a Henschel mixer and a Nauter mixer. A rotary drum type coater (Japanese Patent Application Laid-Open No. 52-61216) and a rotary pan type coater (Japanese Patent Application Laid-Open No. Hei.
85873), rotary drop coater (Japanese Patent Application No. 5-139)
376, 5-185612, 5-342527) and the like. Further, a vibrating flow device (Japanese Patent Laid-Open No. 1-245847) which stirs by vibrating force is preferable because a large amount of granular substance can be vigorously stirred. Examples of the type that is vigorously stirred include a Wurster type or jet-bed type coater in which particles are blown off and circulated and mixed, and a fluidized bed type coater (Japanese Patent Publication No. 4-61840) is used as a method of floating particles. The application of the coating solution to the particulate material is usually carried out by using a one-fluid or a two-fluid spray nozzle and spraying at appropriate locations in the agitated particles. The solvent is removed by a hot air stream as described above. As the gas, in addition to air, an inert gas such as nitrogen or carbon dioxide can be used from the viewpoint of safety.

【0010】(5)製造方法 本発明の製造方法は2段階に分けられる。第一段階は、
被覆材料である熱可塑性樹脂の融点より低い温度に粒状
肥料の品温を保持して、被覆装置中でスプレーコーティ
ングにより肥料表面に樹脂皮膜を形成する段階である。
ここで、品温とは粒状肥料の表面温度を指し、周囲の熱
気流の影響が実質上ない状態で、肥料と測温端子を接触
させた時に計測される温度である。品温は、皮膜欠陥を
減らす観点から、樹脂の融点より低ければ低いほど好ま
しいが、あまり下げすぎると溶剤の除去速度が低下し、
皮膜が形成されないことがある。逆に融点に近すぎる
と、樹脂が軟化し、前述の〜による皮膜欠陥が発生
する。このため、品温は融点をTm とすると、(Tm −
10)℃以下、好ましくは(Tm −30)℃未満に保持
する。一方、下限値は、20℃、好ましくは30℃であ
る。スプレーコーティングの時間は、被覆溶液濃度、溶
剤除去速度、被覆率等により決められるが、通常、0.
1〜10時間、好ましくは0.2〜3時間である。例え
ば、粒状尿素に対し、皮膜材料として次の実施例で示す
融点106℃の低密度ポリエチレンを用い、溶剤として
パークロロエチレンを用い、5%濃度の被覆溶液の温度
を80〜100℃にして噴霧した場合、品温は30〜7
0℃、好ましくは45〜65℃、噴霧時間は0.5〜
1.5時間である。品温の調整、保持は、溶剤を除去す
る熱気流で行う。熱気流の温度は、当然ながら、品温以
上必要であり、流速は、溶剤除去速度から決定される。
また、樹脂皮膜の添着量は、溶出防止期間をどの程度と
するかなど目標とする性能によるが、通常、粒状肥料に
対し3〜20重量%、好ましくは5〜15重量%であ
る。なお、熱可塑性樹脂の融点は、種々の方法で測定で
きるが、たとえばDSCによる方法が挙げられる。
(5) Manufacturing Method The manufacturing method of the present invention is divided into two steps. The first stage is
This is a step in which the product temperature of the granular fertilizer is maintained at a temperature lower than the melting point of the thermoplastic resin as the coating material, and a resin film is formed on the fertilizer surface by spray coating in the coating device.
Here, the product temperature refers to the surface temperature of the granular fertilizer, and is the temperature measured when the fertilizer and the temperature measuring terminal are brought into contact with each other in a state where there is substantially no influence of the surrounding hot air flow. From the viewpoint of reducing film defects, the product temperature is preferably lower than the melting point of the resin, but if it is lowered too much, the removal rate of the solvent decreases,
The film may not be formed. On the other hand, if the melting point is too close to the melting point, the resin softens and the film defects due to the above-mentioned (1) to (3) occur. Therefore, the product temperature is (Tm-
The temperature is kept at 10) C or lower, preferably below (Tm-30) C. On the other hand, the lower limit value is 20 ° C, preferably 30 ° C. The spray coating time is determined depending on the coating solution concentration, the solvent removal rate, the coating rate, etc.
It is 1 to 10 hours, preferably 0.2 to 3 hours. For example, to granular urea, low density polyethylene having a melting point of 106 ° C. as shown in the following examples is used as a coating material, perchlorethylene is used as a solvent, and a 5% concentration coating solution is sprayed at a temperature of 80 to 100 ° C. If you do, the product temperature is 30 to 7
0 ° C., preferably 45-65 ° C., spraying time 0.5-
1.5 hours. The temperature of the product is adjusted and maintained with a hot air stream that removes the solvent. As a matter of course, the temperature of the hot airflow needs to be equal to or higher than the product temperature, and the flow rate is determined from the solvent removal rate.
The amount of the resin film attached is usually 3 to 20% by weight, and preferably 5 to 15% by weight, based on the granular fertilizer, although it depends on the target performance such as the elution prevention period. The melting point of the thermoplastic resin can be measured by various methods, and for example, a method using DSC can be mentioned.

【0011】第二段階は、第一段階で作った被覆肥料を
熱処理する段階である。ここでは、皮膜層内に生じた微
細な隙間を融着させるが、その加熱温度は、低すぎると
熱処理効果が不十分となり、高すぎると被覆肥料同士が
融着して塊を形成したり、加熱装置の器壁に融着するな
どの問題が起こる。このため、加熱温度は、(Tm −3
0)℃から(Tm +100)℃、好ましくは、(Tm −
20)℃から(Tm +50)℃である。加熱時間は、主
として温度に依存するが、通常0.05〜10時間、好
ましくは0.5〜2時間である。加熱装置としては、一
般的な乾燥機、電気炉などの装置が使用できる。また、
第一段階で用いた被覆装置中でそのまま熱気流により加
熱してもよい。ただし、伝熱を良くする目的で加熱中に
被覆肥料を攪拌するとかえって皮膜欠陥を増やすことに
なるので、静置状態での加熱が好ましい。以上、本発明
の被覆肥料製造方法を2段階に分けて説明したが、特に
明確に2段階に分ける必要はなく、例えば、皮膜形成中
(スプレーコーティング中)、品温を初期に低温に保
ち、徐々に昇温して、最終的に2段階目の加熱温度にす
るような方法をとっても良い。次に、本発明を実施例に
より具体的に説明するが、本発明はその要旨を越えない
限り、以下の実施例に限定されるものではない。
The second step is a step of heat-treating the coated fertilizer produced in the first step. Here, the fine gaps generated in the coating layer are fused, but the heating temperature is too low, the heat treatment effect becomes insufficient, and if it is too high, the coated fertilizers are fused to form a lump, Problems such as fusion with the wall of the heating device occur. Therefore, the heating temperature is (Tm -3
0) ° C to (Tm +100) ° C, preferably (Tm-
20) ° C to (Tm +50) ° C. The heating time mainly depends on the temperature, but is usually 0.05 to 10 hours, preferably 0.5 to 2 hours. As the heating device, a device such as a general dryer or electric furnace can be used. Also,
You may heat with a hot air stream as it is in the coating device used at the 1st step. However, stirring the coated fertilizer during heating for the purpose of improving heat transfer rather increases the number of film defects, so heating in a stationary state is preferable. Although the coated fertilizer production method of the present invention has been described by dividing it into two stages, it is not particularly necessary to clearly divide it into two stages. For example, during film formation (during spray coating), the product temperature is initially kept low, A method of gradually raising the temperature and finally reaching the heating temperature in the second stage may be adopted. Next, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0012】[0012]

【実施例】【Example】

〔実施例1〕肥料として粒状尿素を選び、これに以下の
<被覆方法>に示す方法により被覆を行って被覆尿素を
作った後、<熱処理>に示す方法で熱処理を行った。こ
の様にして得られた被覆尿素について、<品質評価方法
>に示す方法に基づき、被覆率、皮膜欠陥粒子数、およ
び水中での尿素の溶出パターンを調べ、その結果を表1
および図1にまとめた。なお、被覆装置として、回転ド
ラム(1)(内径3.8m)の内側に備えたバケット
(2)により粒状肥料(3)を循環させながら、ドラム
内に設置した落下筒(4)(断面0.15×0.25
m、長さ2m)内に肥料を連続的に落下させ、その落下
筒内に被覆溶液を噴霧する方式の回転落下式コーターを
用いた(図2参照)。
[Example 1] Granular urea was selected as a fertilizer, which was coated by the method described in <Coating method> below to prepare coated urea, and then heat treated by the method described in <Heat treatment>. With respect to the coated urea thus obtained, the coverage, the number of film defect particles, and the elution pattern of urea in water were examined based on the method shown in <Quality evaluation method>, and the results are shown in Table 1.
And summarized in FIG. As a coating device, a falling cylinder (4) (cross section 0) installed in the drum while circulating granular fertilizer (3) by a bucket (2) provided inside a rotating drum (1) (inner diameter 3.8 m) .15 x 0.25
A rotary dropping coater was used in which the fertilizer was continuously dropped into the dropping cylinder and the coating solution was sprayed into the dropping cylinder (see FIG. 2).

【0013】<被覆方法> (1)被覆溶液の調整 皮膜材料として融点106℃の低密度ポリエチレン(三
菱化成製M420)1.5kg、溶出調整剤としてポリ
オキシエチレンノニルフェノールエーテル(花王製エマ
ルゲン909)40.5gを秤取り、溶剤のパークロロ
エチレン28.5kgに加え、80℃で両材料を溶解さ
せ被覆溶液を調整した。
<Coating method> (1) Preparation of coating solution 1.5 kg of low-density polyethylene (M420 manufactured by Mitsubishi Kasei) having a melting point of 106 ° C. as a coating material, and polyoxyethylene nonylphenol ether (Emulgen 909 manufactured by Kao) 40 as an elution regulator 0.5 g was weighed and added to 28.5 kg of solvent perchlorethylene, and both materials were dissolved at 80 ° C. to prepare a coating solution.

【0014】(2)コーティング コーターの落下筒の下部(5)から上向きに、温度10
0℃、空筒速度4.4m/sで空気を導入した後、落下
筒の上部(6)から排出するようにして回転ドラムの回
転数を8rpmに合わせ、ついで粒状尿素(粒径:2.
0〜3.4mm)10kgをコーターに仕込み、落下筒
内を肥料が連続的に落下する状態を作った。次に、落下
筒上部の側面(7)から、一流体ノズルを用いて、噴霧
速度400g/min、噴霧圧3kg/cm2 Gの条件
で(1)の被覆溶液を50分間噴霧した。この際、噴霧
位置の落下肥料中に挿入した温度センサーが55℃を維
持するように落下筒へ導入する空気温度を調整した。こ
の噴霧位置の温度は、一部落下肥料を取り出して品温を
測定したところ55℃であり、噴霧中の品温と等しいこ
とが分かった。
(2) From the lower part (5) of the drop cylinder of the coating coater, a temperature of 10
After introducing air at 0 ° C. and an empty cylinder speed of 4.4 m / s, the rotation speed of the rotary drum was adjusted to 8 rpm so that the air was discharged from the upper part (6) of the falling cylinder, and then granular urea (particle diameter: 2.
(0-3.4 mm) 10 kg was charged into a coater to make a state in which the fertilizer continuously dropped in the dropping cylinder. Next, the coating solution of (1) was sprayed from the side surface (7) of the upper part of the dropping cylinder for 50 minutes using a one-fluid nozzle under the conditions of a spraying speed of 400 g / min and a spraying pressure of 3 kg / cm 2 G. At this time, the temperature of the air introduced into the dropping cylinder was adjusted so that the temperature sensor inserted in the dropping fertilizer at the spraying position maintained 55 ° C. The temperature at this spray position was 55 ° C. when part of the fertilizer dropped was taken out and the product temperature was measured, which was found to be equal to the product temperature during spraying.

【0015】<熱処理>以上のようにして作った被覆尿
素500gをビーカーに採り、通風乾燥機に入れ、10
5℃で1時間放置した。 <品質評価> (a)被覆率の測定 被覆肥料10gをはかりとり、小型粉砕器で粉砕したの
ち水を加えて尿素を溶解させ、皮膜のみをろ過回収す
る。この皮膜を乾燥、秤量することにより次式から被覆
率を算出した。
<Heat Treatment> 500 g of the coated urea prepared as described above was placed in a beaker and placed in a ventilation drier for 10
It was left at 5 ° C. for 1 hour. <Quality evaluation> (a) Measurement of coating rate 10 g of coated fertilizer is weighed, pulverized with a small pulverizer, water is added to dissolve urea, and only the film is collected by filtration. The coating rate was calculated from the following equation by drying and weighing this film.

【0016】[0016]

【数1】 [Equation 1]

【0017】(b)欠陥粒子数の測定 被覆肥料10gを試験管にはかりとり、インク10cc
を加え、40℃の恒温水中で1時間放置したのち、被覆
肥料をろ過回収する。付着のインクを水洗すると皮膜の
欠陥部分はインクの色が残るので、これにより欠陥のあ
る粒子を区別できる。この様に部分的に着色した粒子
と、欠陥部分が大きいため全体が着色した粒子、および
すでに尿素が溶出して皮膜だけになった殻の粒子の3種
類を数え、その総数を欠陥粒子数とする。なお、実施例
の被覆尿素10gの総粒子数は約700個であった。
(B) Measurement of the number of defective particles 10 g of coated fertilizer was placed in a test tube, and 10 cc of ink was added.
Is added and left in constant temperature water at 40 ° C. for 1 hour, and then the coated fertilizer is collected by filtration. When the deposited ink is washed with water, the color of the ink remains in the defective portion of the film, so that defective particles can be distinguished. Count three types of particles, partially colored particles, particles that are entirely colored due to the large defect portion, and shell particles that have already eluted only urea to form a film. To do. The total number of particles of coated urea (10 g) in the example was about 700.

【0018】(c)溶出パターン 被覆肥料7gをはかりとり、水200gを加え、その容
器を密閉して25℃の恒温槽に入れる。これを、1週間
毎に取り出し、水を入れ換える。その際、水に溶出した
尿素を全窒素分析計で測定し、次式で溶出率を計算す
る。
(C) Elution pattern 7 g of coated fertilizer is weighed, 200 g of water is added, and the container is sealed and placed in a constant temperature bath at 25 ° C. It is taken out every week and replaced with water. At that time, urea dissolved in water is measured by a total nitrogen analyzer, and the dissolution rate is calculated by the following formula.

【0019】[0019]

【数2】 [Equation 2]

【0020】溶出率の累積値を日数に対してプロットす
ると溶出パターンが描ける。 〔実施例2〕実施例1と同じ条件で被覆を行った後、熱
処理において、90℃、2時間加熱した。得られた被覆
尿素を実施例1に示した方法により品質評価した。その
結果を表1、図1に示す。 〔実施例3〕実施例1の被覆工程で品温を65℃とし、
その他は同一条件で被覆を行った。その後、105℃、
1時間熱処理を行い、得られた被覆尿素を実施例1に示
した方法により品質評価した。その結果を表1、図1に
示す。
When the cumulative value of the dissolution rate is plotted against the number of days, the dissolution pattern can be drawn. [Example 2] After coating under the same conditions as in Example 1, heat treatment was performed at 90 ° C for 2 hours. The quality of the obtained coated urea was evaluated by the method described in Example 1. The results are shown in Table 1 and FIG. [Example 3] In the coating process of Example 1, the product temperature was set to 65 ° C,
Others were coated under the same conditions. After that, 105 ℃,
After heat treatment for 1 hour, the quality of the obtained coated urea was evaluated by the method described in Example 1. The results are shown in Table 1 and FIG.

【0021】〔実施例4〕実施例1の被覆工程で品温を
70℃とし、その他は同一条件で被覆を行った。その
後、105℃、1時間熱処理を行い、得られた被覆尿素
を実施例1に示した方法により品質評価した。その結果
を表1、図1に示す。 〔比較例1〕実施例1と同一条件で被覆を行った。その
後、熱処理は行わず、得られた被覆尿素を実施例1に示
した方法により品質評価した。その結果を表1、図1に
示す。
Example 4 In the coating step of Example 1, coating was carried out under the same conditions except that the product temperature was 70 ° C. Then, heat treatment was carried out at 105 ° C. for 1 hour, and the quality of the obtained coated urea was evaluated by the method shown in Example 1. The results are shown in Table 1 and FIG. [Comparative Example 1] Coating was performed under the same conditions as in Example 1. Thereafter, heat treatment was not performed, and the quality of the obtained coated urea was evaluated by the method described in Example 1. The results are shown in Table 1 and FIG.

【0022】〔比較例2〕実施例3と同一条件で被覆を
行った。その後、熱処理は行わず、得られた被覆尿素を
実施例1に示した方法により品質評価した。その結果を
表1、図1に示す。 〔比較例3〕実施例1の被覆工程で品温を80℃とし、
その他は同一条件で被覆を行った。その後、熱処理は行
わず、得られた被覆尿素を実施例1に示した方法により
品質評価した。その結果を表1、図1に示す。 〔比較例4〕実施例1の被覆工程で品温を85℃とし、
その他は同一条件で被覆を行った。その後、熱処理は行
わず、得られた被覆尿素を実施例1に示した方法により
品質評価した。その結果を表1、図1に示す。
[Comparative Example 2] Coating was performed under the same conditions as in Example 3. Thereafter, heat treatment was not performed, and the quality of the obtained coated urea was evaluated by the method described in Example 1. The results are shown in Table 1 and FIG. [Comparative Example 3] In the coating process of Example 1, the product temperature was set to 80 ° C,
Others were coated under the same conditions. Thereafter, heat treatment was not performed, and the quality of the obtained coated urea was evaluated by the method described in Example 1. The results are shown in Table 1 and FIG. [Comparative Example 4] In the coating process of Example 1, the product temperature was set to 85 ° C,
Others were coated under the same conditions. Thereafter, heat treatment was not performed, and the quality of the obtained coated urea was evaluated by the method described in Example 1. The results are shown in Table 1 and FIG.

【0023】[0023]

【表1】 [Table 1]

【0024】表1、図1から分かるとおり、実施例1〜
4、比較例3,4とも40〜50日間の溶出防止期間を
持っているが、比較例3,4の高い品温で被覆した尿素
は、皮膜欠陥を持つ粒子が多いため、初期溶出が多い。
これに対し、Tm −10℃以下の品温で被覆し、熱処理
した被覆肥料は、初期溶出率が低く、かつ溶出防止期間
が明確である。一方、55,65℃品温で被覆したもの
でも、比較例1,2の通り熱処理しないサンプルは、欠
陥粒子数は少ないが、明確な溶出防止期間を持たなくな
る。この様に、特にS型被覆肥料の製法として本発明の
効果は著しい。
As can be seen from Table 1 and FIG.
4 and Comparative Examples 3 and 4 each have an elution prevention period of 40 to 50 days, but the urea coated at the high product temperature of Comparative Examples 3 and 4 has many particles with film defects, and therefore has a large amount of initial elution. .
On the other hand, the coated fertilizer coated and heat-treated at a product temperature of Tm-10 ° C or lower has a low initial dissolution rate and a clear dissolution prevention period. On the other hand, even if the samples were coated at 55 and 65 ° C. product temperature and were not heat-treated as in Comparative Examples 1 and 2, the number of defective particles was small, but there was no clear elution prevention period. Thus, the effect of the present invention is particularly remarkable as a method for producing an S-type coated fertilizer.

【0025】[0025]

【発明の効果】本発明の製造方法により得られた被覆粒
状肥粒は、初期溶出率が低く、かつ明確な溶出防止期間
を有し、さらに欠陥粒子数が少ないため、特にS型被覆
肥料の製法として多大な利点を有する。
Industrial Applicability The coated granular fertilizer obtained by the production method of the present invention has a low initial elution rate, a clear elution prevention period, and a small number of defective particles. It has a great advantage as a manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例で得られた尿素の溶
出パターンを示す図である。
FIG. 1 is a diagram showing an elution pattern of urea obtained in Examples and Comparative Examples of the present invention.

【図2】本発明の実施例で用いた回転落下式コーターの
概略図である。
FIG. 2 is a schematic view of a rotary drop coater used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 回転ドラム 2 バケット 3 粒状肥料 4 落下筒 5 熱風入口 6 排気口 7 噴霧口 8 モーター 1 rotating drum 2 bucket 3 granular fertilizer 4 falling cylinder 5 hot air inlet 6 exhaust port 7 spray port 8 motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 由香 北九州市八幡西区黒崎城石1番1号 三菱 化学株式会社黒崎開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuka Ota 1-1 Kurosaki Shiroishi, Hachimannishi-ku, Kitakyushu City Mitsubishi Chemical Corporation Kurosaki Development Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を被覆材料として被覆肥料
を製造する際、その樹脂の融点をTm とするとき、(T
m −10)℃以下の品温で肥料表面に皮膜を形成させた
後、(Tm −30)℃以上の温度で0.05〜10時間
熱処理を行う事を特徴とする被覆粒状肥料の製造方法。
1. When producing a coated fertilizer using a thermoplastic resin as a coating material, when the melting point of the resin is Tm, (T
A method for producing a coated granular fertilizer, comprising forming a film on the fertilizer surface at a product temperature of m-10) ° C or lower, and then performing heat treatment at a temperature of (Tm-30) ° C or higher for 0.05 to 10 hours. .
JP7035633A 1995-02-23 1995-02-23 Production of coated granular fertilizer Pending JPH08225387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7035633A JPH08225387A (en) 1995-02-23 1995-02-23 Production of coated granular fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7035633A JPH08225387A (en) 1995-02-23 1995-02-23 Production of coated granular fertilizer

Publications (1)

Publication Number Publication Date
JPH08225387A true JPH08225387A (en) 1996-09-03

Family

ID=12447284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7035633A Pending JPH08225387A (en) 1995-02-23 1995-02-23 Production of coated granular fertilizer

Country Status (1)

Country Link
JP (1) JPH08225387A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203887A (en) * 1997-01-16 1998-08-04 Mitsubishi Chem Corp Production of coated granular fertilizer
JP2002527325A (en) * 1998-10-14 2002-08-27 オーエムエス・インベストメンツ・インク Controlled release fertilizer composition and its preparation process
EP1302455A1 (en) * 2001-10-12 2003-04-16 Bayer Corporation Fertilizer encapsulation using sulfur containing polyols
JP2003137682A (en) * 2001-11-02 2003-05-14 Chisso Corp Method of manufacturing coated bioactive granular material
NL1028198C2 (en) * 2005-02-04 2006-08-07 Holland Novochem B V Free-flowing, mineral oil-free granulate particles of plant auxiliary agent comprises reaction product of plant auxiliary agent containing nitrogen, phosphorus and/or potassium and waste flow of natural material containing nitrogen compound
WO2006091077A1 (en) * 2005-01-14 2006-08-31 Yara International Asa Urea composition having reduced compressibility, caking and dust formation, and process for its preparation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203887A (en) * 1997-01-16 1998-08-04 Mitsubishi Chem Corp Production of coated granular fertilizer
JP2002527325A (en) * 1998-10-14 2002-08-27 オーエムエス・インベストメンツ・インク Controlled release fertilizer composition and its preparation process
EP1302455A1 (en) * 2001-10-12 2003-04-16 Bayer Corporation Fertilizer encapsulation using sulfur containing polyols
US6617412B2 (en) 2001-10-12 2003-09-09 Bayer Corporation Fertilizer encapsulation using sulfur containing polyols
JP2003137682A (en) * 2001-11-02 2003-05-14 Chisso Corp Method of manufacturing coated bioactive granular material
WO2006091077A1 (en) * 2005-01-14 2006-08-31 Yara International Asa Urea composition having reduced compressibility, caking and dust formation, and process for its preparation
US7824565B2 (en) 2005-01-14 2010-11-02 Yara International Asa Urea composition having reduced compressibility, cake formation and dust formation, and process for its preparation
NL1028198C2 (en) * 2005-02-04 2006-08-07 Holland Novochem B V Free-flowing, mineral oil-free granulate particles of plant auxiliary agent comprises reaction product of plant auxiliary agent containing nitrogen, phosphorus and/or potassium and waste flow of natural material containing nitrogen compound

Similar Documents

Publication Publication Date Title
EP0661250B1 (en) Multilayer-coated granular fertilizer
EP0255752B1 (en) Granular fertilizer with a decomposable coating and process for producing the same
JP2003515644A (en) Fully sulphided powder rubber with controllable particle size, its preparation method and application
JPH08225387A (en) Production of coated granular fertilizer
JPH06210152A (en) Method for suppress increase in proportion of amorphous state and recrystallization in crystalline organic compound
EP0998435B1 (en) Controlled release fertilizer compositions and processes for the preparation thereof
JP2002028466A (en) Granular particles treatment device and producing method for coated fertilizer
JPH09249478A (en) Coated granular fertilizer having biodegradable resin coating film
JP3487026B2 (en) Coated granular fertilizer
JPH10203886A (en) Coated granular fertilizer
JPH10203888A (en) Production of coated granular fertilizer
JPH09328386A (en) Production of covered granular fertilizer
JPH09221376A (en) Production of coated granular fertilizer
AU593664B2 (en) Granuler fertilizer with degradative coating
JPH0930884A (en) Production of coated granular fertilizer
CN111902549B (en) Granulated substance, method for producing granulated substance, and method for producing sintered ore
JPH10203887A (en) Production of coated granular fertilizer
US3516942A (en) Process for drying capsule walls of hydrophilic polymeric material
JP2956122B2 (en) Wet granulation of carbon black
JPH096053A (en) Apparatus for producing carrier for electrophotographic developer
JP2002284594A (en) Coated granular fertilizer having biodegradable coating film
JPH11220905A (en) Production of coated granular fertilizer
JPS63183101A (en) Production of metal-coated powder
KR910008475B1 (en) Fertilizer with a degrative coating
JPH08294621A (en) High efficiency coating method