JPH08294621A - High efficiency coating method - Google Patents

High efficiency coating method

Info

Publication number
JPH08294621A
JPH08294621A JP12715095A JP12715095A JPH08294621A JP H08294621 A JPH08294621 A JP H08294621A JP 12715095 A JP12715095 A JP 12715095A JP 12715095 A JP12715095 A JP 12715095A JP H08294621 A JPH08294621 A JP H08294621A
Authority
JP
Japan
Prior art keywords
coating
stirring
powder
coating method
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12715095A
Other languages
Japanese (ja)
Other versions
JP3594699B2 (en
Inventor
Kazumi Otaki
一実 大滝
Yasuo Suzuki
康夫 鈴木
Kazuyuki Matsui
一幸 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12715095A priority Critical patent/JP3594699B2/en
Publication of JPH08294621A publication Critical patent/JPH08294621A/en
Application granted granted Critical
Publication of JP3594699B2 publication Critical patent/JP3594699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To conduct coating, agitation, and drying with a powder agitation tank kept at reduced pressure in a method in which powder is immersed in a coating resin solution in the agitation tank to be coated or is spray coated with the resin solution. CONSTITUTION: A method enables high efficiency spray coating and liquid immersion coating to obtain high quality products and materializes the following remarkable effects: In spray method, since liquid droplets are small in size and distributed uniformly, the coated surface of particles is smooth and the coating film is uniform so that stable properties such as electrification properties and electric properties are obtained. In liquid immersion method, a smooth, uniform coating film is obtained in a short time to obtain stable quality properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉体粒子表面に樹脂を
高効率にコーティングする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating the surface of powder particles with a resin with high efficiency.

【0002】[0002]

【従来の技術】造粒装置は、1970年頃から製薬・食
品業界を中心に、少量多品種生産、混合、造粒、乾燥工
程を同一容器内で処理できるので盛んに導入されてき
た。また、造粒製品に要求される社会環境は、少量多品
種生産に対し、粒径・密度・形状等の造粒物が任意に得
られ混合・造粒・コーティング・乾燥が単独設備によっ
て行なわれ、任意の工程選択が可能な複合操作と、前記
した品質を任意に得ることができる多機能型のFA化無
人化システムを望んでいた。これらの要望を受け、各装
置メーカーにおいて、1980年頃から複合造粒装置の
開発、商品化が進められ、流動層、撹拌、転動の各造粒
法を同一容器内で処理する装置が実用化された。
2. Description of the Related Art A granulating apparatus has been widely introduced since 1970, mainly in the pharmaceutical and food industries, because it can perform small-quantity multi-product production, mixing, granulation, and drying processes in the same container. In addition, the social environment required for granulated products is such that, for small-quantity, high-mix production, granulated products of particle size, density, shape, etc. can be obtained arbitrarily, and mixing, granulation, coating, and drying can be performed by a single facility. Therefore, there has been a demand for a multifunctional FA automated unmanned system capable of arbitrarily obtaining the above-described quality and a combined operation capable of selecting any process. In response to these demands, each device manufacturer has been developing and commercializing a composite granulating device since about 1980, and a device for treating each granulation method of fluidized bed, stirring, and rolling in the same container has been put into practical use. Was done.

【0003】この複合型造粒法には、流動層造粒、撹拌
造粒、転動造粒の各造粒法を組合わせたものが多く、例
えば、その組合わせは、次の表1で示される。
This composite type granulation method is often a combination of granulation methods of fluidized bed granulation, stirring granulation and rolling granulation. For example, the combination is shown in Table 1 below. Shown.

【表1】 複合型造粒は、同一容器内に撹拌造粒、転動造粒、流動
層造粒の各機能を結合あるいは融合し、造粒物の形状、
密度、粒径などの品質を自在に製造する機能や、混合、
造粒、乾燥、コーティングなどの単位操作を目的、用途
に応じて任意に操作できる機能がある。
[Table 1] Composite granulation combines or fuses the functions of stirring granulation, tumbling granulation and fluidized bed granulation in the same container,
The ability to freely produce quality such as density and particle size, mixing,
It has the function of unit operation such as granulation, drying, coating, etc., and it can be operated arbitrarily according to the application.

【0004】次に、各種複合型造粒装置の具体例を挙げ
ると、以下の装置が挙げられる。まず撹拌流動層型で
は、奈良機械製作所製の「スーパーファインマトリック
スSMA型」や、パウレックス社製の「マルチフレック
スグラニュレーターMP型」がある。また、転動流動層
型では、岡田精工社製の「スピラコータSP型」が挙げ
られる。そして、撹拌転動流動層型では、フロイント産
業社製の「スパイラフローSFC型」や不二パウダル社
製の「ニューマルメライザーNQ型」等である。前記流
動層装置は、大半が回分式(バッチ処理方式)であり、
流動板や撹拌羽根上部あるいは側面よりスプレーガン
(スプレーノズル)により噴霧造粒(コーティング)さ
れる。噴霧造粒処理が終了した処理品は、下部側面にあ
る排出弁を介し製品排出口から外部へ排出される。これ
ら装置・方式等については以下に示す提案がなされてい
る。
Next, specific examples of various composite granulating apparatuses include the following apparatuses. First, as the stirred fluidized bed type, there are "Super Fine Matrix SMA type" manufactured by Nara Machinery Co., Ltd. and "Multiflex Granulator MP type" manufactured by Paulex. As the rolling fluidized bed type, "Spiracoater SP type" manufactured by Okada Seiko Co., Ltd. may be mentioned. The stirring rolling fluidized bed type includes “Spiral Flow SFC type” manufactured by Freund Sangyo Co., Ltd. and “New Marmerizer NQ type” manufactured by Fuji Paudal. Most of the fluidized bed apparatus is a batch type (batch processing type),
Spray granulation (coating) is performed from the top or side of the fluid plate or stirring blade with a spray gun (spray nozzle). The processed product after the spray granulation process is discharged to the outside from the product discharge port via the discharge valve on the lower side surface. The following proposals have been made for these devices and systems.

【0005】その代表例の提案としては、特公平2−5
6935号、特公平3−1063号、特公平3−420
28号、特公平3−42029号、特公平3−1354
30号、特公平5−4128号、特公平5−49901
号、特公平5−11508号、特公平5−192555
号、特公平6−186号等の各公報があり、これら公報
は噴霧液滴径について、本発明とは異なり、微粒化制御
していないので、粉体粒子衝突時に多くの分裂反跳液滴
を発生させ、この液滴が装置内壁面や回転羽根あるいは
他の粉体粒子に付着し、凝集体を多く発生させている。
また、それと同時に分裂反跳液滴は、噴霧液滴に比べ非
常に微粒化されているため、瞬時に固化するものも発生
し、固化したコート物質は、乾燥固化状態(コートカ
ス)で粉体表面に付着し、コート品質を悪化させたりし
ている。
As a proposal of the representative example, Japanese Patent Publication No. 2-5
No. 6935, Japanese Examined Patent Publication 3-1063, Japanese Examined Examination 3-420
No. 28, Japanese Examined Patent Publication No. 3-42029, Japanese Examined Japanese Patent Publication No. 3-1354
No. 30, JP-B-5-4128, JP-B-5-49901
No. 5, Japanese Patent Publication 5-11508, Japanese Patent Publication No. 5-192555
And Japanese Patent Publication No. 6-186. These publications do not control atomization droplet diameter, unlike the present invention, so that many split recoil droplets are generated when powder particles collide. Are generated, and these droplets adhere to the inner wall surface of the apparatus, the rotating blades, or other powder particles, and a lot of aggregates are generated.
At the same time, the split recoil liquid droplets are much smaller than the spray liquid droplets, so that some of them solidify instantly, and the solidified coating material is dried and solidified (coat dust) in the powder surface. Adheres to and deteriorates the coat quality.

【0006】一方、被コーティング物質の表面に滑らか
な被膜を形成させることを目的とする浸漬法も紹介され
ている。この方式は医薬品分野等で錠丸剤をコーティン
グ液中に浸漬させ、これを引き上げ乾燥させる方法であ
るが、小粒子径の粉粒体のコーティングには不向きであ
った。小粒径の粉粒体の場合、浸漬後の乾燥工程で粒子
同士が付着・凝集を起し最終的には団塊状態となり、一
次粒子としての形態が要求される分野では困難であっ
た。また、コーティング液の溶媒沸点が100℃以上の
溶媒では、前記紹介した各造粒装置内での温度が沸点以
下となるケースが多々あるため、乾燥不良品が発生する
こともある。特にジャケット加熱による乾燥を行なう混
合造粒法、ミキサー等では、その傾向は顕著で、コート
後の粒子がブロック状の塊になりやすい。また、装置内
に残留溶媒のガスが充満しやすく、環境・安全面で問題
が残る。他方、以上紹介した各造粒法はバッチ処理(回
分式)であると同時に、スプレー法や浸漬法では1バッ
チあたりの処理時間が長く生産性も悪い。そのため、生
産性を向上させる為に並列に同一機種あるいはスケール
の大きな装置を導入して生産性を向上させなければなら
ず、製品のコストアップにもつながっている。
On the other hand, a dipping method for forming a smooth film on the surface of the substance to be coated has also been introduced. This method is a method of immersing a tablet pill in a coating solution in the field of pharmaceuticals and the like, and pulling it up and drying it, but it was not suitable for coating powder particles having a small particle size. In the case of a powder having a small particle diameter, the particles adhere to each other and agglomerate in the drying step after the immersion to finally become a nodule state, which is difficult in the field where the form of primary particles is required. Further, in a solvent having a solvent boiling point of 100 ° C. or higher in the coating liquid, the temperature in each of the above-mentioned granulating apparatuses is often lower than the boiling point, so that a defective product may be produced. In particular, in a mixing granulation method in which drying is performed by heating with a jacket, a mixer, or the like, the tendency is remarkable, and the particles after coating tend to form block-like lumps. In addition, the residual solvent gas is likely to fill the inside of the device, which poses a problem in terms of environment and safety. On the other hand, each of the granulation methods introduced above is batch processing (batch method), and at the same time, the spraying method and the dipping method have long processing time per batch and poor productivity. Therefore, in order to improve the productivity, it is necessary to install the same model or a large-scale device in parallel to improve the productivity, which leads to an increase in product cost.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、上記従来のコーティング方法の問題点を解決するこ
とによって、粉体粒子を高効率にコーティングでき、且
つ容易に高品位のコーティング品が得られる造粒装置に
よるコーティング方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional coating method and to coat powder particles with high efficiency, and to provide a high-quality coated product easily. It is to provide a coating method using the obtained granulating apparatus.

【0008】[0008]

【課題を解決するための手段】本発明によれば、第一
に、被コーティング粉粒体が粉粒体撹拌槽内でコーティ
ング樹脂溶液中に浸った状態でコーティングされるコー
ティング方法において、該粉粒体撹拌層内が減圧状態で
コート・撹拌・乾燥を行なうことを特徴とする高効率コ
ーティング方法が提供される。すなわち、このコーティ
ング方法は、コーティング装置の粉粒体撹拌造粒装置内
に、被コーティング物質(粉粒体)を投入し、次にコー
ティング樹脂溶液を被コーティング物質が完全に浸るま
で投入する。その状態で撹拌層を密閉し2〜5分間撹拌
羽根と解砕羽根を回転させ、全粉粒体を浸漬させる。そ
して、その状態で撹拌層内の内部圧力を500mmHg
以下になるまで減圧させ、コート・撹拌・乾燥を行な
う。層内含水率が20%以下になったら、撹拌羽根と解
砕羽根の回転数をアップさせ、コーティング粉粒体を得
ることを特徴とする方法である。
According to the present invention, firstly, in a coating method in which a powder or granular material to be coated is coated while being immersed in a coating resin solution in a powder or granular material stirring tank, Provided is a high-efficiency coating method characterized in that coating, stirring, and drying are performed in a granular stirring layer under reduced pressure. That is, in this coating method, the substance to be coated (powder or granules) is charged into the powder / granule stirring / granulating device of the coating apparatus, and then the coating resin solution is charged until the substance to be coated is completely immersed. In this state, the stirring layer is closed and the stirring blade and the crushing blade are rotated for 2 to 5 minutes to immerse all the powder and granules. Then, in that state, the internal pressure in the stirring layer is set to 500 mmHg.
Reduce the pressure to the following and coat, stir, and dry. When the water content in the layer becomes 20% or less, the number of rotations of the stirring blade and the crushing blade is increased to obtain a coating powder or granule.

【0009】また、本発明によれば、第二に、被コーテ
ィング粉粒体が粉粒体撹拌槽内で転動流動状態に保持さ
れた状態で噴霧コーティングされるコーティング方法に
おいて、該粉粒体撹拌層内が減圧状態でコート・撹拌・
乾燥を行なうことを特徴とする高効率コーティング方法
が提供される。すなわち、このコーティング方法は、粉
粒体を粉粒体撹拌造粒装置内で転動流動状態にさせ、そ
の状態の粉粒体にコーティング樹脂溶液を噴霧するコー
ティング方法で、そのときの撹拌造粒装置内圧力が減圧
状態であることを特徴とする方法である。
Further, according to the present invention, secondly, in the coating method in which the powdery or granular material to be coated is spray-coated in a state in which the powdery or granular material is kept in a tumbling flow state in the powdery or granular stirring tank, the powdery or granular material is provided. Coat / stir in a reduced pressure inside the stirring layer
A high efficiency coating method characterized by performing drying is provided. That is, this coating method is a coating method in which the granular material is tumbled and fluidized in a granular material agitation granulating device, and the coating resin solution is sprayed onto the granular material in that state, with the agitation granulation at that time. The method is characterized in that the internal pressure of the apparatus is in a reduced pressure state.

【0010】また、本発明によれば、第三に上記第一又
は第二に記載したコーティング方法において、前記粉粒
体撹拌槽が、撹拌を目的とする撹拌羽根と解砕を目的と
する解砕羽根を備え且つ冷却・加温が可能なジャケット
を有し、コート・撹拌・乾燥時は、ジャケット加熱温度
がコーティング樹脂溶液中の溶媒沸点温度と同等若しく
はそれ以上の温度であることを特徴とする高効率コーテ
ィング方法が提供され、第四に、上記第三に記載したコ
ーティング方法において、前記粉粒体撹拌槽に備えられ
た撹拌羽根と解砕羽根の回転が、コート時は撹拌乾燥時
の回転数の1/2以下の回転数で行なわれ、しかも撹拌
羽根回転と解砕羽根回転の比が1:2〜1:4の範囲で
コーティングされること特徴とする高効率コーティング
方法が提供される。すなわち、第三のコーティング方法
は、粉粒体を撹拌させる撹拌羽根と解砕羽根を有する粉
粒体撹拌造粒装置において、冷・加熱が可能なジャケッ
ト内温度が、コーティング樹脂溶液中の溶媒沸点温度と
同等若しくはそれ以上の加熱温度でコート・撹拌・乾燥
することを特徴とする方法であり、第四のコーティング
方法は、前記粉粒体撹拌層内に設置される撹拌羽根と解
砕羽根の回転数比が1:2〜1:4の範囲で回転し、乾
燥時はコート・撹拌時の2倍以上の回転数であることを
特徴とする方法である。
According to the present invention, thirdly, in the coating method described in the first or second aspect, the powdery or granular material stirring tank comprises a stirring blade for stirring and a solution for crushing. It is equipped with a crushing blade and has a jacket that can be cooled and heated, and during coating, stirring and drying, the jacket heating temperature is equal to or higher than the boiling point of the solvent in the coating resin solution. A high-efficiency coating method is provided. Fourthly, in the coating method described in the above-mentioned third, the rotation of the stirring blade and the crushing blade provided in the powdery particle stirring tank, when coating, stirring and drying A high-efficiency coating method is provided, which is performed at a rotation speed of 1/2 or less of the rotation speed and is coated in a ratio of rotation of a stirring blade to rotation of a crushing blade of 1: 2 to 1: 4. Ru That is, the third coating method is a powder / granule stirring / granulating apparatus having a stirring blade and a crushing blade for stirring the powder / granular material, and the temperature inside the jacket that allows cooling / heating is the boiling point of the solvent in the coating resin solution. The method is characterized by coating, stirring, and drying at a heating temperature equal to or higher than the temperature, and the fourth coating method is a stirring blade and a crushing blade installed in the powder / granule stirring layer. The method is characterized in that the number of rotations is within the range of 1: 2 to 1: 4, and that the number of rotations during drying is twice or more that during coating and stirring.

【0011】更に、本発明によれば、上記第二に記載し
たコーティング方法において、前記噴霧コーティング
が、粉粒体粒子径の1/5以下の噴霧液滴径で、且つ平
均粒径が2〜15μmの噴霧液滴で実施されることを特
徴とする高効率コーティング方法が提供され、第六に、
上記第五に記載したコーティング方法において、前記噴
霧液滴径が、レーザー式粒度分布計測器によって計測さ
れた値で、体積累積値の10%値と90%値の比(90
%値/10%値)が5.00以下であることを特徴とす
る高効率コーティング方法が提供され、また第七に、上
記第一に記載したコーティング方法において、前記粉粒
体撹拌層内が、内部圧力500mmHg以下の減圧雰囲
気下にあることを特徴とする高効率コーティング方法が
提供される。
Further, according to the present invention, in the coating method described in the second aspect, the spray coating has a spray droplet diameter that is ⅕ or less of the particle diameter of the powder or granular material, and has an average particle diameter of 2 to 2. Provided is a highly efficient coating method, characterized in that it is carried out with a spray droplet of 15 μm, and sixthly,
In the coating method described in the above fifth, the spray droplet diameter is a value measured by a laser type particle size distribution measuring device and is a ratio (90%) of a 10% value and a 90% value of a cumulative volume value.
% Value / 10% value) is less than or equal to 5.00, and seventhly, in the coating method described in the above-mentioned first, the inside of the granular material stirring layer is A high-efficiency coating method is provided, which is characterized by being under a reduced pressure atmosphere having an internal pressure of 500 mmHg or less.

【0012】[0012]

【作用】本発明では、コーティング装置として、例えば
図1に示されるような撹拌混合造粒装置を用いる。図1
において、1は粉粒体撹拌造粒装置、2は粉粒体解砕羽
根、3は粉粒体撹拌羽根、4はスプレーノズル、5は冷
・加熱ジャケット、6はバグフィルター、7は減圧用真
空ポンプ、8はコーティング樹脂溶液供給ポンプ、9は
溶媒トラップ装置、10は溶媒回収装置、11は回収溶
媒である。造粒工程(コート・撹拌・乾燥)において
は、粉粒体撹拌造粒装置1内に粉粒体を供給し、粉粒体
撹拌羽根3と粉粒体解砕羽根2を同時に回転させ、粉粒
体の転動流動層を形成させる。
In the present invention, as the coating device, for example, a stirring and mixing granulating device as shown in FIG. 1 is used. FIG.
In the above, 1 is a granule agitation granulator, 2 is a granule crushing blade, 3 is a granule agitator blade, 4 is a spray nozzle, 5 is a cooling / heating jacket, 6 is a bag filter, and 7 is for decompression. A vacuum pump, 8 is a coating resin solution supply pump, 9 is a solvent trap device, 10 is a solvent recovery device, and 11 is a recovered solvent. In the granulating step (coating / stirring / drying), the powder / granular material stirring / granulating device 1 is supplied with the powder / granular material stirring blade 3 and the powder / granular material crushing blade 2 are simultaneously rotated to Form a rolling fluidized bed of granules.

【0013】本発明の第一のコーティング方法である液
浸漬造粒法(図1の右半分側に模式的に表示される)
は、粉粒体解砕羽根2が隠れる迄粉粒体を投入し、その
後コーティング樹脂溶液12を粉粒体13が完全に浸漬
するまで投入する。そして、その状態で粉粒体撹拌造粒
装置1を密閉し、粉粒体全粒子表面にコーティング樹脂
溶液中の樹脂が付着するように、2〜5分粉粒体撹拌羽
根3と粉粒体解砕羽根2を同時に回転させる。その後、
粉粒体撹拌造粒装置内を減圧用真空ポンプ7で層内圧力
が500mmHg以下になるように減圧させながら、コ
ーティング・撹拌・乾燥を行なうものである。
Liquid immersion granulation method, which is the first coating method of the present invention (schematically displayed on the right half side of FIG. 1)
Is charged until the powder / particle crushing blade 2 is hidden, and then the coating resin solution 12 is charged until the powder / particle 13 is completely immersed. Then, in this state, the powder / granule stirring / granulating device 1 is closed, and the powder / granular material stirring blade 3 and the powder / granular material are provided for 2 to 5 minutes so that the resin in the coating resin solution adheres to the surfaces of all the particles of the granular material. The crushing blades 2 are rotated simultaneously. afterwards,
Coating, stirring, and drying are performed while depressurizing the inside of the powder-granulate agitation granulator with a vacuum pump 7 for depressurization so that the internal pressure of the layer becomes 500 mmHg or less.

【0014】一方、本発明の第二のコーティング方法で
あるスプレー法(図1の左半分側に模式的に表示され
る)は、粉粒体撹拌羽根3と粉粒体解砕羽根2を回転さ
せ、装置内で粉粒体を転動流動状態にさせる。その状態
の粉粒体に、コーティング樹脂溶液供給ポンプ8により
コーティング液を供給し、スプレーノズル4を介して微
粒液滴化したコーティング樹脂溶液を噴霧する。そし
て、その時の装置内圧力は、液浸漬造粒法と同じ条件で
行ない、コーティング・撹拌・乾燥を行なうものであ
る。
On the other hand, in the spray method (schematically displayed on the left half side of FIG. 1) which is the second coating method of the present invention, the granular material stirring blade 3 and the granular material crushing blade 2 are rotated. Then, the granular material is brought into a rolling fluid state in the apparatus. The coating liquid is supplied to the powder or granular material in that state by the coating resin solution supply pump 8, and the coating resin solution atomized into fine particles is sprayed through the spray nozzle 4. The pressure in the apparatus at that time is the same as in the liquid immersion granulation method, and coating, stirring, and drying are performed.

【0015】本発明の減圧雰囲気下におけるコーティン
グ・撹拌・乾燥時に発生する排気溶媒は、溶媒トラップ
装置9によって回収され、排気管からは熱風ガスのみが
排気される。本発明のコーティングされた粉粒体は、粉
粒体撹拌造粒装置内に設置された計測器(水分計又は溶
剤ガス濃度計)によって管理され、層内含水率が20%
以下になったら回収され、次工程に供給される。
The exhaust solvent generated during coating, stirring and drying in the reduced pressure atmosphere of the present invention is recovered by the solvent trap device 9, and only hot air gas is exhausted from the exhaust pipe. The coated granular material of the present invention is controlled by a measuring device (moisture meter or solvent gas concentration meter) installed in the granular material agitation granulator, and the water content in the layer is 20%.
When it becomes the following, it is collected and supplied to the next process.

【0016】本発明のコーティング方法は、コート液を
噴霧する方法でも、粉体粒子をコート液中に浸漬させる
方法でもよく、スプレー方法、浸漬方法ともにコーティ
ング時・乾燥時は、ジャケット加熱をする。そのときの
加熱温度は、コーティング樹脂溶液中の溶媒沸点よりも
高い温度に設定する。この温度は装置内の減圧状態で溶
媒沸点が下がるので、減圧状態を確認しながらジャケッ
ト温度を設定する。また、本発明の装置内における圧力
は、500mmHg以下迄減圧させて、コーティング・
乾燥を行なうが、減圧が弱い(500mmHg〜760
mmHg)と乾燥操作時の乾燥時間が長くなったり、凝
集粒子が多発し生産効率が大幅に低下する。
The coating method of the present invention may be either a method of spraying the coating liquid or a method of immersing the powder particles in the coating liquid. In both the spraying method and the dipping method, jacket heating is performed during coating and drying. The heating temperature at that time is set to a temperature higher than the boiling point of the solvent in the coating resin solution. Since this temperature lowers the boiling point of the solvent in the depressurized state in the apparatus, the jacket temperature is set while confirming the depressurized state. Further, the pressure in the apparatus of the present invention is reduced to 500 mmHg or less, and coating /
Drying is performed, but the reduced pressure is weak (500 mmHg to 760
mmHg) and the drying time during the drying operation becomes long, and agglomerated particles frequently occur, resulting in a significant decrease in production efficiency.

【0017】次に、本発明における各コーティング方法
について説明する。噴霧する方法は、噴霧されるコート
液滴径を平均粒径で2〜15μmに、且つ体積累積値の
10%値と90%値の比(90%値/10%値)を5.
00以下に制御して噴霧コーティングする。噴霧液滴径
は、好ましくは3〜10μmである。噴霧液滴径が15
μmを超えると、被コーティング粒子(小粒径粉粒体)
表面上に形成された乾燥後の膜が大きな凹凸状として形
成される為、不均一なコート被膜となる。また、突起部
分では膜内部が乾燥しにくくなる為(膜表面が乾燥して
も、内部は未乾燥状態として存在する)、他のコーティ
ング物質(コーティング後の小粒径粉体粒子)との接触
時及び衝突時に接合して凝集体となる。また、液滴径が
大きいと、所望のコーティング膜厚が得られない問題
と、液滴が被コーティング粒子に衝突した際、液滴が分
裂し微粒な分裂反跳液滴となり装置内壁部に付着した
り、瞬時に乾燥し固形化して層外へ排出され、歩留り低
下を招く原因となる。一方、噴霧液滴径が2μm未満と
なると、噴霧後の液滴中に含まれる溶媒分が瞬時に蒸発
(乾燥濃度上昇による)して膜化できなくなる。このた
め、コート液中の樹脂分が乾燥固形粒子となり、飛散物
あるいは樹脂カスとして装置内壁部へ積着したり、排気
側へ飛び歩留り低下を生じることもある。
Next, each coating method in the present invention will be described. The method of spraying is such that the diameter of the coated droplets to be sprayed is 2 to 15 μm in average particle diameter, and the ratio of the 10% value and the 90% value (90% value / 10% value) of the cumulative volume value is 5.
It is controlled to be 00 or less and spray coating is performed. The spray droplet diameter is preferably 3 to 10 μm. Spray droplet size is 15
If it exceeds μm, coated particles (small particle size particles)
Since the dried film formed on the surface is formed as large irregularities, it becomes a non-uniform coat film. In addition, since the inside of the film is difficult to dry at the protruding part (even if the surface of the film is dried, the inside remains in an undried state), contact with other coating substances (small-sized powder particles after coating) At the time of collision and at the time of collision, they become aggregates. Also, if the droplet diameter is large, the desired coating film thickness cannot be obtained, and when the droplet collides with the particles to be coated, the droplets break up and become fine split recoil droplets, which adhere to the inner wall of the device. Or it is instantly dried and solidified and discharged to the outside of the layer, which causes a decrease in yield. On the other hand, when the diameter of the sprayed droplets is less than 2 μm, the solvent component contained in the sprayed droplets instantly evaporates (due to an increase in dry concentration), and it becomes impossible to form a film. For this reason, the resin component in the coating liquid may become dry solid particles, which may be deposited as scattered matter or resin debris on the inner wall of the apparatus, or fly to the exhaust side to reduce the yield.

【0018】本発明のスプレー法によるコーティング
は、噴霧液滴径を微粒化し且つコーティング雰囲気(環
境)を減圧状態にしているので、コート液溶媒が溶剤系
でも水系でも高固形液でも、均一な膜形成が可能であ
る。特に水系では、水の沸点は、溶剤系よりも高いので
より効果的(効率的)に被膜形成が可能である。本発明
のスプレー法によるコーティングは、噴霧液滴が体積累
積値の10%値と90%値の比(90%値/10%値)
が、5.00以下の粒度分布の液滴が噴霧・コーティン
グされる。しかし、前記比が5.00以上になると、液
滴分布における小粒径側液滴でコートされた膜厚及び膜
均一性と、大粒径側液滴でコートされた膜厚及び均一性
が大きく異なる。その為、同一処理品内での品質ばらつ
きが大きくなり、サンプリングによっては、所望の品質
特性が得られない場合が生じる。
In the coating by the spray method of the present invention, since the atomized droplet size is made fine and the coating atmosphere (environment) is in a reduced pressure state, a uniform film can be obtained regardless of whether the coating liquid solvent is a solvent system, an aqueous system or a high solid solution. It can be formed. In particular, in the case of an aqueous system, the boiling point of water is higher than that of a solvent system, so that a film can be formed more effectively (efficiently). In the coating by the spray method of the present invention, the sprayed droplets have a ratio of the 10% value and the 90% value of the cumulative volume value (90% value / 10% value).
However, droplets having a particle size distribution of 5.00 or less are sprayed and coated. However, when the ratio is 5.00 or more, the film thickness and the film uniformity coated with the small particle size droplets and the film thickness and the uniformity coated with the large particle size side droplets in the liquid droplet distribution. to differ greatly. Therefore, the quality variation in the same processed product becomes large, and the desired quality characteristics may not be obtained depending on the sampling.

【0019】本発明のスプレーコーティング方法は、前
記したスプレー法及び条件で噴霧されるが、コーティン
グ装置内において、噴霧される液滴中の溶媒沸騰温度域
でコーティングされる。液滴の溶媒沸騰温度域でコーテ
ィングされると噴霧直後、粉体粒子表面に液滴が衝突・
膜化し、その瞬間に液滴中の溶媒が蒸発するので膜が固
化する。しかし、コーティング装置内の温度環境が、液
滴中溶媒の沸騰温度域よりも低いと、コーティング後膜
化しても膜内部は固化しない状態で存在しやすくなる。
その場合、他の粒子と接触あるいは衝突、更に内壁面に
接触・衝突したとき、付着・凝集・固着等が発生する。
In the spray coating method of the present invention, spraying is carried out under the above-mentioned spraying method and conditions, but the coating is carried out in the solvent boiling temperature range in the sprayed droplets in the coating apparatus. If the droplets are coated in the solvent boiling temperature range, they will collide with the surface of the powder particles immediately after spraying.
A film is formed, and at that moment, the solvent in the droplets is evaporated and the film is solidified. However, if the temperature environment in the coating apparatus is lower than the boiling temperature range of the solvent in the droplets, the inside of the film tends to exist in a state where it does not solidify even after being formed into a film after coating.
In that case, when the particles contact or collide with other particles, and further contact or collide with the inner wall surface, adhesion, aggregation, sticking, etc. occur.

【0020】一方、被コーティング粉粒体をコーティン
グ樹脂粒子中に浸す方法の場合は、乾燥後の被膜厚みが
目標厚みになる様にコーティング樹脂溶液を被コーティ
ング粉粒体が投入されてある装置内へ入れる。そして、
被コーティング粉粒体が全て浸るまで、撹拌・混合を行
なう。撹拌・混合時間としては、2〜5分間行なえば十
分である。本発明の粉粒体撹拌混合造粒層は、内壁部と
外壁部の間に冷・温水が流せるジャケットを有し、コー
ティング・乾燥時は、ジャケット内を加熱する。そのと
きのジャケット加熱方法・条件は、スプレー法とほぼ同
じ方法・条件で行なえばよく、装置内圧力も同じでよ
い。しかし、〔コーティング時の撹拌羽根回転数と解砕
羽根回転数〕と〔乾燥時に於ける撹拌羽根回転数と解砕
羽根回転数〕は変える必要がある。コーティング時の撹
拌羽根と解砕羽根の回転数は、それぞれ〔200〜60
0rpm、700〜2000rpm〕、乾燥時はコーテ
ィング時における各羽根回転数の〔1.5〜3倍〕の回
転数で行なう。コーティング時における羽根回転数が前
記回転数より低いと、均一な混合撹拌作用が働かず、撹
拌されている粉粒体全体へコーティングがされにくくな
る。また、反対に羽根回転数が高いと、撹拌混合作用は
問題ないが、コーティング樹脂溶液が跳ね上ったりし
て、樹脂の付着効率が低下したり(コーティング時)、
コーティングされた樹脂が剥離したり、粉体粒子自身が
破壊(粉砕)されることがある。(乾燥時)
On the other hand, in the case of the method of immersing the powder or granular material to be coated in the coating resin particles, in the apparatus in which the powder or granular material to be coated is charged with the coating resin solution so that the coating thickness after drying becomes the target thickness. Put in. And
Stir and mix until all the coated particles are soaked. It is sufficient that the stirring and mixing time is 2 to 5 minutes. The agitation and mixing granulation layer of the present invention has a jacket between the inner wall and the outer wall through which cold / hot water can flow, and the inside of the jacket is heated during coating / drying. The jacket heating method and conditions at that time may be substantially the same as the spray method, and the apparatus internal pressure may be the same. However, it is necessary to change [rotation speed of stirring blade and crushing blade during coating] and [rotation speed of stirring blade and crushing blade during drying]. The rotation speeds of the stirring blade and the crushing blade during coating are [200 to 60], respectively.
0 rpm, 700 to 2000 rpm], and the drying is performed at a rotation speed of [1.5 to 3 times] each blade rotation speed during coating. If the number of rotations of the blade during coating is lower than the number of rotations described above, the uniform mixing and stirring action does not work, and it becomes difficult to coat the entire agitated powder or granular material. On the contrary, if the blade rotation speed is high, the stirring and mixing action does not occur, but the coating resin solution jumps up, and the resin adhesion efficiency decreases (during coating).
The coated resin may peel off or the powder particles themselves may be broken (crushed). (When dry)

【0021】本発明のコーティング方法は、噴霧方法で
も液浸漬方法でも、より均一な膜を形成させることによ
り、前記問題を解決した高効率コーティング方法であ
る。
The coating method of the present invention is a high-efficiency coating method that solves the above-mentioned problems by forming a more uniform film by either a spraying method or a liquid immersion method.

【0022】[0022]

【実施例】次に、本発明を実施例により更に詳細に説明
する。各実施例に共通の固定条件は次の通りである。 使用コート液:10%水溶性樹脂溶液(PVA−20
5:クラレ社製) 20%樹脂溶液(溶媒:トルエン) 使用粉体粒子:平均粒子径30〜100μmのフェラ
イトキャリア 各キャリアは、篩分けによって目的の粒度に調整 処理量 :2kg/バッチ その他 :液滴粒径は、レーザー式粒径分布測定
器(LDSA−2300A)にて計測して求める。な
お、計算方法は、〔ロージン・ラムラー分布関数〕の式
で算出し、SMD(体面積径)値を液滴平均粒径とし
た。また、体積粒径比〔D90/D10〕は、前記計算
方法で得られた体積累積値を求め、そのD90/D10
の比を算出した。また、溶媒沸点は、各溶媒の減圧時に
於ける突沸する温度を計測しその時の温度を溶媒沸点と
し、ジャケット加熱温度を設定した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The fixed conditions common to each example are as follows. Coating liquid used: 10% water-soluble resin solution (PVA-20
5: Kuraray Co., Ltd.) 20% resin solution (solvent: toluene) Powder particles used: Ferrite carrier having an average particle diameter of 30 to 100 μm Each carrier is adjusted to a target particle size by sieving Treatment amount: 2 kg / batch Others: Liquid The droplet size is determined by measuring with a laser type particle size distribution analyzer (LDSA-2300A). In addition, the calculation method was calculated by the formula of [Rosin-Rammler distribution function], and the SMD (body area diameter) value was used as the droplet average particle diameter. For the volume particle size ratio [D90 / D10], the volume cumulative value obtained by the above calculation method is calculated, and the D90 / D10
Was calculated. For the boiling point of the solvent, the temperature at which each solvent bumps at the time of depressurization was measured, and the temperature at that time was taken as the solvent boiling point, and the jacket heating temperature was set.

【0023】実施例1〜8 表2に示す条件でフェライトキャリアにコート液をコー
ティングし、PVA被覆キャリアを得た。
Examples 1 to 8 Ferrite carriers were coated with a coating solution under the conditions shown in Table 2 to obtain PVA-coated carriers.

【0024】[0024]

【表2】 [Table 2]

【0025】比較例1 実施例1の装置内圧力を〔500mmHg〕から〔常圧
(760mmHg)〕に替えた他は、全て実施例1と同
条件でPVA被覆キャリアを得た。
Comparative Example 1 A PVA-coated carrier was obtained under the same conditions as in Example 1, except that the pressure inside the apparatus of Example 1 was changed from [500 mmHg] to [normal pressure (760 mmHg)].

【0026】比較例2 実施例2の〔撹拌羽根回転数〕と〔解砕羽根回転数〕を
適正回転数より低く設定した他は、全て実施例2と同条
件でPVA被覆キャリアを得た。
Comparative Example 2 A PVA-coated carrier was obtained under the same conditions as in Example 2, except that the [agitating blade rotation speed] and the [crushing blade rotation speed] of Example 2 were set lower than the proper rotation speed.

【0027】比較例3 実施例5の〔ジャケット加熱温度〕を溶媒沸点温度より
低く設定した他は、全て実施例5と同条件でPVA被覆
キャリアを得た。
Comparative Example 3 A PVA-coated carrier was obtained under the same conditions as in Example 5, except that the [jacket heating temperature] in Example 5 was set lower than the solvent boiling point temperature.

【0028】比較例4 実施例6の〔撹拌羽根回転数〕と〔解砕羽根回転数〕の
設定を、適正回転数より高めに設定した他は、全て実施
例6と同条件でPVA被覆キャリアを得た。
COMPARATIVE EXAMPLE 4 PVA-coated carrier under the same conditions as in Example 6 except that the setting of [rotation speed of stirring blade] and [rotation speed of crushing blade] in Example 6 were set higher than the appropriate speed. Got

【0029】比較例5 実施例1の装置内圧力を弱減圧〔700mmHg〕に替
え、〔ジャケット加熱温度〕を溶媒沸点よりも低く設定
した他は、全て実施例1と同条件でPVA被覆キャリア
を得た。
Comparative Example 5 A PVA-coated carrier was prepared under the same conditions as in Example 1 except that the pressure inside the apparatus of Example 1 was changed to weak decompression [700 mmHg] and the [jacket heating temperature] was set lower than the solvent boiling point. Obtained.

【0030】比較例6 実施例3の〔装置内圧力〕を〔常圧(760mmH
g)〕に替えた他は、全て実施例3と同条件でPVA被
覆キャリアを得た。
Comparative Example 6 [Internal pressure] of Example 3 was changed to [normal pressure (760 mmH
g)] was used, and a PVA-coated carrier was obtained under the same conditions as in Example 3.

【0031】比較例7 実施例4の〔噴霧液滴径〕と〔体積粒径比〕を大きくし
た他は、全て実施例4と同条件でPVA被覆キャリアを
得た。
Comparative Example 7 A PVA-coated carrier was obtained under the same conditions as in Example 4, except that the [spray droplet size] and [volume particle size ratio] of Example 4 were increased.

【0032】比較例8 実施例4の〔撹拌羽根回転数〕と〔解砕羽根回転数〕を
適正回転数より高く設定した他は、全て実施例4と同条
件でPVA被覆キャリアを得た。
Comparative Example 8 A PVA-coated carrier was obtained under the same conditions as in Example 4, except that the [agitating blade rotation speed] and the [crushing blade rotation speed] of Example 4 were set higher than the appropriate rotation speed.

【0033】比較例9 実施例3の〔撹拌羽根回転数〕と〔解砕羽根回転数〕を
適正回転数より低く設定した他は、全て実施例3と同条
件でPVA被覆キャリアを得た。
Comparative Example 9 A PVA-coated carrier was obtained under the same conditions as in Example 3, except that the [agitating blade rotation speed] and the [crushing blade rotation speed] of Example 3 were set lower than the proper rotation speed.

【0034】比較例10 実施例7の〔噴霧液滴径〕の粒径を適正液滴径より微粒
化した他は、全て実施例7と同条件でPVA被覆キャリ
アを得た。
Comparative Example 10 A PVA-coated carrier was obtained under the same conditions as in Example 7, except that the [sprayed droplet size] of Example 7 was made finer than the proper droplet size.

【0035】比較例11 実施例8の〔装置内圧力〕を弱減圧〔700mmHg〕
に替え、〔ジャケット加熱温度〕を溶媒沸点よりも低く
設定した他は、全て実施例8と同条件でPVA被覆キャ
リアを得た。
Comparative Example 11 [Internal pressure] of Example 8 was weakly reduced [700 mmHg].
And the [jacket heating temperature] was set lower than the solvent boiling point to obtain a PVA-coated carrier under the same conditions as in Example 8.

【0036】以上の比較例1〜11で採用された条件を
まとめて表3に示す。
The conditions adopted in the above Comparative Examples 1 to 11 are summarized in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】以上の得られたPVA被覆キャリアについ
て品質評価を行なった。その結果を表4に示す。なお、
評価方法等は下記によった。 1.スプレー法と液浸漬法は設定樹脂固形分が異なるの
でコート・乾燥時間が異なっている。 2.装置内壁面への付着度合いは、目視で付着度合いを
判定し、5段階にランク分けした。最も良いものは
〔◎〕、最も悪いものを〔×〕としている。 3.凝集度については、投入コーティング前の粉体粒子
と、噴霧及び液浸漬後のコート液が乾燥した時の樹脂固
形分の合計を総投入量とし、その重量に対する基準メッ
シュ以上残留した重量比を5段階にランク分けし、付着
度合い同様に◎〜×で表わした。 4.〔微細品発生率〕は、コート後の粉体粒子を基準メ
ッシュで篩分けし、通過した量を、コート上がり総重量
で割った重量比を表わす。 5.〔コート樹脂カス発生度〕は、コート後の粒子表面
を電子顕微鏡写真で観察し、その度合いを5段階に層別
し、ほとんどカスのないものを〔◎〕とし、ランク分け
は内壁面付着評価と同様な方法で行なった。 6.〔コート膜厚ばらつき〕は、最小膜厚と最大膜厚を
計測し、その差に応じてランクを5段階に層別した。評
価ランクは他の5段階評価方法と同じ方法で行なった。 7.〔表面性〕は、コート樹脂カス発生度評価時に表面
状態に評価し、凹凸の少ないものを〔◎〕とした。 8.〔歩留り〕は、総投入量に対するコート後の回収重
量の比(wt%)。但し、凝集発生した粉体粒子はコー
ト後の出来高からは除いた(凝集品は、製品として使用
できない為)。 9.〔帯電特性・電気特性〕は、基準値(目標値)に対
するずれ度合いを5段階に層別し、ずれの少ないものを
〔◎〕とし、ずれ度合いに応じて評価分けした。 10.〔総合評価〕は、製品の生産性・品質等を含め、
総合的に優れているものを〔◎〕とし、5段階に層別し
た。
Quality evaluation was performed on the PVA-coated carrier thus obtained. The results are shown in Table 4. In addition,
The evaluation method etc. were as follows. 1. The spraying method and the liquid immersion method differ in the set resin solid content, and therefore the coating and drying times are different. 2. The degree of adhesion to the inner wall surface of the apparatus was visually evaluated and ranked into 5 levels. The best one is [◎], and the worst one is [x]. 3. Regarding the degree of cohesion, the total amount of the powder particles before coating coating and the resin solid content when the coating liquid after spraying and liquid immersion was dried was taken as the total amount, and the weight ratio of the weight remaining above the standard mesh was 5 It was divided into ranks and represented by ⊚ to × like the degree of adhesion. 4. The "fine product generation rate" represents a weight ratio obtained by sieving the powder particles after coating with a standard mesh and dividing the passed amount by the total weight after coating. 5. [Coating resin residue generation rate] was observed by observing the particle surface after coating with an electron microscope photograph, and the degree was divided into 5 levels, and those with almost no residue were rated as [◎], and the rank was classified as the inner wall adhesion evaluation. The same method was used. 6. In [Coat film thickness variation], the minimum film thickness and the maximum film thickness were measured, and the rank was classified into 5 stages according to the difference. The evaluation rank was the same as the other five-level evaluation methods. 7. [Surface property] was evaluated as the surface condition at the time of evaluating the degree of coating resin residue generation, and the one having little unevenness was marked with [A]. 8. [Yield] is the ratio (wt%) of the recovered weight after coating to the total input amount. However, the agglomerated powder particles were excluded from the output after coating (because agglomerated products cannot be used as products). 9. The [charging characteristics / electrical characteristics] are classified into five levels by the degree of deviation from the reference value (target value), and those with less deviation are indicated by [⊚], and evaluated according to the degree of deviation. 10. [Comprehensive evaluation] includes product productivity, quality, etc.
The overall superiority was marked with [◎] and stratified into 5 stages.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】本発明のコーティング方法は、被コーテ
ィング粉粒体が粉粒体撹拌槽内でコーティング樹脂溶液
中に浸った状態でコーティングされるか、又は被コーテ
ィング粉粒体が粉粒体撹拌槽内で転動流動状態に保持さ
れた状態で噴霧コーティングされるコーティング方法に
おいて、該粉粒体撹拌層内が減圧状態でコート・撹拌・
乾燥を行なうという構成にしたことから、以下のような
顕著な効果を奏することができ、高効率の噴霧コーティ
ング及び液浸漬コーティングが可能となり、高品位の製
品を得ることができる。 (イ)スプレー法においては、液滴径が小粒径、且つ均
一分布をしているので、コーティング後の粒子表面状態
が滑らか、且つ均一コート膜となる。そのため、各品質
特性値(帯電特性・電気特性等)が安定する。 (ロ)液浸漬法においては、短時間で粒子表面が滑らか
なコート膜形成ができ、且つ均一コート膜となる。その
ためスプレー法同様に品質特性値が安定する。 (ハ)コーティング装置内壁部への付着物が低減するの
で、メンテナンスが容易になる。 (ニ)コーティング時及び乾燥時における、粒子の凝集
が低減するので、品質特性値が安定、且つ歩留りも向上
する。また、生産性の向上、コスト低減も達成できる。 (ホ)装置内圧力を減圧状態にしてコーティングするの
で、水のように沸点が高く乾燥しにくい溶媒でも、短時
間でコーティング・乾燥ができ、生産性が向上する。
According to the coating method of the present invention, the powder to be coated is coated in a state where the powder or granular material is immersed in the coating resin solution in the powder or granular material stirring tank, or the powder or granular material to be coated is stirred. In a coating method in which spray coating is carried out in a state of being kept in a tumbling flow state in a tank, coating / stirring /
Since the configuration is such that drying is performed, the following remarkable effects can be achieved, and highly efficient spray coating and liquid immersion coating are possible, and a high-quality product can be obtained. (A) In the spray method, since the droplet diameter is small and has a uniform distribution, the surface state of the particles after coating is smooth and a uniform coating film is obtained. Therefore, each quality characteristic value (charging characteristic, electric characteristic, etc.) becomes stable. (B) In the liquid immersion method, a coat film having a smooth particle surface can be formed in a short time and a uniform coat film can be obtained. Therefore, the quality characteristic values are stable as in the spray method. (C) Since the amount of deposits on the inner wall of the coating device is reduced, maintenance is facilitated. (D) Since the aggregation of particles during coating and drying is reduced, quality characteristic values are stable and the yield is improved. In addition, productivity improvement and cost reduction can be achieved. (E) Since coating is performed under a reduced pressure inside the apparatus, even a solvent with a high boiling point such as water that is difficult to dry can be coated and dried in a short time, improving productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用される撹拌混合造粒装置の一例を
示す説明図であり、粉粒体撹拌層の右半分側は液浸造粒
法時の状態を、左半分側はスプレー造粒法時の状態を、
それぞれ模式的に表示している。
FIG. 1 is an explanatory diagram showing an example of a stirring and mixing granulation apparatus used in the present invention, in which the right half side of the powder / granular stirring layer is in the state at the time of liquid immersion granulation, and the left half side is spray granulation. The state at the time of the grain method,
Each is shown schematically.

【符号の説明】[Explanation of symbols]

1 粉粒体撹拌層 2 粉粒体解砕羽根 3 粉粒体撹拌羽根 4 スプレーノズル 5 冷・加熱ジャケット 6 バグフィルター 7 減圧用真空ポンプ 8 コーティング樹脂溶液供給ポンプ 9 溶媒トラップ装置 10 溶媒回収管 11 回収溶媒 12 コーティング樹脂溶液 13 粉粒体 14 含水率検知装置 1 Powder / Granule Stirring Layer 2 Powder / Granule Crushing Blade 3 Powder / Granule Stirring Blade 4 Spray Nozzle 5 Cooling / Heating Jacket 6 Bag Filter 7 Vacuum Pump for Decompression 8 Coating Resin Solution Supply Pump 9 Solvent Trap Device 10 Solvent Recovery Pipe 11 Recovery solvent 12 Coating resin solution 13 Powder and granules 14 Water content detection device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被コーティング粉粒体が粉粒体撹拌槽内
でコーティング樹脂溶液中に浸った状態でコーティング
されるコーティング方法において、該粉粒体撹拌層内が
減圧状態でコート・撹拌・乾燥を行なうことを特徴とす
る高効率コーティング方法。
1. A coating method in which a powder or granular material to be coated is coated while being immersed in a coating resin solution in a powder or granular material stirring tank, wherein the powder or granular material stirring layer is coated, stirred and dried under reduced pressure. A high-efficiency coating method comprising:
【請求項2】 被コーティング粉粒体が粉粒体撹拌槽内
で転動流動状態に保持された状態で噴霧コーティングさ
れるコーティング方法において、該粉粒体撹拌層内が減
圧状態でコート・撹拌・乾燥を行なうことを特徴とする
高効率コーティング方法。
2. A coating method in which a powdery or granular material to be coated is spray-coated while being kept in a tumbling flow state in a powdery or granular material stirring tank, wherein the powdery or granular material stirring layer is coated / stirred under reduced pressure.・ A high-efficiency coating method characterized by performing drying.
【請求項3】 前記粉粒体撹拌槽が、撹拌を目的とする
撹拌羽根と解砕を目的とする解砕羽根を備え且つ冷却・
加温が可能なジャケットを有し、コート・撹拌・乾燥時
は、ジャケット加熱温度がコーティング樹脂溶液中の溶
媒沸点温度と同等若しくはそれ以上の温度であることを
特徴とする請求項1又は2記載の高効率コーティング方
法。
3. The powder / granule stirring tank comprises a stirring blade for stirring and a crushing blade for crushing and cooling
3. A jacket capable of heating, wherein the jacket heating temperature is equal to or higher than the boiling point of the solvent in the coating resin solution during coating, stirring and drying. High efficiency coating method.
【請求項4】 前記粉粒体撹拌槽に備えられた撹拌羽根
と解砕羽根の回転が、コート時は撹拌乾燥時の回転数の
1/2以下の回転数で行なわれ、しかも撹拌羽根回転と
解砕羽根回転の比が1:2〜1:4の範囲でコーティン
グされることを特徴とする請求項3記載の高効率コーテ
ィング方法。
4. The stirring blade and the crushing blade provided in the powder and granular material stirring tank are rotated at a rotational speed of 1/2 or less of the rotational speed at the time of stirring and drying during coating, and the stirring blade is rotated. 4. The high-efficiency coating method according to claim 3, wherein the coating is performed in a ratio of rotation of the crushing blade to 1: 2 to 1: 4.
【請求項5】 前記噴霧コーティングが、粉粒体粒子径
の1/5以下の噴霧液滴径で、且つ平均粒径が2〜15
μmの噴霧液滴で実施されることを特徴とする請求項2
記載の高効率コーティング方法。
5. The spray coating has a spray droplet diameter that is ⅕ or less of the particle diameter of the powder or granular material and has an average particle diameter of 2 to 15.
3. Implementation with atomized droplets of μm.
The high-efficiency coating method described.
【請求項6】 前記噴霧液滴径が、レーザー式粒度分布
計測器によって計測された値で、体積累積値の10%値
と90%値の比(90%値/10%値)が5.00以下
であることを特徴とする請求項5記載の高効率コーティ
ング方法。
6. The spray droplet diameter is a value measured by a laser type particle size distribution measuring device, and the ratio of the 10% value and the 90% value of the cumulative volume value (90% value / 10% value) is 5. The high-efficiency coating method according to claim 5, wherein the high-efficiency coating method is 00 or less.
【請求項7】 前記粉粒体撹拌層内が、内部圧力500
mmHg以下の減圧雰囲気下にあることを特徴とする請
求項1記載の高効率コーティング方法。
7. An internal pressure of 500 is provided in the powdery particle stirring layer.
The high-efficiency coating method according to claim 1, wherein the high-efficiency coating method is performed under a reduced pressure atmosphere of mmHg or less.
JP12715095A 1995-04-27 1995-04-27 High efficiency coating method Expired - Fee Related JP3594699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12715095A JP3594699B2 (en) 1995-04-27 1995-04-27 High efficiency coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12715095A JP3594699B2 (en) 1995-04-27 1995-04-27 High efficiency coating method

Publications (2)

Publication Number Publication Date
JPH08294621A true JPH08294621A (en) 1996-11-12
JP3594699B2 JP3594699B2 (en) 2004-12-02

Family

ID=14952866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12715095A Expired - Fee Related JP3594699B2 (en) 1995-04-27 1995-04-27 High efficiency coating method

Country Status (1)

Country Link
JP (1) JP3594699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021196A (en) * 2018-08-20 2020-02-28 주식회사 에스티테크놀로지 Composite device for solid-liquid mixing and drying and mixing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021196A (en) * 2018-08-20 2020-02-28 주식회사 에스티테크놀로지 Composite device for solid-liquid mixing and drying and mixing method using the same

Also Published As

Publication number Publication date
JP3594699B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
Werner et al. Air-suspension particle coating in the food industry: Part I—State of the art
EP2429790B1 (en) Process for the anti-sticking treatment of polymer pellets
US6197369B1 (en) Method of particle coating
US2938233A (en) Pellet formation
JPH08503721A (en) Manufacturing method of coating material
US2979421A (en) Urea granulation process
US5215949A (en) Method and equipment for the preparation of a carrier of a polymerization catalyst
CA2175832A1 (en) High speed agitated granulation method and high speed agitated granulating machine
US6077605A (en) Silicate coatings and uses thereof
US5140756A (en) Fluidized bed granulator
JPH08294621A (en) High efficiency coating method
US3092489A (en) Process for production of fertilizer pellets and the like
RU2284854C2 (en) Method of deposition of the coating on the particles of the bulk materials
US3271194A (en) Solidification of saccharide solutions
JP3511067B2 (en) Small particle size coating method
Teunou et al. Fluid-bed coating
Watano et al. Computer simulation of agitation fluidized bed granulation by a two-dimensional random addition model
JPH07303827A (en) Fluidized bed granulation device
JPH09190017A (en) Electrophotographic carrier producing device
US20100034967A1 (en) Dry polymer layering using a rotor processor
JP2004261789A (en) Method for coating powder particle and rolling flow type granulating apparatus used for the same
WO2024043177A1 (en) Granule treatment method and treatment device
EP1216390A1 (en) Methods and systems for controlling evaporative drying processes using environmental equivalency
JP2002229274A (en) Electrophotographic carrier, method and device for manufacturing the same
US2117467A (en) Porous niter cake pellets and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080910

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090910

LAPS Cancellation because of no payment of annual fees