JPH08222751A - Thin film solar battery - Google Patents

Thin film solar battery

Info

Publication number
JPH08222751A
JPH08222751A JP7026411A JP2641195A JPH08222751A JP H08222751 A JPH08222751 A JP H08222751A JP 7026411 A JP7026411 A JP 7026411A JP 2641195 A JP2641195 A JP 2641195A JP H08222751 A JPH08222751 A JP H08222751A
Authority
JP
Japan
Prior art keywords
layer
solar cell
film solar
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7026411A
Other languages
Japanese (ja)
Other versions
JP3216765B2 (en
Inventor
Yujiro Watanuki
勇次郎 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02641195A priority Critical patent/JP3216765B2/en
Publication of JPH08222751A publication Critical patent/JPH08222751A/en
Application granted granted Critical
Publication of JP3216765B2 publication Critical patent/JP3216765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To obtain a thin film solar battery capable of even application causing no winding reform at all while enhancing the mechanical strength by a method wherein a weatherproofing resin layer is formed by coating and drying step with fluorine resin solution between a bonding layer used for covering the surface of a thin film solar battery with the weatherproofing layer is manufactured in the incident light side using a glass fiber. CONSTITUTION: A thin film solar battery has a photoelectric conversion semiconductor layer 3 held between the first electrode layer 2 and the second electrode layer 4 on a flexible substrate 1 and both surfaces thereof are covered with weatherproofing resin layers 7, 72 through the intermediary of a bonding agent layers 6, 62. Since the thin solar battery is mounted on the surface in the incident light side in the case of application, the incident side bonding agent 6 is reinforced by coating or mixing a glass fiber to enhance the mechanical strength. Otherwise, the weatherproofing resin layer 7 on the surface is thinly formed by coating and drying up with a solution of weatherproofing fluorine resin solution. Through these procedures, the weatherproofing resin layer 7 on the surface is evenly applied causing no winding reform at all even if this layer 7 is wound up in roll.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可とう性の基板を用い
た薄膜太陽電池、特に住宅等の屋根上に設置して電力を
得ることのできる薄膜太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell using a flexible substrate, and more particularly to a thin film solar cell which can be installed on a roof of a house or the like to obtain electric power.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成される非晶質シリコン (以下a−Siと記す)
を主材料とした太陽電池は薄膜、大面積化が容易という
特徴をもち、低コスト太陽電池として期待されている。
特に、ステンレス鋼あるいは金属電極を蒸着したプラス
チックフィルム等の可とう性基板を用いた太陽電池は、
製造の際にロールツーロール方式あるいはステッピング
ロール方式により高い生産性を実現できることから有望
視されている。また、軽量で可とう性があるため、任意
の形状の面上に設置でき、さらに長尺のものが得られる
ため、特に面積の大きい住宅等の屋根上に設置するのに
有利である。このような太陽電池の構造は従来、例えば
図2に示すような断面構造を有し、可とう性のある絶縁
基板1の一面上に金属よりなる第一電極層2、a−Si
よりなる光電変換半導体層3、ITOなどからなる透明
な第二電極層4が積層され、他面側には、例えば特願平
5−67976号明細書に記載されている第三電極層5
が形成され、基板1に開けられた貫通孔を通じて第一電
極層2あるいは第二電極層4と接続されている。このよ
うな構造の太陽電池セルが、第二電極層の上に透明接着
剤層61を介した透明耐候性フィルム71と第三電極層
5の上に接着剤層62を介した耐候性フィルム72とに
より挟着され、保護されている。耐候性フィルム71お
よび72の厚さは、例えば50μmである。接着剤層6
1,62としてはエチレン酢酸ビニル共重合体(EV
A)が用いられる。
2. Description of the Related Art Amorphous silicon (hereinafter referred to as a-Si) formed by glow discharge decomposition of a raw material gas or photo-CVD.
A solar cell made mainly of is a thin film and has the characteristics that it can be easily enlarged, and is expected to be a low-cost solar cell.
In particular, solar cells using flexible substrates such as stainless steel or plastic films with metal electrodes deposited are
It is considered promising because it can achieve high productivity by roll-to-roll method or stepping roll method during manufacturing. Further, since it is lightweight and flexible, it can be installed on a surface of any shape, and a long product can be obtained, which is advantageous for installation on a roof of a house or the like having a large area. Conventionally, the structure of such a solar cell has a cross-sectional structure as shown in FIG. 2, for example, and a first electrode layer 2 made of metal, a-Si, is formed on one surface of a flexible insulating substrate 1.
A photoelectric conversion semiconductor layer 3 and a transparent second electrode layer 4 made of ITO or the like are laminated, and on the other surface side, for example, a third electrode layer 5 described in Japanese Patent Application No. 5-67976.
Is formed and is connected to the first electrode layer 2 or the second electrode layer 4 through a through hole formed in the substrate 1. A solar cell having such a structure has a transparent weather resistant film 71 having a transparent adhesive layer 61 on a second electrode layer and a weather resistant film 72 having an adhesive layer 62 on a third electrode layer 5. It is sandwiched and protected by. The thickness of the weather resistant films 71 and 72 is, for example, 50 μm. Adhesive layer 6
1, 62 is ethylene vinyl acetate copolymer (EV
A) is used.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
従来の薄膜太陽電池は、機械的強度、特に衝撃および圧
縮に弱いという問題があった。すなわち、屋根上への設
置時施工作業者は薄膜太陽電池上に足を乗せて作業する
ため、足の部分には数十kgの衝撃および圧縮荷重が掛
かることとなり、この荷重が太陽電池セルに影響し太陽
電池セルの出力が低下してしまうという欠点があった。
また、耐候性フィルム71、72が硬く、硬さの異なる
材料の組合わせとなる積層体はフィルムの剛性により硬
くなり、巻回することにより巻きぐせがついて施工後に
変形してしまう。巻きぐせを直すとしわが発生するため
出力が低下してしまい、特に屋根上への設置の場合に問
題となる。さらに耐候性フィルムに主に用いられるふっ
素系樹脂フィルムは高価であるという欠点があった。
By the way, such a conventional thin film solar cell has a problem that it is vulnerable to mechanical strength, particularly impact and compression. In other words, when installing on the roof, the construction worker puts his foot on the thin-film solar cell to work, so a tens of kilogram impact and compressive load is applied to the foot part, and this load is applied to the solar cell. This has a drawback that the output of the solar battery cell is reduced due to the influence.
In addition, the weather resistant films 71 and 72 are hard, and the laminated body which is a combination of materials having different hardness becomes hard due to the rigidity of the film, and when it is wound, it has a curl and is deformed after construction. When the curl is rewound, wrinkles occur and output decreases, which is a problem especially when installing on a roof. Further, the fluorine-based resin film mainly used for the weather resistant film has a drawback that it is expensive.

【0004】本発明の第一の目的は、上述の問題を解決
し、機械強度が強い薄膜太陽電池を提供することにあ
る。第二の目的は、ロール状に巻回した場合の巻きぐせ
がなく、耐候性を有した低コストの薄膜太陽電池を提供
することにある。
A first object of the present invention is to solve the above problems and provide a thin film solar cell having high mechanical strength. A second object is to provide a low-cost thin-film solar cell that has no weathering when wound in a roll and has weather resistance.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1その他に記載の第一の本発明は、可とう
性基板上に第一電極層と第二電極層とにはさまれた光電
変換半導体層を有し、両面が接着剤層を介して耐候性樹
脂層で覆われた薄膜太陽電池において、光入射側の接着
剤層がガラス繊維で強化された樹脂よりを有してなるも
のとする。ガラス繊維は、接着剤樹脂層の面上に被着し
ても、接着剤樹脂中に混入されても良い。接着剤樹脂が
EVAであることが良い。
In order to achieve the above object, the first invention according to claim 1 and others provides a flexible substrate with a first electrode layer and a second electrode layer. In a thin-film solar cell that has a sandwiched photoelectric conversion semiconductor layer and is covered on both sides with a weather-resistant resin layer with an adhesive layer in between, the adhesive layer on the light-incident side is made of a resin reinforced with glass fiber. Shall be done. The glass fiber may be deposited on the surface of the adhesive resin layer or may be mixed in the adhesive resin. The adhesive resin is preferably EVA.

【0006】上述の第二の目的を達成するために、請求
項5その他に記載の第二の本発明は、可とう性基板上に
第一電極層と第二電極層とにはさまれた光電変換半導体
層を有し、両面が接着剤層を介して耐候性樹脂層で覆わ
れた薄膜太陽電池において、耐候性樹脂層がふっ素樹脂
溶液の塗布、乾燥によって形成されたものとする。耐候
性樹脂層の接着剤層側に汎用樹脂層が介在しても良い。
接着剤層上の樹脂層の厚さが5〜30μmであることが
良い。ふっ素樹脂は、ポリテトラフルオロエチレン (P
TFE) であってもポリふっ化ビニル (PFV) であっ
ても良い。
In order to achieve the above-mentioned second object, the second invention according to claim 5 and others is sandwiched between a first electrode layer and a second electrode layer on a flexible substrate. In a thin-film solar cell having a photoelectric conversion semiconductor layer, both surfaces of which are covered with a weather resistant resin layer with an adhesive layer interposed therebetween, the weather resistant resin layer is formed by applying a fluororesin solution and drying. A general-purpose resin layer may be interposed on the adhesive layer side of the weather resistant resin layer.
The thickness of the resin layer on the adhesive layer is preferably 5 to 30 μm. Fluororesin is polytetrafluoroethylene (P
It may be TFE) or polyvinyl fluoride (PFV).

【0007】[0007]

【作用】施工作業者は太陽電池の光入射側の表面上に乗
って作業する。従って、その側の接着剤層をガラス繊維
の被着あるいは混入によって強化しておけば、作業者の
乗ったことによる衝撃あるいは圧縮が加わっても光電変
換半導体層への影響が弱まり、特性の変化がない。接着
剤樹脂には従来と同様のEVAを用いることができる。
また、表面の耐候性樹脂層に剛性の強いフィルムを用い
ないで耐候性のあるふっ素樹脂の溶液の塗布、乾燥によ
って薄く形成することにより、ロール状に巻回しても巻
きぐせがつかず、均一施工ができる。そして塗布、乾燥
だけで施工できるから製造工程が簡略化される。形成さ
れた耐候性樹脂層の厚さは、5μm未満では均一な膜が
形成できず、30μmを超えると剛性が問題となり、ま
た高価なふっ素樹脂の使用量を抑えてコストを低くする
ことも不可能になる。
[Operation] A construction worker works by riding on the surface of the solar cell on the light incident side. Therefore, if the adhesive layer on that side is reinforced by adhering or mixing glass fibers, the influence on the photoelectric conversion semiconductor layer is weakened even if the impact or compression due to the ride of the worker is applied, and the characteristics change. There is no. EVA similar to the conventional one can be used for the adhesive resin.
In addition, by applying a solution of a weather-resistant fluororesin without using a highly rigid film as the weather-resistant resin layer on the surface and forming a thin film by drying, it does not curl even when wound in a roll shape, and is uniform. Can be constructed. The manufacturing process can be simplified because the construction can be performed only by coating and drying. If the thickness of the formed weather-resistant resin layer is less than 5 μm, a uniform film cannot be formed, and if it exceeds 30 μm, rigidity becomes a problem, and it is not possible to reduce the cost by suppressing the amount of expensive fluororesin used. It will be possible.

【0008】[0008]

【実施例】以下、図2と共通の部分に同一の符号を付し
た図を引用して本発明の実施例について述べる。 実施例1:この薄膜太陽電池は第一および第二の本発明
の一実施例で、図1の断面構造を有し、絶縁性フィルム
基板1として、ポリイミドフィルム (東レデュポン社商
品名:カプトン) を用い、第一電極層2はAg膜、光電
変換半導体層3としてpin接合を有するa−Si膜、
透明第二電極層4はITO膜、絶縁基板1の裏側に第三
電極層5としてAg膜をそれぞれ所定の装置により形成
し、太陽電池セルとした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawing in which the same reference numerals are given to the same parts as in FIG. Example 1 This thin-film solar cell is an example of the first and second inventions and has a cross-sectional structure shown in FIG. 1, and a polyimide film (trade name: Kapton, Toray DuPont Co., Ltd.) is used as the insulating film substrate 1. The first electrode layer 2 is an Ag film, the photoelectric conversion semiconductor layer 3 is an a-Si film having a pin junction,
The transparent second electrode layer 4 was an ITO film, and an Ag film was formed as a third electrode layer 5 on the back side of the insulating substrate 1 by a predetermined device to form a solar cell.

【0009】この太陽電池セル裏面側は、100μmの
厚さのEVAフィルム (クラボウ社商品名:VSシー
ト) を接着剤層62として、アルミニウム箔をポリふっ
化ビニル (PVF) でサンドイッチした120μmの厚
さの白色フィルム (デュポン社商品名:テドラ−PV
F) を耐候性フィルム72として被覆した。裏面の光入
射側は、EVAフィルム6の片側にガラス繊維8を付着
させたスプリングボーン社製の商品で厚さ250μmの
ものを、ゴムロール式のラミネータ装置で120℃、5
kg/cm2 の圧力の条件で仮接着した。さらにこのガ
ラス繊維8を付着したEVAフィルム6上にふっ素樹脂
ポリテトラフルオロエチレン (PTFE) 溶液 (東亜ペ
イント社商品名:ニューガーメット) を乾燥後の膜厚が
50μmとなるようにドクターブレード法にて塗布し、
80℃、30分の予備乾燥後、160℃、60分の条件
でEVAの本架橋とふっ素樹脂の硬化を同時に行い耐候
性薄膜7を形成し太陽電池モジュールとした。
On the back surface side of this solar cell, an EVA film (trade name: VS sheet) having a thickness of 100 μm was used as an adhesive layer 62, and an aluminum foil was sandwiched with polyvinyl fluoride (PVF) to have a thickness of 120 μm. Sano White Film (Trade name: DuPont: Tedra-PV
F) was coated as a weather resistant film 72. The light-incident side on the back side is a product manufactured by Springborn Co., Ltd. having a glass fiber 8 attached to one side of the EVA film 6 and having a thickness of 250 μm.
Temporary adhesion was performed under the condition of a pressure of kg / cm 2 . Further, a fluororesin polytetrafluoroethylene (PTFE) solution (Toa Paint Co., Ltd .: Neugermet) was applied on the EVA film 6 having the glass fibers 8 adhered thereto by a doctor blade method so that the film thickness after drying was 50 μm. And apply
After preliminary drying at 80 ° C. for 30 minutes, main crosslinking of EVA and curing of the fluororesin were simultaneously performed under the conditions of 160 ° C. for 60 minutes to form a weather resistant thin film 7 to obtain a solar cell module.

【0010】可とう性の基板1としては、絶縁性フィル
ムのほかに金属フィルムを用いることができる。フィル
ム状絶縁基板は、その上に電極層および薄膜半導体層が
200℃前後で成膜されるため耐熱性が要求される。し
たがって、耐熱性を有するプラスチックフィルムとし
て、ポリイミドフィルムのほかに、ポリエーテルイミ
ド、ポリサルホン、ポリエーテルサルホン、ポリフェニ
レンサルファイド、パラ系アラミド、ポリエーテルケト
ン、ふっ素系全般のフィルムが挙げられるが、特にポリ
イミド、パラ系アラミド、ふっ素系全般のフィルムが好
適である。金属フィルムは、ステンレス鋼、ニッケル、
銅箔等を用いれば耐熱性の点では問題がなく、そのまま
第一電極層を兼ねる導電性基板として用いることも、表
面に耐熱性絶縁膜を被着して絶縁性基板として用いるこ
ともできる。
As the flexible substrate 1, a metal film can be used in addition to the insulating film. The film-shaped insulating substrate is required to have heat resistance because the electrode layer and the thin film semiconductor layer are formed thereon at about 200 ° C. Therefore, as the plastic film having heat resistance, in addition to the polyimide film, polyetherimide, polysulfone, polyether sulfone, polyphenylene sulfide, para-based aramid, polyether ketone, fluorine-based film, but especially polyimide , Para-aramid, and fluorine-based films are suitable. Metal films are made of stainless steel, nickel,
If a copper foil or the like is used, there is no problem in heat resistance, and it can be used as it is as a conductive substrate that also serves as the first electrode layer, or can be used as an insulating substrate by coating a heat resistant insulating film on the surface.

【0011】実施例2:第一および第二の本発明の別の
実施例で、図3の断面構造を有し、実施例1のガラス繊
維8を片側に付着したEVAフィルム6の代わりに、ガ
ラス繊維を含有したEVAフィルム63を用いて耐候性
薄膜7を太陽電池セル上に接着した以外は実施例1と同
様である。
Example 2 In another example of the first and second inventions, instead of the EVA film 6 having the cross-sectional structure of FIG. 3 and the glass fiber 8 of Example 1 attached to one side, Example 1 is the same as Example 1 except that the EVA film 63 containing glass fiber was used to bond the weather-resistant thin film 7 onto the solar cell.

【0012】実施例3:この薄膜太陽電池は第二の本発
明の一実施例で、図4の断面構造を有し、実施例1の太
陽電池セル上に厚さ100μmのEVAフィルム6上に
PVFを溶剤に溶解して作製したふっ素樹脂溶液を乾燥
後の膜厚が20μmとなるように塗布して耐候性薄膜7
を形成したものである。
Example 3 This thin-film solar cell is an embodiment of the second invention and has the cross-sectional structure shown in FIG. 4, and is formed on the EVA cell 6 having a thickness of 100 μm on the solar cell of Example 1. A fluororesin solution prepared by dissolving PVF in a solvent was applied so that the film thickness after drying was 20 μm, and the weather resistant thin film 7 was formed.
Is formed.

【0013】実施例4:第二の本発明の別の実施例で、
図5の断面構造を有し、実施例3はEVAフィルム6上
にPVF溶液を塗布して直接形成した耐候性薄膜7を、
乾燥後の膜厚が10μmとなるように塗布した汎用樹脂
であるポリ塩化ビニリデン樹脂 (PVDC) 層9を介し
て乾燥後の膜厚が10μmとなるように形成したもので
ある。
Embodiment 4: In another embodiment of the second invention,
In Example 3, the weather resistant thin film 7 having the cross-sectional structure of FIG. 5 was formed by directly applying the PVF solution on the EVA film 6.
It is formed so that the film thickness after drying is 10 μm through a polyvinylidene chloride resin (PVDC) layer 9 which is a general-purpose resin applied so that the film thickness after drying is 10 μm.

【0014】実施例5:第一および第二の本発明のさら
に別の実施例で、図1に示した実施例1と同様な構造で
あるが、耐候性薄膜7をPVF溶液を乾燥後の膜厚が2
0μmになるように塗布して形成したものである。比較
試験のために次のような太陽電池を作製した。
Example 5: In still another example of the first and second aspects of the present invention, the structure is the same as that of Example 1 shown in FIG. 1, but the weather resistant thin film 7 is dried with a PVF solution. Film thickness is 2
It is formed by coating so as to have a thickness of 0 μm. The following solar cell was produced for a comparative test.

【0015】比較例:図2の構造を有し、厚さ400μ
mのEVAフィルムにより接着剤層61、62を形成
し、ポリフェニレンサルファイドフィルム (東レ社商品
名:トレニナ)を耐候性フィルム71、72に用い、1
50℃、20分の架橋条件でラミネートした。
Comparative Example: The structure shown in FIG.
Adhesive layers 61 and 62 are formed from EVA film of m, and polyphenylene sulfide film (trade name: Torenina) is used for the weather resistant films 71 and 72.
Lamination was carried out under crosslinking conditions of 50 ° C. for 20 minutes.

【0016】これら5種類の実施例および比較例の薄膜
太陽電池は、電極より外部へリード線を引き出し、特性
評価できる構造となっている。特性評価は、屋外暴露の
加速試験としてウェザーメータによる試験を500H
(屋外暴露約2.5年相当) 行った。結果、すべての実施
例、比較例のいずれにおいても外観上変化は見られず、
良好な特性を示した。
The thin-film solar cells of these five types of Examples and Comparative Examples have a structure in which lead wires can be drawn from the electrodes to the outside to evaluate the characteristics. For the characteristic evaluation, a weather meter test of 500H is performed as an outdoor exposure acceleration test.
(Outdoor exposure equivalent to about 2.5 years) As a result, no change in appearance was observed in any of the Examples and Comparative Examples,
It showed good characteristics.

【0017】引き続き、これら太陽電池を10〜100
mmの芯上に巻き、次に逆向きに巻き返す曲げ試験を実
施した結果、すべての実施例の太陽電池においては、容
易に変形・回復したが、比較例の太陽電池においては、
変形させるのに大きな力を要し、元に戻すとしわが発生
し、特性が60%も低下した。さらに、35°に傾斜さ
せて太陽電池を設置し、作業者が太陽電池モジュールの
上に乗って作業を行い、外観観察を行ったところ、実施
例1、2および5の太陽電池では外観上変化なく、比較
例においては足跡が残っていた。これらの太陽電池を取
りはずして再度特性評価を行った結果、実施例の太陽電
池は初期の特性を維持していたが、比較例の太陽電池で
は特性が20%も低下した。
Subsequently, these solar cells are assembled in an amount of 10 to 100.
As a result of performing a bending test of winding on a core of mm and then rewinding in the opposite direction, the solar cells of all the examples were easily deformed and recovered, but the solar cells of the comparative examples were
A large amount of force was required to deform it, and wrinkles occurred when it was returned to its original state, and the characteristics were reduced by 60%. Further, when the operator installed the solar cell with an inclination of 35 °, worked on the solar cell module, and observed the appearance, the appearances of the solar cells of Examples 1, 2 and 5 changed. However, in Comparative Example, footprints remained. As a result of removing these solar cells and performing characteristic evaluation again, the solar cells of the examples maintained the initial characteristics, but the characteristics of the solar cells of the comparative example were reduced by 20%.

【0018】上記の各実施例では、可とう性の絶縁基板
の裏面側に太陽電池セルの接続のための第三電極層を設
けているが、第三電極層を設けないで基板表面側におい
て太陽電池セルの接続を行う薄膜太陽電池においても実
施できる。またその場合、光を基板を通して太陽電池セ
ルを通して入射させる薄膜太陽電池においても実施でき
る。
In each of the above-mentioned embodiments, the third electrode layer for connecting the solar cells is provided on the back surface side of the flexible insulating substrate, but the third electrode layer is not provided on the substrate front surface side. It can also be implemented in a thin-film solar cell for connecting solar cells. Moreover, in that case, it can implement also in the thin-film solar cell which makes light inject through a solar cell through a board | substrate.

【0019】[0019]

【発明の効果】本発明によれば、薄膜太陽電池の表面を
耐候性樹脂層によって被覆するために用いる接着剤層を
光の入射側でガラス繊維によって補強することにより、
上に乗って作業しても太陽電池セルを傷めることがなく
なった。また、耐候性樹脂層をふっ素樹脂溶液の塗布、
乾燥により形成することにより、剛性が問題にならない
薄さにすることができ、巻回したときにも巻きぐせがつ
かず、均一施工が可能になり、また製造工程も簡略化さ
れた。これらにより、施工容易で耐候性に優れた長寿命
の薄膜太陽電池を得ることができた。
According to the present invention, the adhesive layer used for coating the surface of the thin film solar cell with the weather resistant resin layer is reinforced by the glass fiber on the light incident side,
No more damaging the solar cells when riding on top. Also, the weather resistant resin layer is coated with a fluororesin solution,
By forming it by drying, it is possible to make it thin so that rigidity does not matter, and even when it is wound, it is possible to perform uniform construction without winding curl, and also the manufacturing process is simplified. As a result, it was possible to obtain a long-life thin-film solar cell that was easy to construct and had excellent weather resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1および5の薄膜太陽電池の構
成を示す断面図
FIG. 1 is a cross-sectional view showing the structure of thin-film solar cells of Examples 1 and 5 of the present invention.

【図2】従来の薄膜太陽電池の構成を示す断面図FIG. 2 is a sectional view showing the structure of a conventional thin-film solar cell.

【図3】本発明の実施例2の薄膜太陽電池の構成を示す
断面図
FIG. 3 is a sectional view showing the structure of a thin-film solar cell according to a second embodiment of the present invention.

【図4】本発明の実施例3の薄膜太陽電池の構成を示す
断面図
FIG. 4 is a sectional view showing the structure of a thin-film solar cell according to Example 3 of the present invention.

【図5】本発明の実施例4の薄膜太陽電池の構成を示す
断面図
FIG. 5 is a sectional view showing the structure of a thin-film solar cell according to Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 可とう性基板 2 第一電極層 3 a−Si膜 4 透明第二電極層 5 第三電極層 6 EVAフィルム 63 ガラス繊維含有EVAフィルム 7 耐候性薄膜 8 ガラス繊維 9 PVDC層 1 flexible substrate 2 first electrode layer 3 a-Si film 4 transparent second electrode layer 5 third electrode layer 6 EVA film 63 glass fiber-containing EVA film 7 weatherproof thin film 8 glass fiber 9 PVDC layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】可とう性基板上に第一電極層と第二電極層
とにはさまれた光電変換半導体層を有し、両面が接着剤
層を介して耐候性樹脂層で覆われた薄膜太陽電池におい
て、光入射側の接着剤層がガラス繊維で強化された樹脂
を有してなることを特徴とする薄膜太陽電池。
1. A flexible substrate having a photoelectric conversion semiconductor layer sandwiched between a first electrode layer and a second electrode layer, both surfaces of which are covered with a weather resistant resin layer with an adhesive layer interposed therebetween. A thin-film solar cell, wherein the light-incident-side adhesive layer comprises a resin reinforced with glass fiber.
【請求項2】ガラス繊維が接着剤樹脂層の面上に被着し
た請求項1記載の薄膜太陽電池。
2. The thin-film solar cell according to claim 1, wherein glass fibers are deposited on the surface of the adhesive resin layer.
【請求項3】ガラス繊維が接着剤樹脂中に混入された請
求項1記載の薄膜太陽電池。
3. The thin film solar cell according to claim 1, wherein glass fibers are mixed in the adhesive resin.
【請求項4】接着剤樹脂がエチレン酢酸ビニル共重合体
である請求項1ないし3のいずれかに記載の薄膜太陽電
池。
4. The thin film solar cell according to claim 1, wherein the adhesive resin is an ethylene vinyl acetate copolymer.
【請求項5】可とう性基板上に第一電極層と第二電極層
とにはさまれた光電変換半導体層を有し、両面が接着剤
層を介して耐候性樹脂層で覆われた薄膜太陽電池におい
て、耐候性樹脂層がふっ素樹脂溶液の塗布、乾燥によっ
て形成されたことを特徴とする薄膜太陽電池。
5. A flexible substrate having a photoelectric conversion semiconductor layer sandwiched between a first electrode layer and a second electrode layer, both surfaces of which are covered with a weather resistant resin layer with an adhesive layer interposed therebetween. A thin film solar cell, wherein the weather resistant resin layer is formed by applying a fluororesin solution and drying.
【請求項6】耐候性樹脂層の接着剤層側に汎用樹脂層が
介在する請求項5記載の薄膜太陽電池。
6. The thin film solar cell according to claim 5, wherein a general-purpose resin layer is provided on the adhesive layer side of the weather resistant resin layer.
【請求項7】接着剤層上の樹脂層の厚さが5〜30μm
である請求項5あるいは6記載の薄膜太陽電池。
7. The thickness of the resin layer on the adhesive layer is 5 to 30 μm.
The thin film solar cell according to claim 5 or 6.
【請求項8】ふっ素樹脂がポリテトラフルオロエチレン
である請求項5ないし7のいずれかに記載の薄膜太陽電
池。
8. The thin film solar cell according to claim 5, wherein the fluororesin is polytetrafluoroethylene.
【請求項9】ふっ素樹脂がポリふっ化ビニルである請求
項5ないし7のいずれかに記載の薄膜太陽電池。
9. The thin-film solar cell according to claim 5, wherein the fluororesin is polyvinyl fluoride.
JP02641195A 1995-02-15 1995-02-15 Manufacturing method of thin film solar cell Expired - Fee Related JP3216765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02641195A JP3216765B2 (en) 1995-02-15 1995-02-15 Manufacturing method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02641195A JP3216765B2 (en) 1995-02-15 1995-02-15 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH08222751A true JPH08222751A (en) 1996-08-30
JP3216765B2 JP3216765B2 (en) 2001-10-09

Family

ID=12192817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02641195A Expired - Fee Related JP3216765B2 (en) 1995-02-15 1995-02-15 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP3216765B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289889A (en) * 2001-03-23 2002-10-04 Mitsubishi Electric Corp Solar cell module
JP2009010269A (en) * 2007-06-29 2009-01-15 Toppan Printing Co Ltd Rear face protection sheet for solar cell module, and solar cell module using the same
WO2009072646A1 (en) * 2007-12-07 2009-06-11 Dina Systems Inc. Energy conserving type hydroponic bath, energy conserving type hydroponic system, and hydroponic method
JP2010165872A (en) * 2009-01-15 2010-07-29 Toppan Printing Co Ltd Rear surface protective sheet and solar battery module using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289889A (en) * 2001-03-23 2002-10-04 Mitsubishi Electric Corp Solar cell module
JP2009010269A (en) * 2007-06-29 2009-01-15 Toppan Printing Co Ltd Rear face protection sheet for solar cell module, and solar cell module using the same
WO2009072646A1 (en) * 2007-12-07 2009-06-11 Dina Systems Inc. Energy conserving type hydroponic bath, energy conserving type hydroponic system, and hydroponic method
JP2010165872A (en) * 2009-01-15 2010-07-29 Toppan Printing Co Ltd Rear surface protective sheet and solar battery module using the same

Also Published As

Publication number Publication date
JP3216765B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
KR100325955B1 (en) Solar Cell Module and Reinforcing Member for Solar Cell Module
US6288324B1 (en) Solar cell module and method for manufacturing same
JP4154004B2 (en) Manufacturing method of solar cell module
JP6567103B2 (en) Thin film solar cell module and method for manufacturing thin film solar cell module
JPH06318728A (en) Solar battery module
JPH10284745A (en) Solar battery module
JP3838684B2 (en) Method for manufacturing flexible solar cell
JP4066271B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus thereof
JPH08222751A (en) Thin film solar battery
JP4078589B2 (en) Solar cell module and manufacturing method thereof
JP3268893B2 (en) Method for manufacturing photovoltaic element
JP3017420B2 (en) Solar cell module
JP3829973B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus
JP4009891B2 (en) Method for manufacturing thin film solar cell module
JP3856224B2 (en) Manufacturing method of solar cell module
JP3163807B2 (en) Method of manufacturing solar cell module
JP4069405B2 (en) Manufacturing method of solar cell module
JPH08162655A (en) Thin film solar cell
JPH11307789A (en) Solar cell module
JPH09116180A (en) Semiconductor device
JPH0918030A (en) Thin film solar battery
JP4304855B2 (en) Manufacturing method and manufacturing apparatus for composite metal tape
JPH1197727A (en) Solar cell module and its manufacture
JP2008053420A (en) Sealing structure and manufacturing process of solar battery module
JP2001267596A (en) Solar cell module and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees