JPH08222244A - Cell structure - Google Patents

Cell structure

Info

Publication number
JPH08222244A
JPH08222244A JP7030529A JP3052995A JPH08222244A JP H08222244 A JPH08222244 A JP H08222244A JP 7030529 A JP7030529 A JP 7030529A JP 3052995 A JP3052995 A JP 3052995A JP H08222244 A JPH08222244 A JP H08222244A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
sealing material
electrolyte membrane
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7030529A
Other languages
Japanese (ja)
Inventor
Toshihiro Tani
俊宏 谷
Osao Kudome
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7030529A priority Critical patent/JPH08222244A/en
Publication of JPH08222244A publication Critical patent/JPH08222244A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To enhance strength of a sealing part or the like of an electrolytic film (an ion exchange membrane). CONSTITUTION: An anode electrode and a cathode electrode are respectively layered on both surfaces of an electrolytic film together with a sealing material, and separators having a fluid supply groove to supply fluid to these electrodes are respectively arranged on surfaces of these electrodes. A part coming into contact with a seal of the electrolytic film 11 and a part except a part corresponding to a clearance between the electrodes and the sealing material according to its necessity, are covered with a shielding plate 21, and plasma processing P is performed for a constant time, and polymerization is advanced on the basis of a functional group of a high polymer of electrolyte, and a chain network of the high polymer is developed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質を用いる高
温水蒸気電解(SOE:Solid Oxide Electrolyte )及
び固体電解質燃料電池(SOFC:Solid Oxide Fuel C
ell )に用いて好適な電解質膜(イオン交換膜)のシー
ル部分等の強度向上を図ったセル構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high temperature steam electrolysis (SOE) using a solid electrolyte and a solid oxide fuel cell (SOFC).
cell structure in which the strength of the seal portion of the electrolyte membrane (ion exchange membrane) suitable for use in the ell) is improved.

【0002】[0002]

【従来の技術】イオン交換膜を電解質膜とする電解装置
および燃料電池ではその容量(すなわち電解装置では電
解物質量、燃料電池では出力電力)を大きくするため、
電極及び電解質膜を積層し、電解槽や燃料電池スタック
を形成する。
2. Description of the Related Art In an electrolyzer and a fuel cell using an ion exchange membrane as an electrolyte membrane, in order to increase the capacity (that is, the amount of an electrolyte substance in the electrolyzer, and the output power in the fuel cell),
The electrodes and the electrolyte membrane are laminated to form an electrolytic cell or a fuel cell stack.

【0003】電解槽内や燃料電池スタック内の液体や気
体が外部に漏れないように電解質膜を挟んでいる(図
3,4)。すなわち、例えば平板型燃料電池のセル構造
の一例としては、図3、4に示すように、固体電解質膜
11の両面にはそれぞれその外周部をシールするシール
材12,12を介して上記燃料極13と、上記空気極1
4とを接着させてセルプレートを構成し、更に上記燃料
極13及び空気極14の外側に、燃料及び空気を各々供
給する溝を有するセパレータ15,15を挟み重ねて接
合体16を形成している。
The electrolyte membrane is sandwiched so that the liquid or gas in the electrolytic cell or the fuel cell stack does not leak outside (FIGS. 3 and 4). That is, for example, as an example of a cell structure of a flat-plate fuel cell, as shown in FIGS. 3 and 4, the fuel electrode is provided on both sides of the solid electrolyte membrane 11 with sealing materials 12 and 12 sealing the outer peripheral portions thereof. 13 and the air electrode 1
4 is bonded to form a cell plate, and further, outside the fuel electrode 13 and the air electrode 14, separators 15 and 15 each having a groove for supplying fuel and air are sandwiched to form a bonded body 16. There is.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記電解質
膜11は、図4に示すように、シール材12などで挟ま
れることによるシール部位がつける圧縮応力や電極1
3,14とシール材12との隙間Sに相当する部位が、
アノードとカソードとに流れる流体の圧力差によって破
損する危険性があった。
By the way, as shown in FIG. 4, the electrolyte membrane 11 is sandwiched by the sealing material 12 and the like, and the compressive stress exerted by the sealing portion and the electrode 1 are applied.
The portion corresponding to the gap S between the sealing material 12 and 3, 14 is
There was a risk of breakage due to the pressure difference between the fluid flowing between the anode and the cathode.

【0005】すなわち、 高分子イオン交換膜を電解質
膜として用いる燃料電池或いは電解装置では、その容量
アップの為に、電極及び電解質膜を多重に積層して燃料
電池スタックや電解槽を形成しているが、電解質膜が積
層によってシール材等で挟まれる為に生じる過大な応力
や流れる流体の差圧による損傷の可能性が存在してい
る。
That is, in a fuel cell or electrolysis device using a polymer ion exchange membrane as an electrolyte membrane, a fuel cell stack or an electrolytic cell is formed by stacking electrodes and electrolyte membranes in multiple layers in order to increase the capacity. However, there is a possibility of damage due to excessive stress caused by the electrolyte membrane being sandwiched between the sealing materials and the like or due to the differential pressure of the flowing fluid.

【0006】本発明は上記問題に鑑み、電解質膜(イオ
ン交換膜)のシール部分等の強度向上を図ったセル構造
を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a cell structure in which the strength of the seal portion of the electrolyte membrane (ion exchange membrane) is improved.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係るイオン交換膜は、電解質膜の両面にアノード電
極及びカソード電極をシール材と共に各々積層し、且
つ、これら電極に流体を供給する流体供給溝を有するセ
パレータを当該電極の表面に各々配設してなるセル構造
において、上記電解質のシールに当接する部位、及び必
要によっては電極とシール材の隙間に対応する部位を一
定時間プラズマ処理し、高分子の官能基をもとに重合を
進め、高分子の鎖のネットワークを発達させてなること
を特徴とする。
An ion exchange membrane according to the present invention which achieves the above object is obtained by laminating an anode electrode and a cathode electrode together with a sealant on both surfaces of an electrolyte membrane and supplying a fluid to these electrodes. In a cell structure in which separators each having a fluid supply groove are provided on the surface of the electrode, a portion of the electrode contacting the electrolyte seal and, if necessary, a portion corresponding to the gap between the electrode and the sealing material are subjected to plasma treatment for a certain period of time. However, the polymerization is advanced based on the functional group of the polymer, and the chain network of the polymer is developed.

【0008】[0008]

【作用】上記構成において、図1に示すように、電解質
膜11のシールに当接する部位、及び必要によっては電
極とシール材の隙間に対応する部位以外を遮蔽板21で
覆い、一定時間プラズマ処理Pし、電解質の高分子の官
能基をもとに重合を進め、高分子の鎖のネットワークを
発達させてなる。即ち、本発明では積層によってシール
材等で挟まれる部分の電解質膜は、電解質膜としての電
気化学反応に寄与しないため、イオン交換に与かる官能
基は必要がないことに注目し、強度増強のためにこの官
能基を利用し、プラズマ処理により高分子の重合度を上
げるようにしたものである。この結果、上記高分子の官
能基をもとにプラズマ処理による重合を一定時間進め、
高分子の鎖のネットワークを発達させることにより、電
解質膜の強度の向上を図ることができる。
In the above structure, as shown in FIG. 1, except the portion of the electrolyte membrane 11 that abuts on the seal and, if necessary, the portion corresponding to the gap between the electrode and the sealing material, is covered with the shield plate 21, and plasma treatment is performed for a certain period of time. Then, the polymerization proceeds based on the functional group of the polymer of the electrolyte to develop a network of polymer chains. That is, in the present invention, since the electrolyte membrane in the portion sandwiched by the sealing material or the like by lamination does not contribute to the electrochemical reaction as the electrolyte membrane, it is noted that a functional group involved in ion exchange is not required, and strength is enhanced. For this reason, this functional group is used to increase the degree of polymerization of the polymer by plasma treatment. As a result, based on the functional groups of the polymer, the polymerization by plasma treatment proceeds for a certain period of time,
The strength of the electrolyte membrane can be improved by developing a network of polymer chains.

【0009】上記高分子イオン交換膜に対するプラズマ
処理時間とこれに伴う膜強度の関係を、図2に示してい
るが、同図に示すように、プラズマ処理時間とともに高
分子の電解膜強度は増加していき、一定時間を越えると
逆に膜強度は落ちていくことが判明した。
FIG. 2 shows the relationship between the plasma treatment time for the polymer ion-exchange membrane and the accompanying membrane strength. As shown in FIG. 2, the polymer electrolyte membrane strength increases with the plasma treatment time. Then, it was found that the film strength decreased conversely after a certain period of time.

【0010】この結果、所定時間電解質膜のシール材に
当接する部位、及び必要によっては電極とシール材の隙
間に対応する部位に最適のプラズマ処理を行い、その強
度を上げることによって、破損の原因となる圧縮応力や
差圧に耐え得るようにすることができる。
As a result, the portion of the electrolyte membrane that comes into contact with the sealing material for a predetermined period of time, and if necessary, the portion corresponding to the gap between the electrode and the sealing material is subjected to optimum plasma treatment to increase its strength and cause damage. It is possible to withstand the compressive stress and the differential pressure.

【0011】[0011]

【実施例】以下、本発明の好適な一実施例について説明
するが、本発明はこれに限定されるものではない。
EXAMPLES A preferred example of the present invention will be described below, but the present invention is not limited thereto.

【0012】図1は電解質にプラズマ処理を施す概念図
である。同図に示すように、一辺250mmの正方形に切
り出した電解質膜(イオン交換膜)11として「ナフィ
オン117」(商品名:デュポン社)を用い、その中心
に一辺200mmのテフロン材からなる遮蔽板21を敷
き、250mmの正方形の外周囲幅25mmを露出した状態
にて真空チャンバーに導入し、プラズマ処理Pを行っ
た。
FIG. 1 is a conceptual diagram of plasma treatment of an electrolyte. As shown in the figure, "Nafion 117" (trade name: DuPont) is used as an electrolyte membrane (ion exchange membrane) 11 cut into a square having a side of 250 mm, and a shielding plate 21 made of a Teflon material having a side of 200 mm is provided at the center thereof. Was placed in a vacuum chamber with a 250 mm square outer peripheral width of 25 mm exposed, and plasma treatment P was performed.

【0013】このプラズマ処理Pは、酸素(O2 )雰囲
気下0.5TorrにてRF出力約10W程度で行った。プラ
ズマ処理後の電解質膜11を化学分析した結果、その組
成分析において、硫黄(S)分の減少がみられ、また膜
11強度の上昇がみられた。よって、電解質膜11の強
度とプラズマ処理時間には図2に示すように相関があ
り、所望の膜強度を得る為に所定時間を設定することに
より、十分な強度を得ることが可能となる。
The plasma treatment P was carried out in an oxygen (O 2 ) atmosphere at 0.5 Torr with an RF output of about 10 W. As a result of chemical analysis of the electrolyte membrane 11 after the plasma treatment, a decrease in sulfur (S) content was observed in the composition analysis, and an increase in the strength of the membrane 11 was observed. Therefore, there is a correlation between the strength of the electrolyte membrane 11 and the plasma treatment time as shown in FIG. 2, and it is possible to obtain sufficient strength by setting a predetermined time to obtain the desired membrane strength.

【0014】なお、本実施例では、上記雰囲気種(O2
またはN2 であってもよい),圧力,RF出力等の基に
プラズマ処理を行ったが、本発明はこれに限定されるも
のではなく、広義のプラズマ処理によりシール部を強化
するものであればいずれのものでもよい。
In the present embodiment, the atmosphere species (O 2
Or a N 2), pressure, and plasma treatment was carried out based on such RF output, the present invention is not limited thereto, as long as to enhance the sealing portion by broad plasma treatment Any one will do.

【0015】図3及び図4にて、本発明の膜,電極の積
層状態を示し説明する。電解質膜11の端部の強度を前
述したプラズマ処理方法を施すことによって、破損の原
因となる締め付け応力に耐え得るようになるものであ
る。
The laminated state of the film and the electrode of the present invention will be shown and described with reference to FIGS. 3 and 4. By applying the plasma treatment method described above to the strength of the end portion of the electrolyte membrane 11, it becomes possible to withstand the tightening stress that causes breakage.

【0016】即ち、シール材12に挟まれる部分及び隙
間Sに当たる部分の電解質膜l1はまったく電気化学反
応に寄与していないため、イオン交換による官能基は必
要ないので、この為に、プラズマ処理を施すことによ
り、高分子の官能基をもとに重合を進め、高分子の鎖の
ネットワークを発達させることで、電解質膜11の電解
質膜の外周部等の所望の部位の強度の増強を図ることが
できる。よって、プラズマ処理後の電解質膜11の上下
にシール材12,12を配し、更にその上,下にセパレ
ータ15,15を積層することにより、セル構造の積層
強度を向上できると共に、流体の圧力差による従来のよ
うな破損する危険性がなくなった。
That is, since the electrolyte membrane 11 in the portion sandwiched by the sealing material 12 and the portion corresponding to the gap S does not contribute to the electrochemical reaction at all, a functional group due to ion exchange is not required, and therefore plasma treatment is performed for this purpose. By carrying out the polymerization, the polymer is advanced based on the functional group of the polymer, and the chain network of the polymer is developed to enhance the strength of a desired portion such as the outer peripheral portion of the electrolyte membrane of the electrolyte membrane 11. You can Therefore, by arranging the sealing materials 12 and 12 above and below the electrolyte membrane 11 after the plasma treatment, and further stacking the separators 15 and 15 above and below it, the stacking strength of the cell structure can be improved and the pressure of the fluid can be improved. There is no longer the risk of damage due to the difference.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、電
解質膜の外周部の強度の増強ができるため、従来とまっ
たく同じセル製作法及び積層構造のまま、シール性の向
上、ガス差圧に耐える能力等が向上する。また、この膜
を使用することによって新しい積層構造によりより高い
シール性を得ることも可能になると考えられる。
As described above, according to the present invention, since the strength of the outer peripheral portion of the electrolyte membrane can be increased, the sealing performance is improved and the gas difference is maintained with the same cell manufacturing method and laminated structure as the conventional one. The ability to withstand pressure is improved. Further, it is considered that the use of this film makes it possible to obtain a higher sealing property due to the new laminated structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るプラズマ処理状況の
概念図である。
FIG. 1 is a conceptual diagram of a plasma processing situation according to a first embodiment of the present invention.

【図2】プラズマ処理時間と膜強度の相関図である。FIG. 2 is a correlation diagram between plasma processing time and film strength.

【図3】従来及び本発明における膜,電極の積層状態を
示す分解斜視図である。
FIG. 3 is an exploded perspective view showing a laminated state of a film and an electrode according to the related art and the present invention.

【図4】従来及び本発明における膜,電極の積層状態を
示す断面図である。
FIG. 4 is a cross-sectional view showing a laminated state of a film and an electrode according to the related art and the present invention.

【符号の説明】[Explanation of symbols]

11 電解質膜 12 シール材 13,14 電極 15 セパレータ 16 接合体 21 遮蔽板 S 隙間 P プラズマ処理 11 Electrolyte Membrane 12 Sealing Material 13, 14 Electrode 15 Separator 16 Bonded Body 21 Shielding Plate S Gap P Plasma Treatment

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜の両面にアノード電極及びカソ
ード電極をシール材と共に各々積層し、且つ、これら電
極に流体を供給する流体供給溝を有するセパレータを当
該電極の表面に各々配設してなるセル構造において、上
記電解質のシールに当接する部位、及び必要によっては
電極とシール材の隙間に対応する部位を一定時間プラズ
マ処理し、高分子の官能基をもとに重合を進め、高分子
の鎖のネットワークを発達させてなることを特徴とする
セル構造。
1. An anode electrode and a cathode electrode are laminated on both surfaces of an electrolyte membrane together with a sealing material, and separators having fluid supply grooves for supplying a fluid to these electrodes are respectively disposed on the surface of the electrode. In the cell structure, a portion of the cell that contacts the electrolyte seal and, if necessary, a portion corresponding to the gap between the electrode and the sealing material are subjected to plasma treatment for a certain period of time, and the polymerization is advanced based on the functional group of the polymer. A cell structure characterized by developing a chain network.
【請求項2】 請求項1のセル構造において、電解質が
平板型高温水蒸気電解用セルに用いてなることを特徴と
するセル構造。
2. The cell structure according to claim 1, wherein the electrolyte is used in a flat plate type high temperature steam electrolysis cell.
【請求項3】 請求項1のセル構造において、電解質が
燃料電池用セルに用いてなることを特徴とするセル構
造。
3. The cell structure according to claim 1, wherein the electrolyte is used in a fuel cell.
JP7030529A 1995-02-20 1995-02-20 Cell structure Withdrawn JPH08222244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7030529A JPH08222244A (en) 1995-02-20 1995-02-20 Cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7030529A JPH08222244A (en) 1995-02-20 1995-02-20 Cell structure

Publications (1)

Publication Number Publication Date
JPH08222244A true JPH08222244A (en) 1996-08-30

Family

ID=12306337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7030529A Withdrawn JPH08222244A (en) 1995-02-20 1995-02-20 Cell structure

Country Status (1)

Country Link
JP (1) JPH08222244A (en)

Similar Documents

Publication Publication Date Title
US5284718A (en) Fuel cell membrane electrode and seal assembly
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JP4484369B2 (en) Fuel cell with seal between individual membrane assembly and plate assembly
JP3368907B2 (en) Seal structure of solid polymer electrolyte fuel cell
JP3245161B2 (en) Membrane electrode assembly using gasket for electrochemical fuel cell
CA2390949C (en) Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies
JP2003068323A (en) Film/electrode structural body and fuel cell
JPH1055813A (en) Assembling structure of fuel cell
JPH08148169A (en) Sealing method for solid polymeric fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP2001283893A (en) Solid polymer fuel cell stack
JPH0349184B2 (en)
JPH05166523A (en) Plate-like solid electrolyte fuel cell
JP2003132905A (en) Electrolytic film/electrode structure and fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JPS5844672A (en) Matrix-type fuel cell
JPH08222244A (en) Cell structure
JP3292670B2 (en) Fuel cell
JPH09167623A (en) Solid polymer electrolyte type fuel cell
JP3641622B2 (en) Fuel cell and processing method thereof
CA2015782C (en) Membrane electrode assembly
US20030013001A1 (en) Carrier gasket for a fuel cell
WO2000035038A1 (en) Proton exchange membrane fuel cell external manifold seal
JP2004146250A (en) Electrolyte membrane-electrode structure
RU2751535C2 (en) Membrane-electrode fuel cell block with polymer membrane

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507