JPH08223694A - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator

Info

Publication number
JPH08223694A
JPH08223694A JP7030716A JP3071695A JPH08223694A JP H08223694 A JPH08223694 A JP H08223694A JP 7030716 A JP7030716 A JP 7030716A JP 3071695 A JP3071695 A JP 3071695A JP H08223694 A JPH08223694 A JP H08223694A
Authority
JP
Japan
Prior art keywords
piezoelectric
polymer material
piezoelectric vibrator
bodies
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7030716A
Other languages
Japanese (ja)
Other versions
JP3469341B2 (en
Inventor
Shinichi Hashimoto
新一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03071695A priority Critical patent/JP3469341B2/en
Publication of JPH08223694A publication Critical patent/JPH08223694A/en
Application granted granted Critical
Publication of JP3469341B2 publication Critical patent/JP3469341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To attain both high rigidity and a high electromechanical coupling coefficient by filling the space between two adjacent columnar piezoelectric substances with a packed bed and forming a lamination layer of hard and soft high polymer materials for the packed bed. CONSTITUTION: Plural piezoelectric substances 1 made of such piezoelectric materials as piezoelectric ceramics, etc., are arrayed in a matrix form. Then the space between two adjacent bodies 1 is filled with a packed bed 4 and these bodies 1 and beds 4 are formed into a single member as a whole. Every bed 4 has a 3-lamination structure where a soft polymer material 6 is held between the hard polymer materials 5 and 7, so that a piezoelectric vibrator 10 is hard on its surface part and soft at the part near the center of every substance 1. The materials 5 and 7 use the epoxy materials, etc., having Shore hardness of D50 or higher at an ordinary temperature, so that the vibrator 10 is not curved by its self-weight even when the vibrator 10 is supported in an overhung way. Then the material 6 uses an epoxy material, a urethane material, etc., having Shore hardness of not more than A40 at an ordinary temperature, so that the disturbance of mechanical vibrations can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波診断装置や超音
波探傷装置のプローブ先端に装備される圧電振動子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibrator mounted on the tip of a probe of an ultrasonic diagnostic apparatus or ultrasonic flaw detector.

【0002】[0002]

【従来の技術】圧電振動子は、電気信号と機械的振動と
を可逆的に変換する圧電体を配列し、表裏面に共通電極
を貼着したものである。この圧電体の材料には、圧電セ
ラミックスや圧電結晶等が使用される。圧電振動子は電
気機械結合係数により性能評価がなされる。これは機械
的振動から電気信号、また電気信号から機械的振動への
変換効率を表すパラメータであり、超音波探触子の感度
を左右する重要な要素となっている。この電気機械結合
係数は、圧電体材料と、その形状によって決まる。
2. Description of the Related Art A piezoelectric vibrator is one in which piezoelectric bodies that reversibly convert electric signals and mechanical vibrations are arranged, and common electrodes are attached to the front and back surfaces. Piezoelectric ceramics, piezoelectric crystals, or the like are used as the material of the piezoelectric body. The performance of the piezoelectric vibrator is evaluated by the electromechanical coupling coefficient. This is a parameter that represents the conversion efficiency from mechanical vibration to electric signal and from electric signal to mechanical vibration, and is an important factor that influences the sensitivity of the ultrasonic probe. The electromechanical coupling coefficient depends on the piezoelectric material and its shape.

【0003】図6は、従来の圧電振動子の構造を示す。
従来の圧電体では、同じ圧電材料を用いたとき、板状よ
りも、柱状の方が良好な電気機械結合係数を示す場合が
多い。このため圧電振動子を1枚板で形成するのではな
く、図6に示すように、複数の柱状の圧電体1をマトリ
クス状に配列し、その間を硬質性高分子材料の充填層2
で充填して全体として板状に形成し、例えば1列毎に共
通電極で電気的に結合することで、1列毎にあたかも1
つの圧電体として動作するいわゆる複合型の圧電体が開
発されている。
FIG. 6 shows the structure of a conventional piezoelectric vibrator.
In the conventional piezoelectric body, when the same piezoelectric material is used, the columnar shape often exhibits a better electromechanical coupling coefficient than the plate-like shape. Therefore, the piezoelectric vibrator is not formed by a single plate, but a plurality of columnar piezoelectric bodies 1 are arranged in a matrix form as shown in FIG.
To form a plate shape as a whole, and electrically connect with a common electrode for each row, and
A so-called composite piezoelectric body that operates as two piezoelectric bodies has been developed.

【0004】[0004]

【発明が解決しようとする課題】上述した複合型の圧電
振動子は、理論上では、柱状の圧電体1が持つ電気機械
結合係数を実現する。しかし、実際には柱状の圧電体間
に充填する硬質性高分子材料の充填層2の影響で機械的
運動が妨げられるので、電気機械結合係数は柱状の圧電
体1が持つ電気機械結合係数より実質的に小さくなって
しまう。例えば、1つの圧電体を1枚板で形成した場
合、その電気機械結合係数が50%程度の圧電材料があ
る。同じ材料で柱状に形成した圧電体1では単体で、7
5%程度の電気機械結合係数を示す。この柱状の圧電体
1を集合させた複合型の圧電振動子は、ショアーDで6
0程度の硬度の硬質性高分子材料を用いると60%程度
の電気機械結合係数を示すが、ショアーAで40程度の
柔軟な軟質性高分子材料を用いると70%以上の電気機
械結合係数を示す。したがって、柔軟な軟質性高分子材
料で充填層を複合型圧電振動子を構成すれば高い電気機
械結合係数が得られるが、複合型圧電振動子全体の剛性
が低くなって湾曲等による変形の可能性が高くなり、取
扱いが難しくなるばかりか、湾曲により電極が剥離して
しまう可能性が生じる。本発明の目的は、剛性を高める
ことと電気機械結合係数を高めることとを両立し得る圧
電振動子を提供することを目的とする。
The above-mentioned composite type piezoelectric vibrator theoretically realizes the electromechanical coupling coefficient of the columnar piezoelectric body 1. However, in actuality, the mechanical movement is hindered by the influence of the filling layer 2 of the rigid polymer material filled between the columnar piezoelectric bodies, so that the electromechanical coupling coefficient is greater than the electromechanical coupling coefficient of the columnar piezoelectric body 1. Substantially smaller. For example, when one piezoelectric body is formed by one plate, there is a piezoelectric material having an electromechanical coupling coefficient of about 50%. A single piezoelectric body 1 formed of the same material in a column shape
An electromechanical coupling coefficient of about 5% is shown. The composite type piezoelectric vibrator in which the pillar-shaped piezoelectric bodies 1 are assembled is
An electromechanical coupling coefficient of about 60% is shown when a hard polymer material having a hardness of about 0 is used, but an electromechanical coupling coefficient of 70% or more is obtained when a flexible soft polymer material of about 40 is used for Shore A. Show. Therefore, a high electromechanical coupling coefficient can be obtained if the filling layer is composed of a flexible soft polymer material, but the composite piezoelectric transducer has low rigidity and can be deformed by bending. Not only becomes more difficult and difficult to handle, but there is a possibility that the electrodes may peel off due to bending. It is an object of the present invention to provide a piezoelectric vibrator that can achieve both high rigidity and high electromechanical coupling coefficient.

【0005】[0005]

【課題を解決するための手段】本発明は、複数の柱状の
圧電体が配列され、隣り合う前記圧電体間を充填層で充
填してなる圧電振動子において、前記充填層は硬質性高
分子材料と軟質性高分子材料とを積層したものであるこ
とを特徴とする。
According to the present invention, in a piezoelectric vibrator in which a plurality of columnar piezoelectric bodies are arranged and a space between adjacent piezoelectric bodies is filled with a filling layer, the filling layer is a hard polymer. It is characterized by being a laminate of a material and a flexible polymer material.

【0006】[0006]

【作用】本発明によれば、接着層が硬質性高分子材料と
軟質性高分子材料との積層構造であることから、剛性を
高めることと、電気機械結合係数を高めることとを両立
できる。
According to the present invention, since the adhesive layer has a laminated structure of a hard polymer material and a soft polymer material, it is possible to increase both rigidity and electromechanical coupling coefficient.

【0007】[0007]

【実施例】以下、図面を参照して本発明による圧電振動
子の好ましい実施例を説明する。圧電振動子とは、超音
波診断装置の超音波プローブ、超音波結石破砕装置や超
音波温熱治療装置の治療波発生源(超音波プローブ)の
先端に装備され、電気信号と機械的振動とを可逆的に変
換するためのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the piezoelectric vibrator according to the present invention will be described below with reference to the drawings. Piezoelectric vibrators are installed at the tip of the ultrasonic probe of ultrasonic diagnostic equipment, the source of therapeutic waves (ultrasonic probe) of ultrasonic calculus breaking equipment and ultrasonic thermotherapy equipment, and generate electrical signals and mechanical vibrations. It is for reversible conversion.

【0008】図1は第1実施例に係る1次元アレイ型の
圧電振動子の構造を示す。同図(a)は平面図、同図
(b)は同図(a)のA−A´断面図である。なお、同
図(a)は電極、音響整合層及びバッキング材を取り外
した状態で示し、同図(b)は音響整合層11及びバッ
キング材12を含めた超音波プローブに装備される状態
で示している。
FIG. 1 shows the structure of a one-dimensional array type piezoelectric vibrator according to the first embodiment. The figure (a) is a top view and the figure (b) is an AA 'cross section figure of the figure (a). It should be noted that FIG. 1A shows the electrode, the acoustic matching layer and the backing material removed, and FIG. 1B shows the acoustic probe including the acoustic matching layer 11 and the backing material 12 mounted on the ultrasonic probe. ing.

【0009】本実施例に係る圧電振動子10は、圧電セ
ラミックス等の圧電材料からなる複数の柱状の圧電体1
がマトリクス状に配列される。柱状とは、その厚みが幅
より大きい断面矩形の棒体をいう。なお、図2の上面の
面積に比べて縦より長ければ、その断面形状が矩形でな
くても、多角形、円形、楕円等の任意の形状であっても
よい。隣り合う圧電体1間は充填層4で充填され、全体
として1部材(1個の圧電振動子)に形成される。近傍
の所定数、例えば1列分の1×6個の圧電体1毎に、1
つの共通電極3で共通接続される。共通電極3で共通接
続された1×6個の圧電体1は、いわゆる1つの複合型
圧電体を構成し、1つのチャンネルに相当する。
The piezoelectric vibrator 10 according to this embodiment comprises a plurality of columnar piezoelectric bodies 1 made of a piezoelectric material such as piezoelectric ceramics.
Are arranged in a matrix. The columnar shape means a rod body having a rectangular cross section whose thickness is larger than its width. The cross-sectional shape may be any shape such as a polygonal shape, a circular shape, an elliptic shape or the like as long as it is longer than the area of the upper surface of FIG. The space between the adjacent piezoelectric bodies 1 is filled with the filling layer 4, and is formed as one member (one piezoelectric vibrator) as a whole. A predetermined number in the vicinity, for example, 1 for every 1 × 6 piezoelectric bodies 1 for one row
The two common electrodes 3 are commonly connected. The 1 × 6 piezoelectric bodies 1 commonly connected by the common electrode 3 constitute a so-called one composite piezoelectric body and correspond to one channel.

【0010】充填層4は、柱状の圧電体1の表面から裏
面に渡って形成される。充填層4は、圧電振動子の表面
を硬く、圧電体1の中央付近を柔軟にするため、軟質性
高分子材料6が硬質性高分子材料5と7とで挟み込まれ
た3層の積層構造に形成される。
The filling layer 4 is formed from the front surface to the back surface of the columnar piezoelectric body 1. The filling layer 4 hardens the surface of the piezoelectric vibrator and softens the vicinity of the center of the piezoelectric body 1. Therefore, the soft polymer material 6 is sandwiched between the hard polymer materials 5 and 7 and has a three-layer structure. Is formed.

【0011】硬質性高分子材料5,7としては、圧電振
動子10を片持ち支持した場合、圧電振動子10が自重
で湾曲等変形しないで板状形状を維持できるように、常
温(硬化時)でショアーD50以上の硬度を有する例え
ばエポキシ材料等の充填材料が用いられる。軟質性高分
子材料6としては、圧電体1の機械的振動の妨害を軽減
するように、常温(硬化時)でショアーA40以下の硬
度を有する例えばエポキシ材料やウレタン材料の等の充
填材料が用いられるのが好ましい。さらに、加工の容易
さを考慮して、硬質性高分子材料5,7としては、常温
で硬質性を示し、高温で柔軟性を示す可塑性の材料が用
いられる。具体的には、硬質性高分子材料5,7として
は、ガラス転移温度が摂氏80度程度の樹脂である。こ
の樹脂を用いることで、80度以上では柔軟性があるた
め、曲率を持たせる等の形状加工が容易に行え、常温で
必要な硬度を得て圧電振動子10を維持するに十分な剛
性を獲得できる。
As the rigid polymer materials 5 and 7, when the piezoelectric vibrator 10 is supported in a cantilever manner, the piezoelectric vibrator 10 can maintain a plate shape without being deformed by its own weight such as bending and the like at room temperature (when cured). ), A filling material having a hardness of Shore D50 or more, such as an epoxy material, is used. As the soft polymer material 6, a filling material such as an epoxy material or a urethane material having a hardness of Shore A 40 or less at room temperature (during curing) is used so as to reduce interference with mechanical vibration of the piezoelectric body 1. Preferably. Further, in consideration of easiness of processing, as the rigid polymer materials 5 and 7, a plastic material which exhibits hardness at room temperature and flexibility at high temperature is used. Specifically, the rigid polymer materials 5 and 7 are resins having a glass transition temperature of about 80 degrees Celsius. By using this resin, since it has flexibility at 80 degrees or more, shape processing such as giving a curvature can be easily performed, and sufficient rigidity can be obtained to maintain the piezoelectric vibrator 10 by obtaining necessary hardness at room temperature. Can be earned.

【0012】ここで、圧電振動子10の電気機械結合係
数を高めるという観点からは、硬質性高分子材料5と7
の合計厚を薄くして、軟質性高分子材料6をの厚みを大
きくすることが好ましい。一方、圧電振動子10の剛性
を高めるという観点からは、硬質性高分子材料5と7の
合計厚を大きくして、軟質性高分子材料6の厚みを薄く
することが好ましい。このように剛性と電気機械結合係
数とは互いに受入れない性質を有している。硬質性高分
子材料5,7としてショアーD50の材料を、また軟質
性高分子材料6としてショアーA40の材料をそれぞれ
用いた場合において、圧電振動子10としての板状形状
を保てる程度の剛性を得るためには、硬質性高分子材料
5,7それぞれの厚みを、圧電体1の厚み(充填層4の
全体厚と同じ)Dに対して、D/3又はD/3未満、つ
まり硬質性高分子材料5,7の合計厚を、2・D/3又
は2・D/3未満で形成し、残りのD/3又はD/3超
を軟質性高分子材料6で形成する。
From the viewpoint of increasing the electromechanical coupling coefficient of the piezoelectric vibrator 10, the hard polymer materials 5 and 7 are used.
It is preferable that the total thickness of the flexible polymer material 6 is thin and the thickness of the flexible polymer material 6 is large. On the other hand, from the viewpoint of increasing the rigidity of the piezoelectric vibrator 10, it is preferable to increase the total thickness of the hard polymer materials 5 and 7 and reduce the thickness of the soft polymer material 6. Thus, the rigidity and the electromechanical coupling coefficient have a property of not accepting each other. When the material of Shore D50 is used as the hard polymer materials 5 and 7, and the material of Shore A40 is used as the soft polymer material 6, rigidity sufficient to maintain the plate shape of the piezoelectric vibrator 10 is obtained. In order to achieve this, the thickness of each of the hard polymer materials 5 and 7 is D / 3 or less than D / 3 with respect to the thickness D of the piezoelectric body 1 (the same as the total thickness of the filling layer 4), that is, the high hardness The total thickness of the molecular materials 5 and 7 is formed to be 2 · D / 3 or less than 2 · D / 3, and the remaining D / 3 or more than D / 3 is formed of the soft polymer material 6.

【0013】このような構造により次のような実験結果
が得られた。ここでは、圧電体1として、圧電セラミッ
クスを使用して計測した。圧電セラミックスでは、単体
の板状であれば、電気機械結合係数(Kt)が51%を
示し、柱状の単体であれば電気機械結合係数(K33)
が75%を示す。この柱状の圧電セラミックスを使って
図6に示した従来の圧電振動子を構成した場合、圧電振
動子としての電気機械結合係数は60%程度を示す。こ
れに対して、本実施例の圧電振動子10では、70%以
上の電気機械結合係数が得られる。
With such a structure, the following experimental results were obtained. Here, the piezoelectric body 1 was measured using piezoelectric ceramics. In the case of piezoelectric ceramics, the electromechanical coupling coefficient (Kt) is 51% if it is a single plate, and the electromechanical coupling coefficient (K33) is if it is a columnar single body.
Indicates 75%. When the conventional piezoelectric vibrator shown in FIG. 6 is constructed using this columnar piezoelectric ceramic, the electromechanical coupling coefficient of the piezoelectric vibrator is about 60%. On the other hand, in the piezoelectric vibrator 10 of this embodiment, an electromechanical coupling coefficient of 70% or more is obtained.

【0014】このように本実施例によれば、隣り合う圧
電体1間の充填層4を硬質性高分子材料5,7と軟質性
高分子材料6とで積層構造をとることにより、圧電振動
子10を片持ち支持した場合でも圧電振動子10が自重
で湾曲等変形しないで板状形状を維持できる程度の剛性
を有し、且つ良好な電気機械結合係数が得られる。
As described above, according to this embodiment, the filling layer 4 between the adjacent piezoelectric bodies 1 has a laminated structure of the hard polymer materials 5 and 7 and the soft polymer material 6, so that the piezoelectric vibration is generated. Even when the child 10 is supported in a cantilever manner, the piezoelectric vibrator 10 has rigidity enough to maintain a plate-like shape without being bent or deformed by its own weight, and a good electromechanical coupling coefficient can be obtained.

【0015】次に第2実施例について説明する。図3に
第2実施例に係るに圧電振動子の斜視構造を示す。図4
(a)に図3の4A−4A´の断面図を示し、同図
(b)に図3の4B−4B´の断面図を示す。図1と同
じ部分には同符号が付されている。
Next, a second embodiment will be described. FIG. 3 shows a perspective structure of a piezoelectric vibrator according to the second embodiment. FIG.
3A is a sectional view taken along line 4A-4A ′ in FIG. 3, and FIG. 4B is a sectional view taken along line 4B-4B ′ in FIG. The same parts as those in FIG. 1 are designated by the same reference numerals.

【0016】本実施例でも、第1実施例と同様に圧電体
1はマトリクス状に配列される。第1方向(例えば行方
向、図3では紙面左右方向)に沿って隣り合う圧電体1
間を充填する第1の充填層8と、第1方向と交差(直
交)する第2の方向(例えば列方向)に沿って隣り合う
圧電体1間を充填する第2の充填層9とはそれぞれ、軟
質性高分子材料6と硬質性高分子材料7の2層構造、硬
質性高分子材料5と軟質性高分子材料6の2層構造に形
成される。
Also in this embodiment, the piezoelectric bodies 1 are arranged in a matrix as in the first embodiment. Piezoelectric bodies 1 adjacent to each other along the first direction (for example, the row direction, the left-right direction on the paper surface in FIG. 3)
The first filling layer 8 filling the space and the second filling layer 9 filling the space between the piezoelectric bodies 1 adjacent to each other along the second direction (eg, the column direction) intersecting (orthogonal to) the first direction. The soft polymer material 6 and the hard polymer material 7 have a two-layer structure, and the hard polymer material 5 and the soft polymer material 6 have a two-layer structure.

【0017】第1の充填層8は、表面側から軟質性高分
子材料6と硬質性高分子材料7との順に積層される。硬
質性高分子材料7の厚みを、圧電体1の厚み(充填層4
の全体厚と同じ)Dに対して、D/3又はD/3未満で
形成し、残りの2・D/3又は2・D/3超を軟質性高
分子材料6で形成する。
The first filling layer 8 is formed by laminating the soft polymer material 6 and the hard polymer material 7 in this order from the surface side. The thickness of the hard polymer material 7 is set to the thickness of the piezoelectric body 1 (filling layer 4
(The same as the overall thickness of D), D / 3 or less than D / 3, and the remaining 2 · D / 3 or more than 2 · D / 3 is formed of the soft polymer material 6.

【0018】第2の充填層9は、表面側から硬質性高分
子材料5と軟質性高分子材料6との順に積層される。硬
質性高分子材料5の厚みを、D/3又はD/3未満で形
成し、残りの2・D/3又は2・D/3超を軟質性高分
子材料6で形成する。
The second filling layer 9 is formed by laminating the hard polymer material 5 and the soft polymer material 6 in this order from the surface side. The thickness of the hard polymer material 5 is D / 3 or less than D / 3, and the remaining 2 · D / 3 or more than 2 · D / 3 is formed of the soft polymer material 6.

【0019】このように構成することで、第1方向に関
しては圧電体1と硬質性高分子材料7とが交互に配列さ
れ、両者で第1方向に沿ってライン状の高硬度層が成さ
れて、第1方向に関して必要な剛性が得られる。また第
2方向に関しては圧電体1と硬質性高分子材料5とが交
互に配列され、両者で第1方向に沿ってライン状の高硬
度層が成されて、第2方向に関して必要な剛性が得られ
る。したがって、全体として全方向に関する湾曲に対し
て必要な剛性が得られる。また、第1実施例より、軟質
性高分子材料6の割合が多くなるので、電気機械結合係
数を高めることができる。
With this structure, the piezoelectric bodies 1 and the hard polymer material 7 are alternately arranged in the first direction, and both of them form a line-shaped high hardness layer along the first direction. Thus, the required rigidity can be obtained in the first direction. Further, the piezoelectric bodies 1 and the hard polymer material 5 are alternately arranged in the second direction, and a linear high hardness layer is formed along the first direction in both, so that the rigidity required in the second direction is increased. can get. Therefore, as a whole, the rigidity required for the curvature in all directions is obtained. Moreover, since the proportion of the soft polymer material 6 is larger than that in the first embodiment, the electromechanical coupling coefficient can be increased.

【0020】本発明は、上述した実施例に限定されるこ
となく種々変形して実施可能である。上述した実施例の
圧電振動子は、その平面形状、電極形状、電極の配列を
変更することにより様々な用途に適用できる。例えば、
超音波診断装置のリニア型やセクタ型等に普及している
1次元アレイ型プローブは、全体として平面長方形にな
るように圧電体をマトリクス状に配列した圧電振動子の
表裏面に、平面矩形の複数の電極を1次元に配列するこ
とで完成する。将来的に実用化される2次元アレイ型プ
ローブは、全体として平面長方形になるように圧電体を
マトリクス状に配列した圧電振動子の表裏面に、平面矩
形の複数の電極を2次元にマトリクス状に配列すること
で完成する。また、図5に示すような超音波探傷装置に
用いられるようなアニュラー型の超音波発生源(超音波
プローブ)であれば、全体として略円形になるように圧
電体1をマトリクス状に配列した圧電振動子アレイの表
裏面に、同心円リング状の複数の電極31 〜35 を配列
することで完成する。
The present invention is not limited to the above-mentioned embodiments, but can be modified in various ways. The piezoelectric vibrator of the above-described embodiment can be applied to various purposes by changing its plane shape, electrode shape, and arrangement of electrodes. For example,
The one-dimensional array type probe that is widely used in the linear type and the sector type of the ultrasonic diagnostic apparatus has a planar rectangular shape on the front and back surfaces of a piezoelectric vibrator in which piezoelectric bodies are arranged in a matrix so as to form a planar rectangular shape as a whole. This is completed by arranging a plurality of electrodes in one dimension. A two-dimensional array type probe that will be put to practical use in the future has a plurality of planar rectangular electrodes arranged in a two-dimensional matrix on the front and back surfaces of a piezoelectric vibrator in which piezoelectric bodies are arranged in a matrix so that the entire surface becomes a rectangular shape. Completed by arranging in. Further, in the case of an annular-type ultrasonic wave generation source (ultrasonic probe) used in the ultrasonic flaw detector as shown in FIG. 5, the piezoelectric bodies 1 are arranged in a matrix so as to be substantially circular as a whole. This is completed by arranging a plurality of concentric ring-shaped electrodes 31 to 35 on the front and back surfaces of the piezoelectric vibrator array.

【0021】[0021]

【発明の効果】本発明は、複数の柱状の圧電体が配列さ
れ、隣り合う前記圧電体間を充填層で充填してなる圧電
振動子において、前記充填層は硬質性高分子材料と軟質
性高分子材料とを積層したものであることを特徴とする
ので、剛性を高めて、取扱いの容易さを確保し、しかも
電気機械結合係数を柱状の圧電体の電気機械結合係数に
近似させることができる。
According to the present invention, in a piezoelectric vibrator in which a plurality of columnar piezoelectric bodies are arranged and the space between the adjacent piezoelectric bodies is filled with a filling layer, the filling layer is made of a hard polymer material and a soft material. Since it is characterized by being laminated with a polymer material, it is possible to enhance rigidity, ensure ease of handling, and approximate the electromechanical coupling coefficient to that of a columnar piezoelectric body. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る圧電振動子の構成図。FIG. 1 is a configuration diagram of a piezoelectric vibrator according to a first embodiment.

【図2】1チャンネル分の圧電振動子の構造図。FIG. 2 is a structural diagram of a piezoelectric vibrator for one channel.

【図3】第2実施例に係るに1チャンネル分の圧電振動
子の構造図。
FIG. 3 is a structural diagram of a piezoelectric vibrator for one channel according to a second embodiment.

【図4】図3の圧電振動子の断面図。4 is a sectional view of the piezoelectric vibrator of FIG.

【図5】本発明による圧電振動子のアニュラー型への適
用例を示す図。
FIG. 5 is a diagram showing an application example of the piezoelectric vibrator according to the present invention to an annular type.

【図6】従来の1チャンネル分の圧電振動子の構造図。FIG. 6 is a structural diagram of a conventional piezoelectric vibrator for one channel.

【符号の説明】[Explanation of symbols]

1…圧電体、 2,4,8,9…充填層、
3…電極、 5,7…硬質性高分子材
料、6…軟質性高分子材料、 10…圧電振動子、1
1…音響整合層、 12…バッキング材。
1 ... Piezoelectric body, 2, 4, 8, 9 ... Filled layer,
3 ... Electrode, 5, 7 ... Hard polymer material, 6 ... Soft polymer material, 10 ... Piezoelectric vibrator, 1
1 ... Acoustic matching layer, 12 ... Backing material.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の柱状の圧電体が配列され、隣り合
う前記圧電体間を充填層で充填してなる圧電振動子にお
いて、 前記充填層は硬質性高分子材料と軟質性高分子材料とを
積層したものであることを特徴とする圧電振動子。
1. A piezoelectric vibrator in which a plurality of columnar piezoelectric bodies are arranged and a space between adjacent piezoelectric bodies is filled with a filling layer, wherein the filling layer is made of a hard polymer material and a soft polymer material. A piezoelectric vibrator, wherein the piezoelectric vibrator is formed by stacking.
【請求項2】 前記前記硬質性高分子材料は常温で硬質
性を示し、高温で柔軟性を示すものであることを特徴と
する請求項1記載の圧電振動子。
2. The piezoelectric vibrator according to claim 1, wherein the rigid polymer material exhibits hardness at room temperature and exhibits flexibility at high temperature.
【請求項3】 前記充填層は前記軟質性高分子材料が前
記硬質性高分子材料で挟み込まれた3層構造であること
を特徴とする請求項1記載の圧電振動子。
3. The piezoelectric vibrator according to claim 1, wherein the filling layer has a three-layer structure in which the soft polymer material is sandwiched between the hard polymer materials.
【請求項4】 前記複数の圧電体には共通電極が接続さ
れることを特徴とする請求項1記載の圧電振動子
4. The piezoelectric vibrator according to claim 1, wherein a common electrode is connected to the plurality of piezoelectric bodies.
【請求項5】 前記硬質性高分子材料は前記圧電体の厚
みの3分の1以下の厚みに形成され、前記軟質性高分子
材料は前記圧電体の厚みの3分の2以上の厚みに形成さ
れることを特徴とする請求項1記載の圧電振動子。
5. The hard polymer material is formed to a thickness of one third or less of the thickness of the piezoelectric body, and the soft polymer material is formed to a thickness of two thirds or more of the thickness of the piezoelectric body. The piezoelectric vibrator according to claim 1, wherein the piezoelectric vibrator is formed.
【請求項6】 前記圧電体は2次元状に配列され、第1
方向に沿って隣り合う前記圧電体間を埋める第1の充填
層が表面から前記軟質性高分子材料と前記硬質性高分子
材料の順に積層された2層構造をとり、前記第1方向に
交差する第2方向に沿って隣り合う前記圧電体間を埋め
る第2の充填層が表面から前記硬質性高分子材料と前記
軟質性高分子材料の順に積層された2層構造をとること
を特徴とする請求項1記載の圧電振動子。
6. The piezoelectric body is arranged two-dimensionally,
A first filling layer for filling the space between the piezoelectric bodies adjacent to each other along the direction has a two-layer structure in which the soft polymer material and the hard polymer material are laminated in this order from the surface, and intersects in the first direction. The second filling layer filling the space between the piezoelectric bodies adjacent to each other along the second direction has a two-layer structure in which the hard polymer material and the soft polymer material are laminated in this order from the surface. The piezoelectric vibrator according to claim 1.
JP03071695A 1995-02-20 1995-02-20 Piezoelectric vibrator Expired - Fee Related JP3469341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03071695A JP3469341B2 (en) 1995-02-20 1995-02-20 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03071695A JP3469341B2 (en) 1995-02-20 1995-02-20 Piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPH08223694A true JPH08223694A (en) 1996-08-30
JP3469341B2 JP3469341B2 (en) 2003-11-25

Family

ID=12311376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03071695A Expired - Fee Related JP3469341B2 (en) 1995-02-20 1995-02-20 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP3469341B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503312A (en) * 2000-06-15 2004-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Capacitive micromachined ultrasonic transducer
JP2010164108A (en) * 2009-01-14 2010-07-29 Takenaka Komuten Co Ltd Diaphragm type actuator, multiple layer diaphragm type actuator, and air spring structure
JP2012170760A (en) * 2011-02-24 2012-09-10 Konica Minolta Medical & Graphic Inc Ultrasound probe and ultrasound diagnostic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503312A (en) * 2000-06-15 2004-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Capacitive micromachined ultrasonic transducer
JP2010164108A (en) * 2009-01-14 2010-07-29 Takenaka Komuten Co Ltd Diaphragm type actuator, multiple layer diaphragm type actuator, and air spring structure
JP2012170760A (en) * 2011-02-24 2012-09-10 Konica Minolta Medical & Graphic Inc Ultrasound probe and ultrasound diagnostic apparatus

Also Published As

Publication number Publication date
JP3469341B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US11800806B2 (en) Method for manufacturing a multi-cell transducer
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
JP3010054B2 (en) Two-dimensional phased array of ultrasonic transducers
US6868594B2 (en) Method for making a transducer
US6614143B2 (en) Class V flextensional transducer with directional beam patterns
US6490360B2 (en) Dual bi-laminate polymer audio transducer
JPH05219595A (en) Ferroelectric ceramic transducer
US4348904A (en) Acoustic impedance matching device
JP3469341B2 (en) Piezoelectric vibrator
EP1050079B1 (en) High-sensitivity piezocomposite material and ultrasonic transducer made therefrom
JP2000253496A (en) Array type ultrasonic transducer and its manufacture
JP2671855B2 (en) Underwater acoustic transmitter
JPH03270599A (en) Composite piezoelectric body
JP2720731B2 (en) Composite piezoelectric
JP2000088822A5 (en)
JP3354195B2 (en) Ultrasonic probe device
JPS5824785Y2 (en) Array-shaped ultrasonic probe
JPS6222634A (en) Ultrasonic probe
JPS61209642A (en) Ultrasonic probe
JP2001161000A (en) Composite piezoelectric body forming material and composite piezoelectric body
JP2023084757A (en) ultrasonic probe
JPH0142034Y2 (en)
JPS59229999A (en) Manufacture of ultrasonic probe
JPS5821989B2 (en) ultrasonic probe
JPS63313878A (en) Composite electrostrictive material and ultrasonic probe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees