JPH08222796A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH08222796A
JPH08222796A JP2152695A JP2152695A JPH08222796A JP H08222796 A JPH08222796 A JP H08222796A JP 2152695 A JP2152695 A JP 2152695A JP 2152695 A JP2152695 A JP 2152695A JP H08222796 A JPH08222796 A JP H08222796A
Authority
JP
Japan
Prior art keywords
layer
clad layer
semiconductor laser
type
cleavage plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152695A
Other languages
Japanese (ja)
Inventor
Hitoshi Kuribayashi
均 栗林
Kunio Matsubara
邦雄 松原
Yoichi Shindo
洋一 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2152695A priority Critical patent/JPH08222796A/en
Publication of JPH08222796A publication Critical patent/JPH08222796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To form a laser light spectrum of multimode, and reduce optical noise generation, by making a section parallel to the main surface of a third clad layer a parallelogram which is surrounded by a cleavage plane and a line oblique to the normal of the cleavage plane. CONSTITUTION: A first clad layer 3 composed of an N-type Alx Ga1-x As, an active layer 4 composed of Aly Ga1-y As, and a second clad layer 5 composed of P-type Alx Ga1-x As are laminated in order on a main surface vertical to the cleavage plane of an N-type GaAs substrate 1, where 1>x>y>0. An N-type GaAs current blocking layer 8 which is divided into two parts, and a third clad layer 9 which is closely sandwiched between the divided current blocking layers 8 and composed of P-type Alx Ga1-x As are formed on the second clad layer 5. The section parallel to the main surface of the third clad layer 9 forms a parallelogram which is surrounded by the cleavage plane and a line obliquely to the normal of the cleavage plane. Thereby the noise of an oscillation laser which is caused by a return light can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Al y Ga1-y As からな
る活性層を有し、近赤外光を出射する半導体レーザ素子
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser device having an active layer made of Al y Ga 1-y As and emitting near infrared light.

【0002】[0002]

【従来の技術】一般に半導体レーザ素子が、回折限界で
ある1μm程度の微小スポットに光を絞り込む必要のあ
るコンパクトディスク(CD)やビデオディスク(V
D)等へ適用できるためには、以下の点が重要である。
まず、光の損失とむだな再結合を最小とするため特定領
域に光エネルギーおよび注入電流を閉じ込める構造を持
たなければならない。さらに、半導体レーザの活性層に
平行方向の光を閉じ込める横モードの制御を行わなけれ
ばならない。
2. Description of the Related Art Generally, a semiconductor laser device needs to focus light on a minute spot of about 1 μm which is a diffraction limit, such as a compact disc (CD) or a video disc (V).
In order to be applicable to D) etc., the following points are important.
First, in order to minimize light loss and wasteful recombination, it is necessary to have a structure for confining light energy and injection current in a specific region. Further, it is necessary to control the transverse mode for confining light in the parallel direction in the active layer of the semiconductor laser.

【0003】これらの条件を満たし得る構造の一例とし
て、SAS構造(Self-Aligned Structure)のレーザ素
子がある。図5は従来のSAS構造の半導体レーザ素子
であり、(a)は平面図、(b)はへき開面方向からみ
た断面図である。n型GaAs半導体基板1の上にn型AlGa
Asからなるバファー層2、n型Al x Ga1 -x As からなる
第1クラッド層3、Al y Ga1-y As 活性層4、p型Al x
Ga1-x As からなる第2クラッド層5、p型GaAsからな
るキャップ層6を順次積層されている。その上に、n 型
GaAsからなり、へき開面に垂直で狭い間隔だけ離れて2
分割されている電流阻止層8およびこの2つの電流阻止
層8に挟まれているp型Al x Ga1-x As からなる第3ク
ラッド層9が積層されている。この狭い領域がストライ
プS1であり、全駆動電流はストライプS1を流れる。
さらに、素子面全体にp型Al x Ga1-x As からなる第3
クラッド層9、続いてp型GaAsからなるコンタクト
層10が積層されている。そして、n側電極11がウェ
ハ裏面に、p側電極12がコンタクト層10上に形成さ
れている。同様の構造で導電型を逆にした素子を造るこ
とも可能である。
As an example of a structure that can satisfy these conditions,
Laser element of SAS structure (Self-Aligned Structure)
I have a child. FIG. 5 is a conventional semiconductor laser device having a SAS structure.
Where (a) is a plan view and (b) is seen from the cleavage plane direction.
FIG. n-type AlGa on the n-type GaAs semiconductor substrate 1
Buffer layer 2 made of As, n-type Alx Ga1 -x Consists of As
First cladding layer 3, Aly Ga1-y As active layer 4, p-type Alx
 Ga1-x The second cladding layer 5 made of As, made of p-type GaAs
The cap layer 6 is sequentially laminated. On top of that, n type
Made of GaAs, perpendicular to the cleavage plane and separated by a small distance 2
Split current blocking layer 8 and the two current blocking
P-type Al sandwiched between layers 8 x Ga1-x 3rd Ku consisting of As
A rud layer 9 is laminated. This narrow area is a strike
S1 and the total drive current flows through stripe S1.
In addition, p-type Al on the entire element surfacex Ga1-x Third consisting of As
Cladding layer 9, then contact made of p-type GaAs
Layers 10 are stacked. Then, the n-side electrode 11 is
The p-side electrode 12 is formed on the contact layer 10 on the rear surface.
Have been. Build a device with the same structure but with the conductivity type reversed.
Both are possible.

【0004】このような半導体レーザ素子がコンパクト
ディスクやビデオディスクへ適用される場合には、ピッ
クアップ光学系が構成される。ピックアップ光学系で
は、半導体レーザ素子を点光源として放射された光束は
レンズによりディスクのピット面に集光され、反射して
光路を逆行し、ビームスプリッタにより一部は情報とし
て光検出素子へ、一部は半導体レーザ素子へ戻る。
When such a semiconductor laser device is applied to a compact disc or a video disc, a pickup optical system is constructed. In the pickup optical system, the light beam emitted from the semiconductor laser element as a point light source is condensed by the lens on the pit surface of the disk, reflected and travels backward in the optical path. The part returns to the semiconductor laser device.

【0005】この戻り光により半導体レーザ素子の共振
器内の光密度が変化し、最適縦モードが変わり、レーザ
光の強度が不規則に変動するノイズが発生する事が知ら
れている。このような戻り光ノイズはディスクのピット
長さを誤って伝達し、デジタル情報の読み取りエラーに
つながる。共振器長(2つのへき開面間の光学距離)に
より定まる縦モード光が多数同時に発振する(マルチモ
ード発振という)半導体レーザ素子には、このような戻
り光ノイズが低いものがあることは知られている。ま
た、戻り光ノイズはレーザ光の可干渉性と相関があるこ
とも知られている。
It is known that this return light changes the optical density in the resonator of the semiconductor laser element, changes the optimum longitudinal mode, and causes noise in which the intensity of the laser light fluctuates irregularly. Such return light noise erroneously transmits the pit length of the disc, leading to an error in reading digital information. It is known that there are some semiconductor laser devices that generate such a large number of longitudinal mode lights that are oscillated at the same time (referred to as multimode oscillation) determined by the cavity length (the optical distance between the two cleavage planes) and have such low return light noise. ing. It is also known that return light noise correlates with the coherence of laser light.

【0006】可干渉性の測定は戻り光ノイズの測定より
も簡便であり、半導体レーザ素子の選別法として採用さ
れている。この測定は一方が半透明な2枚の平行に設置
されたミラーに垂直にレーザ光を導入し、2枚のミラー
間を往復し干渉した後半透明なミラーから出て来る出力
光強度を測定し、ミラー間隔に対する出力光強度を求め
るものである。ミラー間隔を変えていき、レーザ光の最
強モード光に対して最高出力光強度ピークと次のピーク
の出力光強度との比を可干渉性(単位%)と定義する。
The coherence measurement is easier than the return light noise measurement and is used as a method for selecting semiconductor laser devices. In this measurement, laser light was introduced perpendicularly to two parallel mirrors, one of which was semi-transparent, and the output light intensity emitted from the latter half of the transparent mirror that reciprocated between the two mirrors and interfered with each other was measured. , The output light intensity with respect to the mirror interval is obtained. The ratio of the maximum output light intensity peak to the output light intensity of the next peak with respect to the strongest mode light of the laser light is defined as coherence (unit:%) by changing the mirror interval.

【0007】実用上問題のない戻り光ノイズは、可干渉
性が95%以下に対応すると言われている。
It is said that the returned light noise, which has no practical problem, corresponds to coherence of 95% or less.

【0008】[0008]

【発明が解決しようとする課題】しかし、例えば、上記
のSAS構造において、光共振器の特性を変えるため
に、活性層の厚さ、第1、第2クラッド層の不純物添加
濃度および電流阻止層間隔を種々変えても可干渉性を9
5%以下に常にすることは困難であった。また、低戻り
光ノイズを確実に達成できる半導体レーザ素子構造につ
いては開示されていない。
However, for example, in the above SAS structure, in order to change the characteristics of the optical resonator, the thickness of the active layer, the impurity concentration of the first and second cladding layers, and the current blocking layer are used. Coherence is 9 even if the interval is changed.
It was difficult to always keep it below 5%. Further, it does not disclose a semiconductor laser device structure capable of reliably achieving low return light noise.

【0009】本発明の目的は、上述の点に鑑み、レーザ
光スペクトルのマルチモード化を図り、光学情報記録再
生装置のピックアップ光学系に用いた場合、戻り光ノイ
ズの発生が少ない半導体レーザ素子を提供することにあ
る。
In view of the above points, an object of the present invention is to provide a semiconductor laser device which realizes a multimode laser light spectrum and produces little return light noise when used in a pickup optical system of an optical information recording / reproducing apparatus. To provide.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、第一導電型のGaAs基板のへき開面
に垂直な一主面上に、この主面に平行に、第一導電型の
Alx Ga1-x Asからなる第1クラッド層, Al y Ga1-y As
(1>x>y>0)からなる活性層、第1導電型とは逆
の導電型である第2導電型のAlx Ga1-x Asからなる第2
クラッド層とが順に積層され、第2クラッド層には2分
割されている第1導電型のGaAs電流阻止層およびこ
れら2つの電流阻止層によって密着して挟まれる第2導
電型のAl x Ga1-x Asからなる第3クラッド層が設けられ
ている半導体レーザ素子において、前記第3クラッド層
の主面に平行な断面はへき開面とへき開面の法線に対し
斜めな線で囲まれた平行四辺形であるものする。
[Means for Solving the Problems]
Therefore, in the present invention, the cleavage plane of the GaAs substrate of the first conductivity type is
On one main surface perpendicular to, parallel to this main surface, of the first conductivity type.
AlxGa1-xFirst clad layer made of As, Aly Ga1-y As
Active layer made of (1> x> y> 0), opposite to the first conductivity type
Second conductivity type Al, which is the conductivity type ofxGa1-xSecond consisting of As
The clad layer and the clad layer are laminated in this order, and the second clad layer is divided into two layers.
A first conductivity type GaAs current blocking layer and
The second conductor closely sandwiched between these two current blocking layers
Electric type Al xGa1-xA third cladding layer of As is provided
The semiconductor laser device, the third cladding layer
The cross section parallel to the principal plane of the cleaved surface and the normal to the cleaved surface
It shall be a parallelogram surrounded by diagonal lines.

【0011】[0011]

【作用】本発明の構成による作用は明確には理解できて
いないが、次のように推定できる。本発明のへき開面に
斜めの(OFF)ストライプを持つ半導体レーザ素子で
は、光共振器の主面に平行な断面は細長の平行四辺形で
あるため、OFF角度が増加するに従って、レーザ発振
に関わるへき開面間のみを反射面とする定在波の率が減
少し、共振器側面で全反射する定在波の率が増加する。
後者の定在波では、その波長はへき開面での反射位置の
依存する連続な値をとることが可能となる。そのため、
OFF角度が増加して、後者の定在波が主となるとレー
ザ光スペクトルモードはマルチモードとなり、また発振
している任意の波長のペクトルの半値幅も広くなってお
り、可干渉性が低下する。
The function of the present invention is not clearly understood, but it can be estimated as follows. In the semiconductor laser device having the oblique (OFF) stripes on the cleavage plane of the present invention, the cross section parallel to the main surface of the optical resonator is an elongated parallelogram, and therefore the laser oscillation is involved as the OFF angle increases. The ratio of the standing wave whose reflection surface is only between the cleavage planes is decreased, and the ratio of the standing wave totally reflected on the side surface of the resonator is increased.
In the latter standing wave, the wavelength can take a continuous value depending on the reflection position on the cleavage plane. for that reason,
When the OFF angle increases and the latter standing wave becomes dominant, the laser light spectrum mode becomes multimode, and the full width at half maximum of the oscillating arbitrary wavelength spectrum is widened, and the coherence decreases. .

【0012】このようにして、本発明の半導体レーザ素
子では、レーザ光の可干渉性が下がっており、戻り光に
よる発振レーザ光のノイズを低減することができる。
In this way, in the semiconductor laser device of the present invention, the coherence of the laser light is lowered, and the noise of the oscillated laser light due to the returning light can be reduced.

【0013】[0013]

【実施例】【Example】

実施例1 次に本発明の一実施例を図面に基づき、製造工程に沿っ
て説明する。図1は、本発明に係る半導体レーザ素子の
平面図である。ストライプSは電流阻止層境界81の間
にあり、その様子は以下の説明で明らかにされる。図2
は本発明に係る半導体レーザ素子の主な製造工程後のウ
ェハの模式図であり、(a)二酸化ケイ素層マスク形成
後の断面図、(b)電流阻止層成長後の断面図,(c)
電極形成後の断面図である。
Example 1 Next, an example of the present invention will be described with reference to the drawings along with a manufacturing process. FIG. 1 is a plan view of a semiconductor laser device according to the present invention. The stripe S is located between the current blocking layer boundaries 81, and its appearance will be clarified in the following description. Figure 2
FIG. 4A is a schematic view of a wafer after the main manufacturing process of a semiconductor laser device according to the present invention, where (a) is a cross-sectional view after forming a silicon dioxide layer mask, (b) is a cross-sectional view after growing a current blocking layer, and (c).
It is sectional drawing after an electrode formation.

【0014】この発明の一実施例の半導体レーザ素子の
断面図を製造工程は従来方法と同じである。まず、n型
GaAs半導体基板1 の上に厚さ0.2μのn型AlGaAsから
なるバッファー層2、厚さ1.5 μm のn型Al x Ga1-x A
s からなる第1クラッド層3( キャリア濃度2 ×1018cm
-3) 、Al y Ga1-y As(y< x) からなりノンドープの厚さ
0.05 nm 活性層4、p型Al x Ga1-x As からなる厚さ0.
4 μm 第2クラッド層5( キャリア濃度2 ×1018cm-3)
をMOCVD 法で順次成長させたのち、p型GaAsからなる厚
さ0.01μm キャップ層6 (キャリア濃度2 ×1018cm-3)
を順次形成する。その上に厚さ0.15μm 二酸化ケイ素層
を積層する。
The manufacturing process of the sectional view of the semiconductor laser device of one embodiment of the present invention is the same as the conventional method. First, n-type
A buffer layer 2 made of n-type AlGaAs having a thickness of 0.2 μm on a GaAs semiconductor substrate 1, an n-type Al x Ga 1-x A having a thickness of 1.5 μm.
The first cladding layer 3 composed of s (carrier concentration 2 × 10 18 cm
-3 ), Al y Ga 1-y As (y <x) and undoped thickness
0.05 nm active layer 4, thickness of p-type Al x Ga 1-x As 0.
4 μm 2nd clad layer 5 (Carrier concentration 2 × 10 18 cm -3 )
Were sequentially grown by MOCVD, and then 0.01 μm thick cap layer 6 made of p-type GaAs (carrier concentration 2 × 10 18 cm -3 ).
Are sequentially formed. A 0.15 μm thick layer of silicon dioxide is laminated thereover.

【0015】通常のパターニングにより、幅 5μm のス
トライプ状酸化ケイ素マスク7を形成する(図2
(a))。このマスクは<011>方向に対して角度0
〜6°だけ斜めにした(OFFさせた)ストライプ状で
ある(図1参照)。次いで、酸化ケイ素マスク7を選択
成長用マスクとして利用し、減圧の有機金属化学気相成
長法(MOCVD法) により、厚み0.15μmのn型GaA
s(キャリア濃度8×1018cm-3)よりなる電流阻止層8
を形成する(図2(b))。次いで、酸化ケイ素マスク
7を除去し、厚さ1.1μmのp型Al x Ga1-x As から
なる第3クラッド層9(キャリア濃度2×1018cm-3)、
厚み5μmp型GaAsよりなるコンタクト層10(キ
ャリア濃度8×1018cm-3)を順次形成し、最後に、n型
電極11をウェハ裏面に、p型電極12をコンタクト層
10に形成する(図2(c))。
A stripe-shaped silicon oxide mask 7 having a width of 5 μm is formed by ordinary patterning (see FIG. 2).
(A)). This mask has an angle of 0 with respect to the <011> direction.
It has a stripe shape that is inclined (turned off) by about 6 ° (see FIG. 1). Then, using the silicon oxide mask 7 as a mask for selective growth, a 0.15 μm-thick n-type GaA film is formed by reduced pressure metalorganic chemical vapor deposition (MOCVD).
s (carrier concentration 8 × 10 18 cm -3 ) current blocking layer 8
Are formed (FIG. 2B). Then, the silicon oxide mask 7 is removed, and the third cladding layer 9 (carrier concentration 2 × 10 18 cm −3 ) made of p-type Al x Ga 1-x As having a thickness of 1.1 μm,
A contact layer 10 (carrier concentration 8 × 10 18 cm −3 ) made of GaAs having a thickness of 5 μmp is sequentially formed, and finally, an n-type electrode 11 is formed on the back surface of the wafer and a p-type electrode 12 is formed on the contact layer 10 (FIG. 2 (c)).

【0016】上記の製造工程の後、個別のレーザ素子
は、ウェハを( 図2の紙面に平行に)へき開しバーと
し、さらにこのバーをスクライブして得られる。なお、
動作電流は電流阻止層8の間の第3クラッド層であるス
トライプSを流れ、電流阻止層8には流れない。ストラ
イプSのOFF角度を変えたマスクを用い半導体レーザ
素子を作製し、ストライプSのOFF角度と可干渉性お
よび動作電流の関係を調べた。図3はOFF角度に対す
る可干渉性と動作電流(光出力3 mW 時) のグラフであ
る。可干渉性はOFF角度の増加と共に減少し、95%
以下はOFF角度1°以上で達せられることがわかる。
また、動作電流はOFF角度の増加と共に増加する。実
用上動作電流の上限を50mAとすると、OFF角度の
上限は3°となる。
After the above manufacturing process, individual laser elements are obtained by cleaving the wafer (parallel to the paper surface of FIG. 2) into bars and then scribing the bars. In addition,
The operating current flows through the stripe S that is the third cladding layer between the current blocking layers 8 and does not flow in the current blocking layers 8. A semiconductor laser device was manufactured using a mask in which the OFF angle of the stripe S was changed, and the relationship between the OFF angle of the stripe S and the coherence and operating current was examined. FIG. 3 is a graph of the coherence with respect to the OFF angle and the operating current (at an optical output of 3 mW). Coherence decreases with increasing OFF angle, 95%
It can be seen that the following can be achieved when the OFF angle is 1 ° or more.
Also, the operating current increases as the OFF angle increases. Practically, if the upper limit of the operating current is 50 mA, the upper limit of the OFF angle is 3 °.

【0017】本実施例によって製造された半導体レーザ
素子では、レーザ発振共振器の共振面をずらすことによ
り、定在波構造の異なる複数のモードの発振を行うこと
ができ、レーザ光スペクトルモードはマルチモードとな
り、可干渉性が下がり、外部の光学系からの戻り光の影
響を受けがたく、ノイズの発生を低減させることができ
る。 実施例2 次に本発明の他の実施例について説明する。
In the semiconductor laser device manufactured according to this embodiment, by displacing the resonance plane of the laser oscillation resonator, it is possible to oscillate a plurality of modes having different standing wave structures, and the laser light spectrum mode is multi-mode. The mode is set, the coherence is lowered, the influence of the return light from the external optical system is small, and the generation of noise can be reduced. Second Embodiment Next, another embodiment of the present invention will be described.

【0018】図4は他の実施例の主な製造工程後のウェ
ハの模式図であり、(a)二酸化ケイ素層マスク形成後
の断面図、(b)電流阻止層成長後の断面図,(c)電
極形成後の断面図である。図2と共通の部分には同一の
符号が付されている。まず、n型GaAs半導体基板1 の上
にn型AlGaAsからなる厚さ0.2 μm のバッファ層2を介
してn型Al x Ga1 -x As からなる厚さ1.5 μm 第1クラ
ッド層3、Al y Ga1-y As(y<x) からなりノンドープ
の厚さ0.05 nm 活性層4、p型Al x Ga1-x As からなる
厚さ0.3 μm 第2クラッド層5をMOCVD 法で順次成長さ
せたのち、p型Al Z Ga1-Z As (y<z<x)からなる
厚さ0.03μm エッチングストップ層Eを形成し、さらに
その上にp型Al x Ga1-x As からなる厚さ1.1 μm 第3
クラッド層9、p型GaAsからなる厚さ0.2 μm オーム性
コンタクト層10を順次積層し、さらに厚さ0.15μm酸
化ケイ素層を積層する。
FIG. 4 is a schematic view of a wafer after the main manufacturing process of another embodiment. (A) a sectional view after forming a silicon dioxide layer mask, (b) a sectional view after growing a current blocking layer, ( c) A cross-sectional view after forming electrodes. The same parts as those in FIG. 2 are designated by the same reference numerals. First, on the n-type GaAs semiconductor substrate 1, a 0.2 μm-thick buffer layer 2 made of n-type AlGaAs and a 1.5 μm-thick first cladding layer 3 made of n-type Al x Ga 1 -x As, Al y An undoped 0.05-nm-thick active layer 4 made of Ga 1-y As (y <x) and a 0.3-μm-thick second cladding layer 5 made of p-type Al x Ga 1-x As were successively grown by MOCVD. After that, an etching stop layer E of p-type Al Z Ga 1-Z As (y <z <x) having a thickness of 0.03 μm is formed, and a thickness of p-type Al x Ga 1-x As of 1.1 is formed on the etching stop layer E. μm third
A clad layer 9 and a 0.2 μm thick ohmic contact layer 10 made of p-type GaAs are sequentially laminated, and a 0.15 μm thick silicon oxide layer is further laminated.

【0019】通常のパターニング法により、酸化ケイ素
層の幅数μm のストライプ状マスク7を形成する(図4
(a))。ストライプの方向は基板結晶の[011] 方向から2
°OFFとした。次に、マスク7を利用してオーム性コ
ンタクト層10と 第3クラッド層9をエッチングす
る。エッチングはエッチングストップ層Eに達すると、
自動的に進行しなくなり、エッチングストップ層Eが残
る。
A stripe-shaped mask 7 having a width of several μm of the silicon oxide layer is formed by an ordinary patterning method (see FIG. 4).
(a)). The stripe direction is 2 from the [011] direction of the substrate crystal.
It was set to OFF. Next, the ohmic contact layer 10 and the third cladding layer 9 are etched using the mask 7. When the etching reaches the etching stop layer E,
It stops automatically and the etching stop layer E remains.

【0020】次いで、酸化ケイ素マスク7を選択成長用
マスクとして利用し、減圧の有機金属化学気相成長法(M
OCVD法) により、リコンタクト層10の上面の高さ迄、
n型GaAsからなる電流阻止層8を埋め込む( 図4(b))。
最後にマスク7を除去し、n型電極11をウェハ裏面に、
p型電極12をコンタクト層10および電流阻止層8に形
成する(図4(c) )。
Next, using the silicon oxide mask 7 as a mask for selective growth, a reduced pressure metal organic chemical vapor deposition method (M
By the OCVD method), up to the height of the upper surface of the recontact layer 10,
A current blocking layer 8 made of n-type GaAs is embedded (FIG. 4 (b)).
Finally, the mask 7 is removed and the n-type electrode 11 is placed on the back surface of the wafer.
A p-type electrode 12 is formed on the contact layer 10 and the current blocking layer 8 (FIG. 4 (c)).

【0021】実施例1と同様に、半導体レーザ素子素子
を個別化し、可干渉性を調べたところ、全て可干渉性は
95%以下であった。
As in Example 1, when the semiconductor laser device elements were individually made and the coherence was examined, all the coherence was 95% or less.

【0022】[0022]

【発明の効果】本発明によれば、半導体レーザ素子のス
トライプをへき開面に対し1°〜3°傾けて斜めにする
ことにより、レーザ光スペクトルモードはマルチモード
となり、可干渉性を下げることができる。その結果、本
発明の半導体レーザ素子をピックアップ光学系に組み込
んだ場合、光学系からの戻り光の影響を受けないため、
ノイズの発生は低く、誤り率の低い情報読み取りを行う
ことができる。
According to the present invention, by tilting the stripes of the semiconductor laser device by inclining them by 1 ° to 3 ° with respect to the cleavage plane, the laser light spectrum mode becomes a multimode and the coherence can be lowered. it can. As a result, when the semiconductor laser device of the present invention is incorporated into a pickup optical system, it is not affected by the return light from the optical system,
The generation of noise is low, and it is possible to read information with a low error rate.

【0023】このような構造は、製造工程上では、二酸
化ケイ素層のパターニングマスクのパターンを斜めに変
更するだけよく、極めて簡易に実施例が可能であり、製
造歩留りも高い。
In such a structure, in the manufacturing process, the pattern of the patterning mask of the silicon dioxide layer may be changed obliquely, the embodiment can be carried out very easily, and the manufacturing yield is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体レーザ素子の平面図FIG. 1 is a plan view of a semiconductor laser device according to the present invention.

【図2】本発明に係る半導体レーザ素子の主な製造工程
後のウェハの模式図であり、(a)二酸化ケイ素層マス
ク形成後の断面図、(b)電流阻止層成長後の断面図,
(c)電極形成後の断面図の製造工程順の半導体レーザ
素子の断面図
FIG. 2 is a schematic view of a wafer after a main manufacturing process of a semiconductor laser device according to the present invention, in which (a) a sectional view after forming a silicon dioxide layer mask, (b) a sectional view after growing a current blocking layer,
(C) Cross-sectional views of the semiconductor laser device in the manufacturing process order of the cross-sectional view after electrode formation

【図3】本発明に係るOFF角度に対する可干渉性と動
作電流(光出力3 mW 時) のグラフ
FIG. 3 is a graph of coherence with respect to an OFF angle according to the present invention and operating current (at an optical output of 3 mW).

【図4】本発明に係る他の半導体レーザ素子の主な製造
工程後のウェハの模式図であり、(a)二酸化ケイ素層
マスク形成後の断面図、(b)電流阻止層成長後の断面
図,(c)電極形成後の断面図の製造工程順の半導体レ
ーザ素子の断面図
FIG. 4 is a schematic view of a wafer after the main manufacturing process of another semiconductor laser device according to the present invention, (a) a cross-sectional view after forming a silicon dioxide layer mask, (b) a cross-section after growing a current blocking layer. Figures (c) Cross-sectional views of the semiconductor laser device in the manufacturing process order of the cross-sectional view after electrode formation

【図5】従来例の半導体レーザ素子であり、(a)は平
面図、(b)は断面図
FIG. 5 is a conventional semiconductor laser device, in which (a) is a plan view and (b) is a sectional view.

【符号の説明】[Explanation of symbols]

1 n型GaAs半導体基板 2 バッファ層 3 第1クラッド層 4 活性層 5 第2クラッド層 6 キャップ層 7 酸化ケイ素層マスク 8 電流阻止層 81 電流阻止層の境界 9 第3クラッド層 10 コンタクト層 11 n側電極 12 p側電極 S ストライプ S1 ストライプ 1 n-type GaAs semiconductor substrate 2 buffer layer 3 first cladding layer 4 active layer 5 second cladding layer 6 cap layer 7 silicon oxide layer mask 8 current blocking layer 81 current blocking layer boundary 9 third cladding layer 10 contact layer 11 n Side electrode 12 p Side electrode S stripe S1 stripe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第一導電型のGaAs基板のへき開面に垂
直な一主面上に、この主面に平行に、第一導電型のAlx
Ga1-x Asからなる第1クラッド層, Al y Ga1 -y As (1
>x>y>0)からなる活性層、第1導電型とは逆の導
電型である第2導電型のAlx Ga1-x Asからなる第2クラ
ッド層とが順に積層され、第2クラッド層には2分割さ
れている第1導電型のGaAs電流阻止層およびこれら
2つの電流阻止層によって密着して挟まれる第2導電型
のAlx Ga1-x Asからなる第3クラッド層 (ストライプ)
が設けられている半導体レーザ素子において、前記第3
クラッド層の主面に平行な断面はへき開面とへき開面の
法線に対し斜めな線で囲まれた平行四辺形であることを
特徴とする半導体レーザ素子。
To 1. A on the vertical one major surface a cleavage plane of a first conductivity type GaAs substrate, parallel to the main surface of a first conductivity type Al x
The first cladding layer made of Ga 1-x As, Al y Ga 1- y As (1
>X>y> 0), and a second clad layer made of Al x Ga 1-x As of a second conductivity type opposite to the first conductivity type, which is laminated in order. In the clad layer, a GaAs current blocking layer of the first conductivity type, which is divided into two, and a third clad layer made of Al x Ga 1-x As of the second conductivity type, which is closely sandwiched between these two current blocking layers ( stripe)
In the semiconductor laser device provided with,
A semiconductor laser device characterized in that a cross section parallel to the main surface of the cladding layer is a cleavage plane and a parallelogram enclosed by a line oblique to the normal to the cleavage plane.
JP2152695A 1995-02-09 1995-02-09 Semiconductor laser element Pending JPH08222796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152695A JPH08222796A (en) 1995-02-09 1995-02-09 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152695A JPH08222796A (en) 1995-02-09 1995-02-09 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH08222796A true JPH08222796A (en) 1996-08-30

Family

ID=12057405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152695A Pending JPH08222796A (en) 1995-02-09 1995-02-09 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH08222796A (en)

Similar Documents

Publication Publication Date Title
JP4789558B2 (en) Multi-wavelength semiconductor laser device
JPH0834337B2 (en) Method for manufacturing semiconductor laser device
CN101123343A (en) Semiconductor laser device and method for fabricating the same
JPH0888439A (en) Semiconductor laser and its production
JPS6343908B2 (en)
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
US7433380B2 (en) Semiconductor laser device and method for fabricating the same
US6778573B2 (en) Fundamental-transverse-mode index-guided semiconductor laser device having upper optical waveguide layer thinner than lower optical waveguide layer
US5533042A (en) Semiconductor laser device and driving method for the same as well as tracking servo system employing the same
JPH08222796A (en) Semiconductor laser element
JP2000183449A (en) Semiconductor laser
JP3423203B2 (en) Method for manufacturing semiconductor laser device
JPH1187856A (en) Gallium nitride compound semiconductor laser and manufacture thereof
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JPH08250805A (en) Semiconductor laser element and its manufacture
JPS61131581A (en) Semiconductor laser
JP2000138419A (en) Semiconductor laser element and its manufacture
JP3642711B2 (en) Semiconductor laser element
JP2004158800A (en) Nitride semiconductor laser device and optical information recording and reproducing device
JPH0268975A (en) Semiconductor laser
JPH04316387A (en) Surface light emitting laser
KR100363239B1 (en) Laser diode and manufacturing method thereof
JP3674139B2 (en) Visible semiconductor laser
JPH1022565A (en) Semiconductor laser element and its manufacture
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof