JPH08223809A - System interconnection protection device for generator - Google Patents

System interconnection protection device for generator

Info

Publication number
JPH08223809A
JPH08223809A JP7024118A JP2411895A JPH08223809A JP H08223809 A JPH08223809 A JP H08223809A JP 7024118 A JP7024118 A JP 7024118A JP 2411895 A JP2411895 A JP 2411895A JP H08223809 A JPH08223809 A JP H08223809A
Authority
JP
Japan
Prior art keywords
frequency
generator
reactive power
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7024118A
Other languages
Japanese (ja)
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP7024118A priority Critical patent/JPH08223809A/en
Publication of JPH08223809A publication Critical patent/JPH08223809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE: To detect the service interruption of a system by shifting reactive power in the lead or the lag direction in accordance with the rise and fall of a frequency and controlling an engine governor when the system is cut off to operate it in the direction in which the frequency and the voltage in single operation are diverged. CONSTITUTION: The different points from the prior art system interconnection system are as follows. The frequency is detected from the output voltage of a generator by a frequency detector 21 to output a reference reactive power Q* through a function generator 22. In order to make reactive power Q detected by a reactive power detector 23 accord with the reference reactive power Q*, a voltage control loop constituted of a voltage control circuit 9 adopting the output of a reactive power control circuit 24 as a reference voltage V* and a speed control loop for controlling the speed of a governor 11 by an effective power control circuit 27 by comparing the output P of an effective power detecting circuit 26 with a reference effective power P*. Single operation is detected by a frequency rising relay 16 and a shortage voltage relay 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴミ発電やコージェネ
レーション等の自家用発電設備を系統連系するときの系
統連系保護装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system interconnection protection device for system interconnection of private power generation equipment such as garbage power generation and cogeneration.

【0002】[0002]

【従来の技術】一般に、需要家がコージェネレーション
等の自家用発電設備を系統連系するために、図8に示す
ような系統連系システムが用いられている。すなわち、
同図の系統連系システムに示すように、変電所39では
系統電源1から変圧器2を介して降圧し、遮断器3を通
って一般需要家へ電力を供給している。需要家では遮断
器4を介して負荷5に電力を供給している。
2. Description of the Related Art Generally, a grid interconnection system as shown in FIG. 8 is used by a consumer to grid-connect a private power generation facility such as a cogeneration system. That is,
As shown in the grid interconnection system in the figure, in the substation 39, power is stepped down from the grid power supply 1 via the transformer 2 and is supplied to the general consumer through the circuit breaker 3. The customer supplies power to the load 5 via the circuit breaker 4.

【0003】一方、自家発電設備では遮断器6を介して
交流発電機7の出力を系統電源1と連系している。交流
発電機7の出力電圧はAVR(自動電圧調整器)9によ
り交流発電機7の界磁巻線8を制御することにより行
い、交流発電機7の出力周波数は交流発電機7を駆動す
るエンジン10の調速機11によりエンジンパワーを制
御することによって行われている。
On the other hand, in the private power generation facility, the output of the AC generator 7 is connected to the system power supply 1 via the circuit breaker 6. The output voltage of the AC generator 7 is controlled by controlling the field winding 8 of the AC generator 7 by an AVR (automatic voltage regulator) 9, and the output frequency of the AC generator 7 is an engine that drives the AC generator 7. It is performed by controlling the engine power by the governor 11 of 10.

【0004】また、故障検出は変流器12で発電機電流
を検出し、出力電圧との関係から発電機異常検出回路1
3で異常電流を検出し、故障トリップ回路20を介して
遮断器6を開放している。
For failure detection, the current transformer 12 detects the generator current, and the generator abnormality detection circuit 1 is detected from the relationship with the output voltage.
An abnormal current is detected at 3, and the circuit breaker 6 is opened via the fault trip circuit 20.

【0005】さらに、保護回路としては、この他に遮断
器6の出力側に変流器14を設け、過電流検出器(O
C)19により故障トリップ回路20を動作させてい
る。また、系統電源1の異常時、特に系統電源1が遮断
された場合、例えば遮断器3が開放になった時、交流発
電機7の出力が負荷5に供給され、周波数や電圧が異常
となることを周波数低下リレー(UF)15、周波数上
昇リレー(OF)16、過電圧リレー(OV)17、不
足電圧リレー(UV)18等により検出し、故障トリッ
プ回路20を介して遮断器6を開放し、負荷5を保護し
たり、遮断器3の再閉路が可能な状態とする必要があ
る。
Further, as a protection circuit, a current transformer 14 is provided on the output side of the circuit breaker 6 in addition to this, and an overcurrent detector (O
C) The fault trip circuit 20 is operated by 19. Further, when the system power supply 1 is abnormal, particularly when the system power supply 1 is cut off, for example, when the circuit breaker 3 is opened, the output of the AC generator 7 is supplied to the load 5 and the frequency and voltage become abnormal. This is detected by the frequency lowering relay (UF) 15, the frequency rising relay (OF) 16, the overvoltage relay (OV) 17, the undervoltage relay (UV) 18, etc., and the breaker 6 is opened via the fault trip circuit 20. The load 5 must be protected and the circuit breaker 3 must be reclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし、次に説明する
単独運転時にはこれらのリレーでは検出できないことが
あるので、転送遮断回路40からトリップ信号を送信
し、遮断器6を開放している。例えば、遮断器3が開と
なった時、交流発電機7の出力電力と負荷5の所要電力
が有効分、無効分共にほぼ等しくなっていると周波数も
電圧もほとんど変化しないので、保護リレーが動作せず
運転を継続する,いわゆる単独運転(アイランディン
グ)現象が発生し、遮断器3の再閉路をさまたげるよう
な事故が発生する。
However, since there is a case where these relays cannot detect during the independent operation described below, the trip signal is transmitted from the transfer interruption circuit 40 to open the circuit breaker 6. For example, when the circuit breaker 3 is opened, if the output power of the AC generator 7 and the required power of the load 5 are substantially equal in both the active and reactive portions, the frequency and the voltage hardly change. A so-called islanding phenomenon occurs in which operation is not performed and operation continues, and an accident occurs that interrupts the circuit breaker 3 from reclosing.

【0007】このように系統と連系して運転する場合
は、単独運転を防ぐ目的で上位変電所の遮断器3が開と
なった信号を、需要家に転送遮断装置40により遮断信
号を送って遮断器6を開放することが行われている。特
に、上位変電所が遠い場合や需要家が多い場合には高価
な転送遮断装置を設ける必要があった。
[0007] In the case of operating in cooperation with the system in this way, a signal indicating that the circuit breaker 3 of the upper substation is open is sent to the customer by the transfer breaker 40 in order to prevent the islanding operation. Then, the circuit breaker 6 is opened. In particular, when the upper substation is far or there are many customers, it is necessary to provide an expensive transfer interruption device.

【0008】本発明は上記事情に鑑みてなされたもの
で、その目的は中小容量の自家発電設備に対して高価な
転送遮断装置を設けることなく系統連系中の発電機の単
独運転を自家発電設備側で確実に検出する発電機の系統
連系保護装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to independently operate a generator connected to a grid without providing an expensive transfer interruption device for a small-to-medium-sized private power generation facility. An object of the present invention is to provide a system interconnection protection device for a generator that can be reliably detected on the facility side.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の発電機の系統連系保護装置は、
回転型発電機による自家用発電設備を配電系統に連系す
る系統連系システムにおいて、前記自家用発電設備の出
力の電圧,電流,周波数を検出する電圧検出器,電流検
出器,周波数検出器と、前記発電機の励磁制御による無
効電力制御ループ部と、前記発電機の調速機制御による
有効電力制御ループ部と、前記周波数検出器により検出
した周波数の変化に応じて無効電力を変化させる関数発
生器と、前記周波数検出器により検出した周波数が定格
周波数付近で上昇した場合は周波数上昇につれて無効電
力を進み方向に変化させ,周波数が下降した場合は周波
数下降につれて無効電力を遅れ方向に変化させる前記関
数発生器出力を基準として無効電力を制御し、周波数異
常リレーまたは電圧異常リレーによる系統側の停電を検
出して系統と切り離す回路とを備えたことを特徴とす
る。
In order to achieve the above object, a system interconnection protection device for a generator according to claim 1 of the present invention comprises:
In a system interconnection system that interconnects a private power generation facility with a rotary generator to a distribution system, a voltage detector, a current detector, and a frequency detector that detect the voltage, current, and frequency of the output of the private power generation facility, and A reactive power control loop unit by excitation control of a generator, an active power control loop unit by speed governor control of the generator, and a function generator that changes reactive power according to a change in frequency detected by the frequency detector. When the frequency detected by the frequency detector rises in the vicinity of the rated frequency, the reactive power is changed in the forward direction as the frequency rises, and when the frequency is lowered, the reactive power is changed in the delay direction as the frequency falls. Controls the reactive power based on the generator output, detects the power failure on the grid side due to the frequency abnormality relay or voltage abnormality relay, and disconnects from the grid. Characterized in that a to circuit.

【0010】本発明の請求項2は、請求項1記載の発電
機の系統連系保護装置において、系統を切り離した後、
無効電力制御ループ部から電圧制御ループ部へ、有効電
力制御ループ部から周波数制御または速度制御ループ部
へ切換える切換回路を備えたことを特徴とする。
According to a second aspect of the present invention, in the system interconnection protection device for a generator according to the first aspect, after disconnecting the system,
A switching circuit for switching from the reactive power control loop unit to the voltage control loop unit and from the active power control loop unit to the frequency control or speed control loop unit is provided.

【0011】本発明の請求項3は、請求項1記載の発電
機の系統連系保護装置において、周波数が定格周波数よ
り設定した以上上昇した場合は、無効電力を周波数の上
昇に従って進み方向から遅れ方向に特性を反転させ,周
波数が定格周波数より設定した以上下降した場合は、無
効電力を周波数の下降に従って遅れ方向から進み方向に
特性を反転させるように制御することを特徴とする。
According to a third aspect of the present invention, in the system interconnection protection device for a generator according to the first aspect, when the frequency rises above the rated frequency by more than a preset frequency, the reactive power is delayed from the forward direction as the frequency rises. The characteristic is inverted in the direction, and when the frequency falls below the rated frequency by more than the set value, the reactive power is controlled so as to be inverted from the delay direction to the advance direction as the frequency falls.

【0012】本発明の請求項4は、請求項1記載の発電
機の系統連系保護装置において、有効電力制御の基準に
前記周波数検出器出力の変化分、前記関数発生器出力分
のいづれかまたは双方を加算して制御することを特徴と
する。
According to a fourth aspect of the present invention, in the system interconnection protection device for a generator according to the first aspect, one of the change amount of the frequency detector output and the function generator output is used as a reference of active power control, or The feature is that both are added and controlled.

【0013】[0013]

【作用】本発明の請求項1によると、周波数が上昇する
と無効電力を進み方向にシフトし、周波数が下降すると
無効電力を遅れ方向にシフトすべく発電機界磁制御によ
り電圧を制御し、その間有効電力が一定になるよう発電
機のエンジン調速機を制御することにより、単独運転中
の周波数や電圧を発散させる方向に動作させることによ
り系統の停電を検出する。
According to the first aspect of the present invention, the voltage is controlled by the generator field control so as to shift the reactive power in the forward direction when the frequency rises and shift the reactive power in the delay direction when the frequency falls, during which the active power is controlled. By controlling the engine speed governor of the generator so as to be constant, the system is operated in the direction of diverging the frequency and voltage during islanding to detect a system power failure.

【0014】本発明の請求項2によると、系統連系時は
有効電力制御と函数による無効電力制御ループにより単
独運転時、周波数と電圧を発散させ系統から切離した後
は周波数制御ループと電圧制御ループにより安定な電源
を独立形として運転する。
According to the second aspect of the present invention, during grid interconnection, active frequency control and a reactive power control loop based on a function during independent operation, the frequency control loop and voltage control are performed after the frequency and voltage are diverged and the system is disconnected. A stable power supply is operated by a loop as an independent type.

【0015】本発明の請求項3によると、周波数が一定
以上シフトすると発散作用から収れん作用となり、周波
数の発散幅を制限する。本発明の請求項4によると、有
効電力も周波数の函数又は変化率で微小変化させ周波数
の発散を助ける。
According to the third aspect of the present invention, when the frequency shifts by a certain amount or more, the divergence action becomes a converging action, and the divergence width of the frequency is limited. According to the fourth aspect of the present invention, the active power is also slightly changed by the function or the change rate of the frequency to assist the divergence of the frequency.

【0016】[0016]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例(請求項1〜請求項4対
応)の構成図であり、本実施例が既に説明した図8の従
来の系統連系システムと相違する点は、従来例の高価な
転送遮断装置を設ける代りに、図1に示すように、発電
機出力電圧から周波数検出器21により周波数を検出
し、函数発生器22を介して無効電力基準Q* を出力
し、無効電力検出器23で検出した無効電力QをQ*
一致するべく無効電力制御回路(AQR)24の出力を
電圧基準V* とする電圧制御回路(AVR)9とから構
成される電圧制御ループと、有効電力基準25のP*
有効電力検出回路26の出力Pとを比較して有効電力制
御回路(APR)27により調速機11の速度を制御す
る速度制御ループを設けた点であり、その他の点は図8
の系統連系システムと同一であるので、同一部分には同
一符号を付して重複説明は省略する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention (corresponding to claims 1 to 4). The difference between this embodiment and the conventional grid interconnection system of FIG. Instead of providing an expensive transfer interruption device, as shown in FIG. 1, the frequency is detected by the frequency detector 21 from the generator output voltage, and the reactive power reference Q * is output via the function generator 22. A voltage control loop composed of a voltage control circuit (AVR) 9 which uses the output of the reactive power control circuit (AQR) 24 as a voltage reference V * to match the reactive power Q detected by the detector 23 with Q * ; The point is that a speed control loop for controlling the speed of the speed governor 11 by comparing P * of the active power reference 25 with the output P of the active power detection circuit 26 and controlling the speed of the governor 11 is provided. Points are shown in Figure 8.
Since it is the same as the system interconnection system of No. 3, the same parts are denoted by the same reference numerals, and the duplicated description will be omitted.

【0017】次に、本実施例の作用を図2〜図4につい
て説明する。図2は関数発生器22の無効電力基準Q*
と負荷の無効電力の一例を示す特性図、また、図3は系
統連系中の発電機と負荷、系統の有効、無効電力の流れ
を示す図である。
Next, the operation of this embodiment will be described with reference to FIGS. FIG. 2 shows the reactive power reference Q * of the function generator 22 .
FIG. 3 is a characteristic diagram showing an example of the reactive power of the load and the load, and FIG. 3 is a diagram showing the flow of the active and reactive power of the generator and the load in the grid interconnection.

【0018】今、図3において、発電機出力の有効電力
をP,無効電力をQ、負荷が必要とする有効電力を
L ,無効電力をQL とすると系統電源へ流出する有効
電力ΔP及び無効電力ΔQはそれぞれ次のように表され
る。
Now, in FIG. 3, assuming that the active power of the generator output is P, the reactive power is Q, the active power required by the load is P L , and the reactive power is Q L , the active power ΔP flowing out to the system power supply and Reactive power ΔQ is expressed as follows.

【0019】ΔP=P−PL , ΔQ=Q−QL ここで、発電機と系統間のインダクタンス分をlとし、
負荷の電圧をV、周波数をfとする。
ΔP = P−P L , ΔQ = Q−Q L where the inductance between the generator and the system is l,
The load voltage is V and the frequency is f.

【0020】そうすると、通常の場合は ΔP≒0、Δ
Q≒0 に近い状態で遮断器3が開となっても負荷の電
圧V、周波数fはほとんど変化せず、保護リレーで検出
できず運転を継続することになる。しかし、系統電源1
と負荷の位相はゆっくりとずれてくるので、遮断器3の
再投入は事故拡大につながり危険なため行えない状態が
発生し、配電系統の安定性を低下させることになる。
Then, normally, ΔP≈0, Δ
Even if the circuit breaker 3 is opened in the state close to Q≈0, the load voltage V and the frequency f hardly change, and the protection relay cannot detect it, and the operation is continued. However, system power supply 1
Since the phase of the load gradually shifts, reclosing the circuit breaker 3 may lead to an accident and may be dangerous and may not be performed, thus deteriorating the stability of the power distribution system.

【0021】今、発電機出力を、P=一定、Q=0に制
御している状態で ΔQ=0、ΔP=0の場合を考える
と、P=V2 /R,|iC |=|iL | すなわち系統
周波数で共振した力率1の状態で運転している。このよ
うな場合でも遮断器3が開放され単独運転になったこと
を検出して保護する系統連系保護作用を図2及び図4に
従って説明する。
Now, considering the case where ΔQ = 0 and ΔP = 0 while the generator output is controlled to P = constant and Q = 0, P = V 2 / R, | i C | = | i L | That is, the operation is performed in a state where the power factor is 1, which resonates at the system frequency. Even in such a case, the system interconnection protection function for detecting and protecting the fact that the circuit breaker 3 is opened and the islanding mode is activated will be described with reference to FIGS. 2 and 4.

【0022】図2の負荷のQL 特性は、定格周波数fO
で力率1の状態とすると、周波数fが上昇するとiC
増加し,iL が減少するので、QL はほぼ直線状に右上
りの特性となる。
[0022] Q L characteristic of the load in FIG. 2, the rated frequency f O
When the power factor is 1 and i C increases and i L decreases as the frequency f increases, Q L has a linearly right upper characteristic.

【0023】次に、発電機の無効電力Qの制御を周波数
fに対し、Q* (Q)の曲線に制御した場合について考
える。周波数fがf0 とf1 の間では負荷の必要な無効
電力Q1 より発電機出力無効電力Qの関係が常にQ(進
み)>QL となっているので、負荷の周波数fは上昇し
てQ=QL となる点でバランスしようとする。周波数f
がf1 より大の場合は逆に周波数が低下しQ=QL とな
る点でバランスしようとするので、f1 点は安定点であ
る。
Next, consider the case where the control of the reactive power Q of the generator is controlled to the curve of Q * (Q) with respect to the frequency f. Since the frequency f is in the f 0 and the generator output relationship of the reactive power Q from the required reactive power to Q 1 load between f 1 is always Q (advances)> Q L, the frequency f of the load will rise When you try to balance at the point where the Q = Q L Te. Frequency f
Since but tries to balance in that the frequency in the opposite becomes reduced Q = Q L in the case of greater than f 1, f 1 point is stable point.

【0024】次に、周波数fがf0 とf2 の間ではQ
(遅れ)>QL となるので、周波数fは低下し、Q=Q
L の方向にシフトし、f2 の点に達する。周波数fがf
2 より低い範囲では(Q−QL )は進み分となり、周波
数fは上昇しようとする。f2点は安定点である。しか
し、f0 点の右側では周波数fは上昇し、左側では周波
数fが下降するので、f0 点は不安定となる、すなわち
図2のような制御が可能な場合は、単独運転中に周波数
は両方向に発散することになる。
Next, when the frequency f is between f 0 and f 2 , Q
Since the (delay)> Q L, frequency f is reduced, Q = Q
Shift in the L direction and reach point f 2 . Frequency f is f
In less than 2 range will be (Q-Q L) proceeds amount, frequency f is going to rise. Point f 2 is a stable point. However, the frequency f increases on the right side of the f 0 point and decreases on the left side, so the f 0 point becomes unstable, that is, when the control shown in FIG. 2 is possible, the frequency f Will diverge in both directions.

【0025】これを実現するために、図1では周波数検
出器21で自家発電機の周波数fを検出し、函数発生器
22で図2のQ* のような特性の無効電力基準を発生さ
せ、Q* とQが一致するように、AQR24により発電
機電圧基準V* 、すなわち発電機電圧VをAVR9によ
り制御することにより行うようにしてある。
In order to realize this, the frequency detector 21 in FIG. 1 detects the frequency f of the private generator, and the function generator 22 generates a reactive power reference having a characteristic such as Q * in FIG. The AQR 24 controls the generator voltage reference V * , that is, the generator voltage V by the AVR 9 so that Q * and Q coincide with each other.

【0026】発電機電圧Vを変えることにより、Qが変
化する原理を図4(a)に示す。すなわち、発電機電圧
1 ’,出力電流I1 の状態から進み電流I2 を流すた
めには発電機電圧V2 ’はV1 ’より下げることにより
達成される。
The principle by which Q changes by changing the generator voltage V is shown in FIG. That is, in order to flow the current I 2 from the state of the generator voltage V 1 ′ and the output current I 1 , the generator voltage V 2 ′ is achieved by lowering it than V 1 ′.

【0027】次に、発電機出力電圧の位相を変えること
により有効電力が変化する様子を図4(b)に従って説
明する。すなわち発電機電流I1 の時の発電機電圧はV
1 ’、発電電流をI2 と大きくし、Pを増加させるには
発電機電圧はV2 ’、すなわち位相を進める(周波数f
を上昇方向にエンジンの回転を上げる)方向にAPR2
7を介して調速機11を制御すればよいことが分かる。
図1はこのような制御を行っている。
Next, how the active power changes by changing the phase of the generator output voltage will be described with reference to FIG. 4 (b). That is, the generator voltage at the generator current I 1 is V
1 ', to increase the generated current to I 2 and increase P, the generator voltage is V 2 ', that is, the phase is advanced (frequency f
APR2 in the direction of increasing the engine rotation in the ascending direction)
It can be seen that the speed governor 11 may be controlled via 7.
FIG. 1 performs such control.

【0028】次に、このような制御を行った場合、単独
運転中の周波数fがどのように変化するかを説明する。
単独運転になった状態で、周波数fがf0 とf1 の間に
存在した場合、Qなる進み無効電力を出力するため(負
荷が必要とするQL より大きい)、発電機電圧V1 ’を
下げる方向にAVR9が動作する。しかし、Qは負荷が
必要としているQL より大きいので、発電機電圧V’は
更に低下する。一方、APR27は出力有効電力を一定
に制御するためV’が低下するとI1 を増加させようと
してエンジン回転数を上昇させ電圧位相を進み方向、す
なわち周波数fを上昇させる方向に制御することにな
り、図2で説明したように周波数fをf1 に移動させて
バランス状態となる。このため、最終的には周波数上昇
リレー(OF)16で単独運転を検出でき、過渡的には
不足電圧リレー(UV)18で単独運転を検出すること
ができる。
Next, how the frequency f changes during the isolated operation when such control is performed will be described.
In condition that the isolated operation, when the frequency f is present between f 0 and f 1, (greater than Q L required by the load) for outputting a Q becomes proceeds reactive power, the generator voltage V 1 ' AVR9 operates in the direction of lowering. However, since Q is greater than the load requires Q L , the generator voltage V ′ is further reduced. On the other hand, since the APR 27 controls the output active power to be constant, when V ′ decreases, the APR 27 tries to increase I 1 and increases the engine speed to advance the voltage phase, that is, to increase the frequency f. , The frequency f is moved to f 1 as described with reference to FIG. Therefore, finally, the frequency rising relay (OF) 16 can detect the islanding operation, and transiently, the undervoltage relay (UV) 18 can detect the islanding operation.

【0029】また、単独運転になった状態で周波数fが
0 とf2 の間に存在した場合、Qなる遅れ無効電力を
出力するよう(負荷が必要とするQL より遅れ電力が
大)発電機電圧V’を上げる方向にAVR9が動作す
る。しかし、負荷が必要としているQL より遅れたQを
出力しようとするので、発電機電圧V’は更に上昇す
る。一方、APR27は出力有効電力を一定に制御する
ためV’が上昇すると有効電流I1 を減少させようとし
てエンジン回転数を下げ、電圧位相を遅らせる方向、す
なわち周波数fを下げる方向に制御することになり、図
2で説明したように周波数fをf2 に移動させる結果と
なる。このため最終的には周波数下降リレー(UF)1
5で単独運転を検出でき、過渡的には過電圧リレー(O
V)17で単独運転を検出することができる。
Further, if the frequency f is present between f 0 and f 2, so as to output Q becomes delayed reactive power (delay power than Q L required by the load is large) in a condition that the isolated operation The AVR 9 operates to increase the generator voltage V '. However, the generator voltage V ′ is further increased because the load tries to output the Q delayed from the required Q L. On the other hand, the APR 27 controls the output active power to be constant, so that when V ′ rises, the APR 27 attempts to reduce the active current I 1 to lower the engine speed and delay the voltage phase, that is, to control the frequency f. As a result, the frequency f is moved to f 2 as described with reference to FIG. Therefore, in the end, the frequency down relay (UF) 1
5 can detect the islanding operation, and transiently overvoltage relay (O
V) 17 can detect islanding.

【0030】以上説明したように、系統連系中の自家発
電設備が系統から遮断され、単独運転となった時、発電
機出力と需要家範囲の負荷が有効,無効分共にほぼバラ
ンスした状態でもQ制御に周波数特性を持たせP一定制
御により周波数をシフトさせることにより確実に周波数
異常リレーにより単独運転を検出し、過渡的には電圧リ
レーによっても単独運転を検出して、受電線送り出し遮
断器を開放し、系統と完全に切り離すことができる。
As described above, even when the private power generation facility connected to the grid is cut off from the grid and is operated independently, even when the generator output and the load in the customer range are substantially balanced in both effective and ineffective portions. The frequency characteristic is added to the Q control and the frequency is shifted by the P constant control to reliably detect the islanding operation by the frequency abnormality relay, and transiently detect the islanding operation as well, and transiently detect the islanding operation, and feed circuit breaker Can be opened and completely disconnected from the grid.

【0031】ところで、図1の実施例では、定格周波数
0 の点でQ=0の制御をする場合について説明した
が、本発明は発電機で無効電力を常時出力する制御を行
う場合は、図1のQ* に定常無効電力制御基準を加算す
ることで達成できる、すなわち、図2のQ* と負荷のQ
L の周波数特性の傾をdQ* /dfの方がdQL /df
より急にすることのみが必要な条件である。
By the way, in the embodiment of FIG. 1, the case where the control of Q = 0 at the point of the rated frequency f 0 is explained, but in the present invention, when the control for constantly outputting the reactive power is performed by the generator, This can be achieved by adding the steady reactive power control reference to Q * of FIG. 1, that is, Q * of FIG.
The slope of the frequency characteristic of L is dQ * / df is dQ L / df
The only condition that needs to be rushed is.

【0032】図5は本発明の他の実施例の構成図であ
り、本実施例が図1の実施例と異なる点は、周波数変化
率検出回路31と加算器32を設けた周波数検出有効電
力パターン制御回路を追加した点であり、その他は同一
であるので、同一部分には同一符号を付して重複説明は
省略する。なお、図1の実施例では、周波数検出→無効
電力パターン制御→電圧変化→有効電力制御→周波数変
化の2段階ループで周波数変化が発生する。この制御の
単独運転検出速度より更に速くしたい場合は、本実施例
を適用すると、単独運転検出速度を早めることができ
る。
FIG. 5 is a block diagram of another embodiment of the present invention. The difference of this embodiment from the embodiment of FIG. 1 is that the frequency detection effective power provided with a frequency change rate detection circuit 31 and an adder 32 is provided. Since the pattern control circuit is added and the other points are the same, the same portions are denoted by the same reference numerals, and duplicate description will be omitted. In the embodiment of FIG. 1, the frequency change occurs in a two-stage loop of frequency detection → reactive power pattern control → voltage change → active power control → frequency change. When it is desired to further increase the islanding operation detection speed of this control, the islanding operation detection speed can be increased by applying the present embodiment.

【0033】次に、その理由を図6について説明する。
本実施例は、図1の系統連系システムにさらに図6で示
すように有効電力基準P* に函数発生器22の出力の一
部をP’として加算器32で加え、P* +P’=P*
として新しい有効電力基準P* ’として制御する。ま
た、周波数変化率検出回路31により周波数の変化率を
検出し、P”を有効電力補正分として加算器32に加算
する。
Next, the reason will be described with reference to FIG.
In the present embodiment, as shown in FIG. 6, in the grid interconnection system of FIG. 1, a part of the output of the function generator 22 is added to the active power reference P * as P ′ by the adder 32, and P * + P ′ = P * '
As the new active power reference P * '. Further, the frequency change rate detection circuit 31 detects the frequency change rate and adds P ″ to the adder 32 as the active power correction amount.

【0034】これらP’,P”は一種のフィードフォワ
ード的に動作させ周波数の変化率を早める目的で加算し
てある。すなわち、図2のf0 →f1 方向に周波数が上
昇し始めると、P’,P”共に正となり、有効電力を増
加させるため発電機出力電圧の位相を進め(周波数増
加)る方向に動作し、無効電力制御による電圧低下を待
たないで早く周波数をシフトさせることが可能となる。
また、P’,P”はそれぞれ単独に使用しても同様な作
用があることは説明するまでもない。
These P'and P "are added for the purpose of operating as a kind of feedforward to accelerate the rate of change of frequency. That is, when the frequency starts rising in the direction of f 0 → f 1 in FIG. Both P ′ and P ″ are positive, and the phase of the generator output voltage advances (frequency increases) in order to increase active power, and the frequency can be shifted quickly without waiting for the voltage drop due to reactive power control. It will be possible.
Further, it is needless to say that P ′ and P ″ have the same effect when they are used individually.

【0035】図7は本発明のさらに他の実施例の構成図
であり、本実施例が図1の実施例と異なる点は、AQR
24に設けたリミット回路33及びAPR27に設けた
リミット回路34を追加した点であり、その他は同一で
あるので、同一部分には同一符号を付して重複説明は省
略する。
FIG. 7 is a block diagram of still another embodiment of the present invention. The difference of this embodiment from the embodiment of FIG.
The limit circuit 33 provided in 24 and the limit circuit 34 provided in the APR 27 are added, and the other parts are the same. Therefore, the same parts are denoted by the same reference numerals and duplicate description will be omitted.

【0036】図1のの実施例では、単独運転を検出する
と遮断器6を開放させる。この場合、発電機7の出力を
電源として所内用としてそのまま利用したい場合があ
る。このような場合は、本実施例では遮断器6の開信号
6bにより、AQR24に設けたリミット回路33及び
APR27に設けたリミット回路34を動作させ、電圧
基準V* ,速度(周波数)基準S* を一定にし、電圧制
御,周波数制御に切換える。なお、本実施例ではリミッ
ト回路34によりV* ,S* を一定にしたが、固定のV
* ,S* へ切換える方式でも同様な作用をすることはい
うまでもない。
In the embodiment shown in FIG. 1, when the isolated operation is detected, the breaker 6 is opened. In this case, it may be desired to use the output of the generator 7 as a power source for internal use as it is. In such a case, in this embodiment, the limit signal 33b provided in the AQR 24 and the limit circuit 34 provided in the APR 27 are operated by the open signal 6b of the circuit breaker 6 to operate the voltage reference V * and the speed (frequency) reference S *. Constant and switch to voltage control or frequency control. Although V * and S * are made constant by the limit circuit 34 in this embodiment, a fixed V
Needless to say, the same effect can be obtained by switching to * and S * .

【0037】[0037]

【発明の効果】以上説明したように、本発明によると、
発電機出力を配電系統に連系して運用するシステムにお
いて、系統が遮断された場合、定格周波数付近において
周波数上昇に従って無効電力を進み方向に制御する制御
ループと有効電力を一定に制御したり、周波数上昇に伴
って有効電力を上昇方向に制御することにより周波数リ
レーや電圧リレーで速に単独運転を検出し、受電点遮断
器を切り離すことができる。しかも、系統運転中は、系
統に有効・無効電力を注入するので、安定性が極めて高
い。
As described above, according to the present invention,
In a system that operates the generator output by connecting it to the distribution system, if the system is cut off, the control loop that controls reactive power in the forward direction according to the frequency increase near the rated frequency and active power is controlled constantly, By controlling the active power in the increasing direction as the frequency rises, the frequency relay or the voltage relay can detect the islanding operation quickly and disconnect the power receiving point breaker. Moreover, during system operation, active / reactive power is injected into the system, so stability is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1の動作を説明するための図。FIG. 2 is a diagram for explaining the operation of FIG.

【図3】図1の動作を説明するための図。FIG. 3 is a diagram for explaining the operation of FIG.

【図4】図1の動作を説明するための図。FIG. 4 is a diagram for explaining the operation of FIG.

【図5】本発明の他の実施例の構成図。FIG. 5 is a configuration diagram of another embodiment of the present invention.

【図6】図5の動作を説明するための図。FIG. 6 is a diagram for explaining the operation of FIG.

【図7】本発明のさらに他の実施例の構成図。FIG. 7 is a configuration diagram of still another embodiment of the present invention.

【図8】従来の系統連系システムの構成図。FIG. 8 is a configuration diagram of a conventional system interconnection system.

【符号の説明】[Explanation of symbols]

1…系統電源、2…変圧器、3,4,6…遮断器、5…
負荷、7…交流発電機、8…界磁巻線、9…AVR(定
電圧制御回路)、10…エンジン、11…調速機、1
2,14…変流器、13…発電機異常検出回路、15…
UF(周波数低下継電器)、16…OF(周波数上昇継
電器)、17…OV(過電圧継電器)、18…UV(不
足電圧継電器)、19…過電流継電器、20…故障トリ
ップ回路、21…周波数検出器、22…関数発生器、2
3…無効電力検出器、24…無効電力制御、25…無効
電力基準、26…有効電力検出器、27…有効電力制
御、31…周波数変化率検出、32…加算器、33,3
4…リミット回路、39…変電所、40…転送遮断信号
器。
1 ... System power supply, 2 ... Transformer, 3, 4, 6 ... Circuit breaker, 5 ...
Load, 7 ... AC generator, 8 ... field winding, 9 ... AVR (constant voltage control circuit), 10 ... engine, 11 ... speed governor, 1
2, 14 ... Current transformer, 13 ... Generator abnormality detection circuit, 15 ...
UF (frequency lowering relay), 16 ... OF (frequency rising relay), 17 ... OV (overvoltage relay), 18 ... UV (undervoltage relay), 19 ... Overcurrent relay, 20 ... Fault trip circuit, 21 ... Frequency detector , 22 ... Function generator, 2
3 ... Reactive power detector, 24 ... Reactive power control, 25 ... Reactive power reference, 26 ... Active power detector, 27 ... Active power control, 31 ... Frequency change rate detection, 32 ... Adder, 33, 3
4 ... Limit circuit, 39 ... Substation, 40 ... Transfer interruption signal device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転型発電機による自家用発電設備を配
電系統に連系する系統連系システムにおいて、前記自家
用発電設備の出力の電圧,電流,周波数を検出する電圧
検出器,電流検出器,周波数検出器と、前記発電機の励
磁制御による無効電力制御ループ部と、前記発電機の調
速機制御による有効電力制御ループ部と、前記周波数検
出器により検出した周波数の変化に応じて無効電力を変
化させる関数発生器と、前記周波数検出器により検出し
た周波数が定格周波数付近で上昇した場合は周波数上昇
につれて無効電力を進み方向に変化させ,周波数が下降
した場合は周波数下降につれて無効電力を遅れ方向に変
化させる前記関数発生器出力を基準として無効電力を制
御し、周波数異常リレーまたは電圧異常リレーによる系
統側の停電を検出して系統と切り離す回路とを備えたこ
とを特徴とする発電機の系統連系保護装置。
1. In a system interconnection system for interconnecting a private power generation facility with a rotary generator to a distribution system, a voltage detector, a current detector, and a frequency detector for detecting the voltage, current, and frequency of the output of the private power generation facility. Detector, reactive power control loop unit by excitation control of the generator, active power control loop unit by speed governor control of the generator, and reactive power according to the change in frequency detected by the frequency detector. When the frequency detected by the function generator and the frequency detector rises in the vicinity of the rated frequency, the reactive power is changed in the advancing direction as the frequency rises, and when the frequency falls, the reactive power is delayed in the advancing direction as the frequency falls. Control the reactive power based on the output of the function generator, and detect the power failure on the system side due to the frequency abnormality relay or voltage abnormality relay. A power grid interconnection protection device comprising a circuit for disconnecting from the grid.
【請求項2】 請求項1記載の発電機の系統連系保護装
置において、系統を切り離した後、無効電力制御ループ
部から電圧制御ループ部へ、有効電力制御ループ部から
周波数制御または速度制御ループ部へ切換える切換回路
を備えたことを特徴とする発電機の系統連系保護装置。
2. The generator system interconnection protection device according to claim 1, wherein after the system is disconnected, the reactive power control loop unit to the voltage control loop unit and the active power control loop unit to the frequency control or speed control loop. A system interconnection protection device for a generator, which is provided with a switching circuit for switching to a power supply section.
【請求項3】 請求項1記載の発電機の系統連系保護装
置において、周波数が定格周波数より設定した以上上昇
した場合は、無効電力を周波数の上昇に従って進み方向
から遅れ方向に特性を反転させ,周波数が定格周波数よ
り設定した以上下降した場合は、無効電力を周波数の下
降に従って遅れ方向から進み方向に特性を反転させるよ
うに制御することを特徴とする発電機の系統連系保護装
置。
3. The generator interconnection protection device according to claim 1, wherein when the frequency rises above the rated frequency by more than a set frequency, the reactive power is inverted from the advance direction to the delay direction as the frequency rises. , When the frequency falls below the rated frequency by more than the set value, reactive power is controlled so as to reverse the characteristics from the delay direction to the advance direction as the frequency falls.
【請求項4】 請求項1記載の発電機の系統連系保護装
置において、有効電力制御の基準に前記周波数検出器出
力の変化分、前記関数発生器出力分のいづれかまたは双
方を加算して制御することを特徴とする発電機の系統連
系保護装置。
4. The generator interconnection protection device according to claim 1, wherein the active power control standard is controlled by adding either or both of the change in the frequency detector output and the function generator output. A power grid interconnection protection device characterized by:
JP7024118A 1995-02-13 1995-02-13 System interconnection protection device for generator Pending JPH08223809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7024118A JPH08223809A (en) 1995-02-13 1995-02-13 System interconnection protection device for generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7024118A JPH08223809A (en) 1995-02-13 1995-02-13 System interconnection protection device for generator

Publications (1)

Publication Number Publication Date
JPH08223809A true JPH08223809A (en) 1996-08-30

Family

ID=12129410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7024118A Pending JPH08223809A (en) 1995-02-13 1995-02-13 System interconnection protection device for generator

Country Status (1)

Country Link
JP (1) JPH08223809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174747A1 (en) 2015-04-28 2016-11-03 株式会社東芝 Power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174747A1 (en) 2015-04-28 2016-11-03 株式会社東芝 Power conversion device

Similar Documents

Publication Publication Date Title
KR100299260B1 (en) System linkage protection device of self-generating equipment
JP3420162B2 (en) Power grid connection protection device
GB2370702A (en) Line linkage protection device for electrical generating equipment
JP3302875B2 (en) Reactive power compensator for grid connection protection
JPH08223809A (en) System interconnection protection device for generator
JP3944057B2 (en) System interconnection protection device for power generation facilities
JP3302898B2 (en) Power grid connection protection device
JP3315298B2 (en) Power grid connection protection device
JP2002125320A (en) Distributed power system
JP2002281673A (en) System interconnection protecting device for power generating facility
JP3751829B2 (en) System interconnection protection device for power generation facilities
JP2729475B2 (en) Grid connection protection device
JP2002101562A (en) System interconnection protection device of power generating installation
JP3634645B2 (en) System linkage protection device for power generation facilities
JP3261541B2 (en) Protective relay
JP3397608B2 (en) Power grid connection protection device
JP4387620B2 (en) System interconnection protection device for power generation facilities
JP3990324B2 (en) Grid connection protection device
JP4341028B2 (en) Grid connection protection device for regular power generator
JP2640628B2 (en) Grid connection protection device
JP3689004B2 (en) System interconnection protection device for power generation facilities
JP2000217260A (en) Protector for system linkage of power generation facility
JP2751009B2 (en) Grid connection protection device
JP3968660B2 (en) Short-circuit current supply device
JP2949202B2 (en) Grid connection protection device