JPH0822036A - Optical modulating method - Google Patents

Optical modulating method

Info

Publication number
JPH0822036A
JPH0822036A JP22825593A JP22825593A JPH0822036A JP H0822036 A JPH0822036 A JP H0822036A JP 22825593 A JP22825593 A JP 22825593A JP 22825593 A JP22825593 A JP 22825593A JP H0822036 A JPH0822036 A JP H0822036A
Authority
JP
Japan
Prior art keywords
light
intensity
signal light
control light
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22825593A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takeda
康彦 竹田
Tatsumi Hioki
辰視 日置
Tomomi Motohiro
友美 元廣
Masaharu Noda
正治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP22825593A priority Critical patent/JPH0822036A/en
Publication of JPH0822036A publication Critical patent/JPH0822036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to apply large modulation to signal light with weak control light and to lessen the loss of the signal light by adopting different wavelengths for the wavelengths of the signal light and the control light. CONSTITUTION:The signal light A of specified intensity is made incident from an input port 3 and the control light B of variable intensity from an input port 4. The exit light from an output port 5 is delivered as output and its intensity is measured. An Ar<+> laser (wavelength 488nm) and He-Ne laser (wavelength 633nm) are prepd. The output light intensity decreases with an increase in the control light intensity in the case of lambdaA=lambdaB=488nm in a relation between the control light intensity and the output light intensity. The output light intensity when the control light intensity is zero is large and the loss of the signal light is lessened in the case of lambdaA=633nm and lambdaB=488nm. Namely, the two contradicting conditions of the generation of switching by the weak control light and the small loss of the signal light are simultaneously satisfied by adopting lambdaAnot equal to lambdaB.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】非線形光学材料を利用した光スイ
ッチ、光メモリーや光信号等の演算処理装置等で用いら
れる非線形光学素子の光変調方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch using a non-linear optical material, an optical modulation method for a non-linear optical element used in an optical memory, an arithmetic processing unit for optical signals and the like.

【0002】[0002]

【従来の技術】光の強度によって屈折率や吸収係数が変
化する非線形光学現象が注目されている。このような非
線形光学特性を有する非線形光学材料は従来から知られ
ており、これを用いた光スイッチ、光論理演算素子等の
非線形光学素子の研究も数多くなされている。例えば情
報媒体である信号光A(波長λA )と、制御光B(波長
λB )を非線形光学材料に入射し、制御光によって信号
光に変調を加える場合を考える。ただし、1つの光線が
AとBの両方の役割を兼ねる場合(この場合は明らかに
λA =λB )もあるし、AとBが別の光線の場合(この
場合、さらにλA=λB の場合と、λA ≠λB の場合と
がある)もある。この場合、非線形光学材料の性質およ
び非線形光学材料に入射される信号光と制御光の波長に
よって非線形光学素子の特性は著しく影響される。
2. Description of the Related Art A non-linear optical phenomenon in which a refractive index and an absorption coefficient change depending on the intensity of light has been attracting attention. Non-linear optical materials having such non-linear optical characteristics have been conventionally known, and many studies on non-linear optical elements such as optical switches and optical logic operation elements using the same have been made. For example, consider a case where the signal light A (wavelength λ A ) and the control light B (wavelength λ B ) which are information media are incident on the nonlinear optical material and the control light modulates the signal light. However, there are cases where one ray has both the roles of A and B (in this case, obviously λ A = λ B ), and when A and B are different rays (in this case, further λ A = λ B ). There are cases of B and cases of λ A ≠ λ B ). In this case, the characteristics of the non-linear optical element are significantly affected by the properties of the non-linear optical material and the wavelengths of the signal light and the control light incident on the non-linear optical material.

【0003】前記非線形光学素子に要求される特性とし
ては弱い制御光Bで信号光Aに大きな変調を加えられ
ること、信号光Aに対するロスが小さいことが要求さ
れる。このような特性を付与できる非線形光学材料とし
ては、に対しては、λA の波長の信号光Aの屈折率が
λB の波長の制御光Bの強度に比しどのように変化する
かの指標である(信号光Aの屈折率の変化量)/(制御
光Bの強度の変化量)の比率(以下χ( λA , λB ) と
記載)が大きいことが必要である。また、に対して
は、信号光Aの吸収係数(以下α( λA ) と記載)が小
さいことが必要である。
As characteristics required for the above-mentioned nonlinear optical element, it is required that a weak control light B can apply a large modulation to the signal light A and a loss with respect to the signal light A is small. As a non-linear optical material capable of imparting such characteristics, as to how the refractive index of the signal light A of the wavelength λ A changes relative to the intensity of the control light B of the wavelength λ B , It is necessary that the ratio (change amount of refractive index of signal light A) / (change amount of intensity of control light B) (hereinafter referred to as χ (λ A , λ B )), which is an index, is large. On the other hand, it is necessary that the absorption coefficient of the signal light A (hereinafter referred to as α (λ A )) is small.

【0004】非線形光学材料に対する要求、は通常
相反する条件であるため、χ( λA, λB ) とα( λA )
の比、すなわち、χ( λA , λB ) /α( λA ) の値
が大きいことが非線形光学材料の良否の判断基準とな
る。
Since the requirements for nonlinear optical materials are usually contradictory conditions, χ (λ A , λ B ) and α (λ A )
A large value of χ (λ A , λ B ) / α (λ A ) is a criterion for determining the quality of the nonlinear optical material.

【0005】従来の非線形光学素子として、 (a)各種高分子材料、シリカガラスやカルコゲナイド
ガラス等の非線形光学材料を用い、信号光と制御光の波
長であるλA およびλB をλA =λB またはλA ≠λB
とするものがある(特開平2−195329号等)。こ
れらの非線形光学材料からなる非線形光学素子ではα(
λA ) は小さいが、χ( λA , λB ) が小さいための
点で不利となる。 (b)また、半導体や金属の微粒子をガラスマトリック
ス中に分散させた半導体微粒子分散ガラス・金属微粒子
分散ガラスからなる非線形光学材料を、λA =λB で用
いている(特開平1−201626号、特開平4−33
8735号)ものがある。この非線形光学素子では、χ
( λA , λB ) は大きいが、α( λA )が大きいため
の点で不利となる。 このように、前記した、の条件を同時に満たす非線
形光学材料および信号光・制御光の波長の組合せは無か
った。
As conventional non-linear optical elements, (a) various kinds of polymer materials, non-linear optical materials such as silica glass and chalcogenide glass are used, and the wavelengths λ A and λ B of signal light and control light are λ A = λ B or λ A ≠ λ B
(Japanese Patent Laid-Open No. 2-195329, etc.). In a nonlinear optical element made of these nonlinear optical materials, α (
Although λ A ) is small, it is disadvantageous in that χ (λ A , λ B ) is small. (B) Further, a non-linear optical material composed of semiconductor fine particle-dispersed glass / metal fine particle-dispersed glass in which fine particles of semiconductor or metal are dispersed in a glass matrix is used with λ A = λ B (JP-A-1-201626). JP-A-4-33
8735). In this nonlinear optical element, χ
Although (λ A , λ B ) is large, it is disadvantageous in that α (λ A ) is large. As described above, there is no combination of the nonlinear optical material and the wavelengths of the signal light and the control light that simultaneously satisfy the above conditions.

【0006】本発明者等は、前記従来技術の問題点を解
決すること、すなわち、前記、の条件を同時に充足
する光制御方法を開発すべく鋭意研究を重ねた。その結
果、金属微粒子分散体を用い、この金属とマトリックス
の材料の適当な組合せを選び、かつ入射光の波長λA
出射光の波長λB とを異なる値とすると、α( λA )が
小さく、χ( λA , λB ) が大きく、結果としてχ( λ
A , λB ) /α( λA) が大きい場合があることを見い
だし本発明をなすに至ったのである。本発明は、弱い制
御光で信号光に大きな変調を加えることができ、かつ、
信号光に対するロスを小さくできる非線形光学素子の光
変調方法を提供することを目的とする。
The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, that is, to develop a light control method that simultaneously satisfies the above conditions. As a result, using a fine metal particle dispersion, selecting an appropriate combination of the metal and the matrix material, and setting the wavelength λ A of the incident light and the wavelength λ B of the emitted light to different values, α (λ A ) is Small, and χ (λ A , λ B ) is large, resulting in χ (λ
The inventors have found that A , λ B ) / α (λ A ) may be large, and have completed the present invention. The present invention is capable of adding large modulation to signal light with weak control light, and
An object of the present invention is to provide an optical modulation method for a non-linear optical element that can reduce loss for signal light.

【0007】[0007]

【課題を解決するための手段】本発明の光変調方法は、
信号光と、この信号光に変調を与える制御光とを、金属
微粒子が分散した透明な誘電体からなる非線形光学材料
に入射し、この非線形光学材料から高強度の信号光を出
射する方法であって、信号光と制御光の波長を異なった
波長とすることを特徴とする。
The optical modulation method of the present invention comprises:
This is a method in which a signal light and a control light that modulates the signal light are incident on a nonlinear optical material made of a transparent dielectric material in which fine metal particles are dispersed, and a high-intensity signal light is emitted from the nonlinear optical material. The wavelengths of the signal light and the control light are different from each other.

【0008】[0008]

【作用・効果】光スイッチ等の非線形光学素子に入力と
して信号光Aを入射すると、出射光が出力として得られ
る。この場合、制御光Bが非線形光学材料に信号光Aと
同時に照射されると非線形光学材料の屈折率や吸収係数
が変化する。これに伴い、信号光Aに対する素子特性が
変化し、出力光の出射位置・方向や、強度や偏光状態等
が、信号光Bが無い場合と比べて変化する。この場合、
信号光Aと制御光Bの波長が異なっているのでχ(
λA , λB ) が大きいにもかかわらずα( λA ) を小さ
くすることができる。すなわち、弱い制御光Bで信号光
Aに大きな変調を加えられると共に、信号光Aに対する
ロスを小さくすることができる。
[Operation and effect] When the signal light A is input as an input to a non-linear optical element such as an optical switch, an output light is obtained. In this case, when the control light B is irradiated onto the nonlinear optical material at the same time as the signal light A, the refractive index and the absorption coefficient of the nonlinear optical material change. Along with this, the element characteristics with respect to the signal light A change, and the emission position / direction of the output light, the intensity, the polarization state, and the like change as compared with the case without the signal light B. in this case,
Since the signal light A and the control light B have different wavelengths, χ (
Even though λ A and λ B ) are large, α (λ A ) can be made small. That is, the weak control light B can apply a large modulation to the signal light A, and the loss for the signal light A can be reduced.

【0009】[0009]

【実施例】【Example】

(具体化した発明)本具体例で用いる非線形光学材料
は、透明誘電体と、この透明誘電体のマトリックス中に
分散した金属の微粒子からなる。透明誘電体としては信
号光と制御光の波長であるλA およびλB の波長の光に
対し透明であればよく、例えば、シリカガラス、アルミ
ナ(Al2 3 )、チタニア(TiO2 )等の各種金属
酸化物、PMMA等の各種ポリマー等から選ばれる。ま
た、金属としては、λB の波長の光に対して屈折率の実
数部が小さいものが望ましく、例えば、錫、金、白金や
銀等の中から選ばれる。また、金属の微粒子の径は、金
属の種類によっても異なるが、2〜20nmが望まし
く、20nmより大きいと光の損失が大きく、逆に、2
nmより小さいと金属の性質がバルクのものとは異なっ
てくるので微粒子を構成する材料および光の波長の選び
方が難しくなる。
(Invented Invention) The non-linear optical material used in this embodiment is composed of a transparent dielectric material and fine metal particles dispersed in a matrix of the transparent dielectric material. The transparent dielectric may be transparent to light having wavelengths λ A and λ B , which are the wavelengths of the signal light and the control light, and examples thereof include silica glass, alumina (Al 2 O 3 ), titania (TiO 2 ), and the like. Various metal oxides, various polymers such as PMMA, and the like. Further, it is desirable that the metal has a small real part of the refractive index with respect to the light having the wavelength of λ B , and is selected from tin, gold, platinum, silver and the like. Further, the diameter of the metal fine particles varies depending on the kind of the metal, but is preferably 2 to 20 nm, and if it is larger than 20 nm, the loss of light is large.
If the thickness is smaller than nm, the property of the metal is different from that of the bulk, and it becomes difficult to select the material forming the fine particles and the wavelength of light.

【0010】非線形光学素子としては、前記非線形光学
材料を含んだ多層膜、導波路および光ファイバー等から
構成される。
The non-linear optical element is composed of a multilayer film containing the non-linear optical material, a waveguide and an optical fiber.

【0011】非線形光学材料の製造方法としては、溶融
析出法、ゾルーゲル法、多元スパッタ法、イオン注入法
等があり、特に限定はしない。
As the method for producing the non-linear optical material, there are a melt deposition method, a sol-gel method, a multi-source sputtering method, an ion implantation method and the like, and there is no particular limitation.

【0012】また、信号光Aと制御光Bの波長λA 、λ
B は特に限定されるものではないが、λB を以下のお
よびの条件を満足するように設定すると効果が大きく
なる。 (i) λA を金属のd バンドからフェルミレベルへの遷移
エネルギーに相当する波長(λdfとする)とする。 (ii)λB を微粒子分散体の表面プラズマ共鳴波長(金属
とマトリックスの組合せで決定される、λp とする)と
する。 さらに、λA とλB は少なくとも50nm以上離れてい
ることが望ましい。50nmより接近すると表面プラズ
マ共鳴の影響を受けてα( λA )が大きくなってしまう
ので好ましくない。特に、信号光Aと制御光Bの波長λ
A およびλB ならびに具体的な材料と波長(使用した光
源)の組合せの例を表1に示す。
Further, the wavelengths λ A and λ of the signal light A and the control light B
B is not particularly limited, but the effect becomes large when λ B is set so as to satisfy the following conditions and. (i) Let λ A be the wavelength (λ df ) corresponding to the transition energy from the d band of the metal to the Fermi level. (ii) Let λ B be the surface plasma resonance wavelength of the fine particle dispersion (λ p , which is determined by the combination of the metal and the matrix). Further, it is desirable that λ A and λ B are separated by at least 50 nm or more. When the distance is closer than 50 nm, α (λ A ) becomes large due to the influence of surface plasma resonance, which is not preferable. In particular, the wavelength λ of the signal light A and the control light B
Table 1 shows examples of combinations of A and λ B, and specific materials and wavelengths (light sources used).

【0013】[0013]

【表1】 [Table 1]

【0014】制御光Bの照射により信号光Aの屈折率が
変化するプロセスは、(イ)制御光Bの吸収→(ロ)金
属中の電子温度の上昇→(ハ)金属中のフェルミレベル
付近の電子の占有数の変化→(ニ)金属のd バンド(占
有状態)からフェルミレベル付近の非占有状態への光学
遷移確率の変化→(ホ)信号光Aの屈折率の変化という
経過を辿る。
The process in which the refractive index of the signal light A is changed by the irradiation of the control light B is as follows: (a) absorption of the control light B → (b) increase in electron temperature in metal → (c) near Fermi level in metal Change of electron occupancy number → (d) change of optical transition probability from metal d band (occupied state) to unoccupied state near Fermi level → (e) change of refractive index of signal light A .

【0015】ここで、本具体例のように信号光Aと制御
光Bの波長λA およびλB を前記およびの条件を満
足するように設定した場合は以下の理由により各プロセ
スの効率を大きくでき、χ( λA , λB ) の大きな値が
得ることができる。λB を(ii)の条件(λB =λp )と
することにより、(イ)→(ロ)のプロセスの効率が上
昇する。λA の選び方は(ニ)→(ホ)のプロセスの効
率に関係する。λA をλB と同様、λA =λp とすると
(すなわち、従来技術であるλA =λB )、(ニ)→
(ホ)のプロセスの効率は大きいが、この条件下ではα
( λA ) が大きくなってしまう。λA を(i) の条件(λ
A =λd )とすると、(ニ)→(ホ)のプロセスの効率
をλA =λp の場合と同程度の高効率に保ちつつ、かつ
α( λA )を格段に小さくすることができ、信号光Aの
ロスを低減できる。従って大きなχ( λA , λB ) /α
( λA ) 値が得られる。
When the wavelengths λ A and λ B of the signal light A and the control light B are set so as to satisfy the above conditions and as in this example, the efficiency of each process is increased for the following reasons. Therefore, a large value of χ (λ A , λ B ) can be obtained. By setting λ B to the condition of (ii) (λ B = λ p ), the efficiency of the process of (a) → (b) is increased. The method of selecting λ A is related to the efficiency of the process of (d) → (e). If λ A is λ B like λ B, that is, λ A = λ p (that is, λ A = λ B in the prior art), (d) →
Although the efficiency of the process of (e) is large, under this condition α
A ) becomes large. Let λ A be the condition of (i) (λ
If A = λ d ), the efficiency of the process of (d) → (e) can be kept as high as that of λ A = λ p , and α (λ A ) can be significantly reduced. Therefore, the loss of the signal light A can be reduced. Therefore, a large χ (λ A , λ B ) / α
A ) values are obtained.

【0016】(実施例1)イオン注入装置を使用し、金
属微粒子分散ガラスからなる非線形光学材料を作製し、
この非線形光学材料に本発明の光変調方法を適用し、そ
の効果を調べた。Sn+ イオンを2cm角の石英ガラス
基板にイオン注入(注入条件:イオン加速電圧は1.5
Mev、注入量は4×1017ions/cm2 である)
し、基板にSn微粒子分散体層を形成した。この層の厚
さは0.6μmであった。このSn微粒子分散体層に入
射する信号光と制御光の波長λA およびλB を(a)λ
A=λB =488nm、(b)λA =633nm、λB
=488nm、(c)λA=λB =633nmの3通り
とし、それぞれについてχ( λA , λB ) の相対値を四
光波混合により透過率から求めたところ、表2に示すよ
うな結果であった。
(Example 1) An ion implantation apparatus was used to prepare a non-linear optical material composed of glass in which fine metal particles were dispersed,
The optical modulation method of the present invention was applied to this nonlinear optical material, and its effect was investigated. Ion implantation of Sn + ions into a 2 cm square quartz glass substrate (implantation condition: ion acceleration voltage is 1.5
Mev, injection amount is 4 × 10 17 ions / cm 2 )
Then, a Sn fine particle dispersion layer was formed on the substrate. The thickness of this layer was 0.6 μm. The wavelengths λ A and λ B of the signal light and the control light which are incident on the Sn fine particle dispersion layer are (a) λ
A = λ B = 488 nm, (b) λ A = 633 nm, λ B
= 488 nm, (c) λ A = λ B = 633 nm, and the relative values of χ (λ A , λ B ) were calculated from the transmittance by four-wave mixing for each of the results, and the results shown in Table 2 were obtained. Met.

【0017】信号光と制御光の波長が異なる(b)の場
合を従来技術である(a)の場合と比べると、χ(
λA , λB ) は遜色なく、α( λA ) ははるかに小さ
く、結果としてχ( λA , λB ) /α( λA ) 値が向上
していることが明らかとなった。また、(c)の場合は
α( λA ) は小さいがχ( λA , λB ) が小さく、実用
には不向きであった。
When comparing the case (b) in which the signal light and the control light have different wavelengths with the case (a) in the prior art, χ (
It was revealed that λ A and λ B ) were comparable to each other and α (λ A ) was much smaller, resulting in an improved χ (λ A , λ B ) / α (λ A ) value. In the case of (c), α (λ A ) is small but χ (λ A , λ B ) is small, which is not suitable for practical use.

【0018】[0018]

【表2】 [Table 2]

【0019】(実施例2)本実施例では、高周波スパッ
タ蒸着装置を使用し、金属微粒子分散ガラスからなる非
線形光学材料を作製し、この非線形光学材料に本発明の
光変調方法を適用し、その効果を調べた。4インチ径の
チタニアのターゲット上に5mm角のAuチップ4個を
配置し、スパッタ蒸着を行いチタニアとAuの多元スパ
ッタ、ガラス基板上にAu微粒子分散体薄膜を作製し
た。この膜の厚さは2.5μmであった。なおスパッタ
条件は、スパッタガス:5%の酸素を含んだアルゴンガ
ス、ガス圧:5×10-3Torr、基板温度:150
℃、投入電力:400W、成膜時間:60分である。こ
のAu微粒子分散体薄膜に入射する信号光と制御光の波
長λA およびλB を(a)λA =λB =633nm、
(b)λA =730nm、λB =633nm、(c)λ
A =λB =730nmの3通りとし、それぞれについて
χ( λA , λB) およびα( λA ) の相対値を測定した
ところ、表3のような結果となり、実施例1と同様、信
号光と制御光の波長が異なる(b)の場合が最も望まし
い結果となった。
(Embodiment 2) In this embodiment, a high frequency sputter deposition apparatus is used to prepare a non-linear optical material composed of glass in which fine metal particles are dispersed, and the optical modulation method of the present invention is applied to this non-linear optical material. I investigated the effect. Four 5 mm square Au chips were placed on a 4-inch diameter titania target, sputter vapor deposition was performed, and titania and Au multi-source sputtering was performed to form an Au fine particle dispersion thin film on a glass substrate. The thickness of this film was 2.5 μm. The sputtering conditions were as follows: sputtering gas: argon gas containing 5% oxygen, gas pressure: 5 × 10 −3 Torr, substrate temperature: 150
C., input power: 400 W, film formation time: 60 minutes. The wavelengths λ A and λ B of the signal light and the control light incident on the Au fine particle dispersion thin film are (a) λ A = λ B = 633 nm,
(B) λ A = 730 nm, λ B = 633 nm, (c) λ
A = λ B = 730 nm was set in three ways, and the relative values of χ (λ A , λ B ) and α (λ A ) were measured for each, and the results shown in Table 3 were obtained. The case where the wavelengths of the light and the control light are different (b) is the most desirable result.

【0020】[0020]

【表3】 [Table 3]

【0021】(実施例3)実施例1で使用した非線形光
学材料であるSn微粒子分散体層を用いて図1のような
導波路型光スイッチを作製した。この光スイッチに本発
明の光変調方法を適用し、その効果を調べた。図1
(1)に示すように幅20mm、長さ25mmの石英ガ
ラス基板11上に、フォトリソグラフィーの技術を用い
て、導波路1,2の形状に窓の開いたマスク10を作製
した。次に、図1(2)の斜線部にSn+ イオンを注入
(基板温度は800℃、加速電圧は1.5MeV、注入
量は1×1018ions/cm2 である)すると同時に
Sn原子を基板内部に拡散させて幅4μm、厚さ1.8
μm、長さ5mmの非線形導波路1(非線形材料からな
る導波路)を形成した。その後、図1(3)のごとく斜
線部以外の部分にHe+ イオンを注入(基板温度は常
温、加速電圧は400KeV、注入量は3×1015io
ns/cm2 である)して幅4μm、厚さ1.8μm、
長さ5mmの線形導波路2(線形材料からなる導波路)
を形成した。前記非線形導波路1と線形導波路2の間の
距離は3μmである。最後に図1(4)のごとく化学エ
ッチングによりマスクを除去した。
Example 3 A waveguide type optical switch as shown in FIG. 1 was produced using the Sn fine particle dispersion layer which is the nonlinear optical material used in Example 1. The optical modulation method of the present invention was applied to this optical switch, and its effect was investigated. FIG.
As shown in (1), a mask 10 having windows in the shapes of the waveguides 1 and 2 was produced on a quartz glass substrate 11 having a width of 20 mm and a length of 25 mm by using a photolithography technique. Next, Sn + ions are implanted (the substrate temperature is 800 ° C., the accelerating voltage is 1.5 MeV, and the implantation amount is 1 × 10 18 ions / cm 2 ) in the hatched portion of FIG. Diffused inside the substrate, width 4μm, thickness 1.8
A non-linear waveguide 1 (waveguide made of a non-linear material) having a thickness of 5 μm and a length of 5 mm was formed. Then, as shown in FIG. 1 (3), He + ions are implanted into a portion other than the hatched portion (substrate temperature is room temperature, accelerating voltage is 400 KeV, implantation amount is 3 × 10 15 io).
ns / cm 2 ) and width 4 μm, thickness 1.8 μm,
5 mm long linear waveguide 2 (waveguide made of linear material)
Was formed. The distance between the nonlinear waveguide 1 and the linear waveguide 2 is 3 μm. Finally, the mask was removed by chemical etching as shown in FIG.

【0022】入力ポート3より一定強度の信号光Aを、
入力ポート4から強度可変の制御光Bを入射し、出力ポ
ート5からの出射光を出力とし、その強度を測定した。
光源としてはAr+ レーザー(波長488nm)とHe
−Ne レーザー(波長633nm)を用意した。
A signal light A having a constant intensity is inputted from the input port 3,
The intensity-variable control light B was input from the input port 4 and the output light from the output port 5 was output, and the intensity was measured.
Ar + laser (wavelength 488 nm) and He are used as the light source.
A -Ne laser (wavelength 633 nm) was prepared.

【0023】図2に制御光強度と出力光強度の関係を示
す。図2中の(a)はλA =λB =488nm(従来技
術)の場合で、制御光強度の増大に従って出力光強度が
減少する様子が示されている。(b)はλA =633n
m、λB =488nmの場合である。(a)の場合と比
べて制御光強度がゼロのときの出力光強度が大きく、即
ち信号光のロスが小さいことがわかる。なお、出力光強
度がゼロとなるような制御光強度(すなわち、スイッチ
ングに必要な制御光強度)も、(a)の場合と比べて僅
かに大きいだけである。すなわち、λA ≠λB とするこ
とにより、弱い制御光でスイッチングが生じ、かつ信号
光のロスが小さいという、通常相反する2つの条件を同
時に満たすことができる。(c)はλA =λB =633
nmの場合である。信号光のロスは(b)の場合よりも
さらに、僅かに小さいが、スイッチングに必要な制御光
強度は(b)の場合に比べてかなり大きく、実用的では
ない。なお、(b)の場合について、出力ポート6から
の出射光を、シャープカットフィルター(図示せず)を
通して制御光を分離し、強度を測定したところ、図3中
の(d)のような変化を示した。すなわち、図1(4)
における入力ポート3からの信号光は、制御光強度がゼ
ロのときには出力ポート5から出射されるが、制御光強
度が増大するにつれて、出力がポート6側にスイッチさ
れることが確認できた。このようにλA ≠λB とする
と、シャープカットフィルターやダイクロイックミラー
等を用いて、信号光(または出力光)と制御光とを容易
に分離できるという利点もある。
FIG. 2 shows the relationship between the control light intensity and the output light intensity. 2A shows the case where λ A = λ B = 488 nm (conventional technology), and shows that the output light intensity decreases as the control light intensity increases. (B) is λ A = 633n
This is the case where m and λ B = 488 nm. It can be seen that the output light intensity when the control light intensity is zero is larger than that in the case of (a), that is, the loss of the signal light is small. The control light intensity at which the output light intensity becomes zero (that is, the control light intensity required for switching) is only slightly higher than that in the case of (a). That is, by setting λ A ≠ λ B , two normally contradictory conditions that switching occurs with weak control light and a loss of signal light is small can be satisfied at the same time. (C) is λ A = λ B = 633
This is the case of nm. Although the loss of the signal light is slightly smaller than that in the case of (b), the control light intensity required for switching is considerably larger than that in the case of (b), which is not practical. In the case of (b), the control light is separated from the output light from the output port 6 through a sharp cut filter (not shown), and the intensity is measured. As a result, the change as shown in (d) of FIG. showed that. That is, FIG. 1 (4)
It was confirmed that the signal light from the input port 3 in (1) is emitted from the output port 5 when the control light intensity is zero, but the output is switched to the port 6 side as the control light intensity increases. When λ A ≠ λ B as described above, there is also an advantage that the signal light (or output light) and the control light can be easily separated by using a sharp cut filter, a dichroic mirror, or the like.

【0024】(実施例4)実施例2で使用した非線形光
学材料であるAu微粒子分散体薄膜を用いて図3のよう
な光カーシャッター型光スイッチを作製した。この光ス
イッチに本発明の光変調方法を適用し、その効果を調べ
た。光カーシャッター型光スイッチとは、信号光を制御
光でゲーティングし、制御光の強度に対応した出力光を
得るものである。
Example 4 An optical Kerr shutter type optical switch as shown in FIG. 3 was produced using the Au fine particle dispersion thin film which is the nonlinear optical material used in Example 2. The optical modulation method of the present invention was applied to this optical switch, and its effect was investigated. The optical car shutter type optical switch is for gating signal light with control light to obtain output light corresponding to the intensity of the control light.

【0025】本スイッチは、ガラス基板上の薄膜材料7
を2枚の直交する偏光板8、9で挟む構成とした。直線
偏光の信号光(一定強度)を偏光板8を通して薄膜材料
7に垂直に入射し、透過後の光を偏光板9を通した後に
その強度(出力光強度)を測定した。制御光(強度可
変)には偏光方向が偏光板8の主軸と45度をなす角度
の直線偏光を用い、薄膜材料7を透過後、信号光の透過
光と分離できるように薄膜材料7に対して垂直から僅か
に傾いた方向から入射した。光源としてはHe−Neレ
ーザー(波長633nm)と半導体レーザー(波長73
0nm)を用意し、実施例3と同様にλA とλB の3通
りの組合せについて測定を行った。
This switch is a thin film material 7 on a glass substrate.
Is sandwiched between two orthogonal polarizing plates 8 and 9. The linearly polarized signal light (constant intensity) was vertically incident on the thin film material 7 through the polarizing plate 8, and the intensity of the transmitted light was measured after passing through the polarizing plate 9. As the control light (variable intensity), linearly polarized light whose polarization direction forms an angle of 45 degrees with the main axis of the polarizing plate 8 is used, and after passing through the thin film material 7, the thin film material 7 can be separated from the transmitted light of the signal light. Incident from a direction slightly inclined from the vertical. As a light source, a He-Ne laser (wavelength 633 nm) and a semiconductor laser (wavelength 73)
0 nm) was prepared, and measurement was performed for three combinations of λ A and λ B in the same manner as in Example 3.

【0026】図4は制御光強度と出力光強度の関係で、
(a)はλA =λB =633nm、(b)はλA =73
0nm、λB =633nm、(c)はλA =λB =73
0nmの場合である。何れも、制御光強度の増大に従っ
て出力光強度は増大するが、実施例3と同様、(b)の
場合に弱い制御光でスイッチングが生じ、かつ信号光の
ロスが小さかった。
FIG. 4 shows the relationship between the control light intensity and the output light intensity.
( A ) is λ A = λ B = 633 nm, (b) is λ A = 73
0 nm, λ B = 633 nm, (c) is λ A = λ B = 73
This is the case of 0 nm. In both cases, the output light intensity increased as the control light intensity increased, but as in Example 3, in the case of (b), switching occurred with weak control light and the loss of signal light was small.

【図面の簡単な説明】[Brief description of drawings]

【図1】導波路型光スイッチの作製プロセスを示す図で
ある。
FIG. 1 is a diagram showing a manufacturing process of a waveguide type optical switch.

【図2】導波路型光スイッチの動作特性を示す図であ
る。
FIG. 2 is a diagram showing operating characteristics of a waveguide type optical switch.

【図3】実施例4に示したカーシャッター型光スイッチ
の概略図である。
FIG. 3 is a schematic view of a car shutter type optical switch shown in a fourth embodiment.

【図4】カーシャッター型光スイッチの動作特性を示す
図である。
FIG. 4 is a diagram showing operating characteristics of a car shutter type optical switch.

【符号の説明】[Explanation of symbols]

1 非線形導波路 2 線形導波路 3 信号光入力ポート 4 制御光入力ポート 5 出力光ポートI 6 出力光ポートII 7 薄膜非線形光学材料 8 偏光板I 9 偏光板II 10 マスク 11 基板 1 Nonlinear Waveguide 2 Linear Waveguide 3 Signal Light Input Port 4 Control Light Input Port 5 Output Optical Port I 6 Output Optical Port II 7 Thin Film Nonlinear Optical Material 8 Polarizing Plate I 9 Polarizing Plate II 10 Mask 11 Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 正治 愛知県愛知郡長久手町大字長湫字横道41番 地―1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Noda 41, Yokomichi, Nagakute-cho, Nagakute-cho, Aichi-gun, Aichi-1 Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 信号光と、この信号光に変調を与える制
御光とを、金属微粒子が分散した透明な誘電体からなる
非線形光学材料に入射し、この非線形光学材料から高強
度の信号光を出射する方法であって、信号光と制御光の
波長を異なった波長とすることを特徴とする光変調方
法。
1. A signal light and a control light for modulating the signal light are made incident on a nonlinear optical material made of a transparent dielectric material in which fine metal particles are dispersed, and a high-intensity signal light is emitted from the nonlinear optical material. A light modulation method, wherein the signal light and the control light have different wavelengths.
JP22825593A 1993-08-20 1993-08-20 Optical modulating method Pending JPH0822036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22825593A JPH0822036A (en) 1993-08-20 1993-08-20 Optical modulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22825593A JPH0822036A (en) 1993-08-20 1993-08-20 Optical modulating method

Publications (1)

Publication Number Publication Date
JPH0822036A true JPH0822036A (en) 1996-01-23

Family

ID=16873605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22825593A Pending JPH0822036A (en) 1993-08-20 1993-08-20 Optical modulating method

Country Status (1)

Country Link
JP (1) JPH0822036A (en)

Similar Documents

Publication Publication Date Title
US3959799A (en) Information storage by laser beam initiated reactions
Magruder III et al. Optical properties of gold nanocluster composites formed by deep ion implantation in silica
Reyes-Esqueda et al. Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites
WO2001027689A1 (en) Optically functional element and production method and application therefor
WO2009110595A1 (en) Polarizing element
Bhat et al. Irradiation effects on the optical properties of a new NLO mixed borate crystal
JPH0822036A (en) Optical modulating method
JP3324026B2 (en) All-optical device
JPH10288799A (en) Optical waveguide circuit and nonlinear optical device
US6900927B2 (en) Non-linear optical thin film, non-linear optical device using the same, and optical switch using the same
JP3751441B2 (en) Optical element
JPH04281433A (en) Superfine particle dispersion thin film
JP3433119B2 (en) Electro-optic material, optical element and phase spatial light modulator using the same
JP4184706B2 (en) Method for manufacturing antireflection film
JPH05142604A (en) Nonlinear optical material and its production
JPH0915665A (en) Nonlinear optical material and nonlinear optical element
JPH08328061A (en) Nonlinear optical material, nonlinear optical element and light multiplexing method
Seward III Glass polarizers containing silver
JPH063693A (en) Dielectric substance mirror and its manufacture
JPH09274169A (en) Waveguide type optical control method using liquid crystal particulate dispersion medium and liquid crystal optical element for waveguide type optical control
JPH0980402A (en) Production of optical writing type spatial optical modulation element and optical writing type spatial optical modulation element
JPS6015482A (en) Preparation of optical color developing element
JP2933743B2 (en) Nonlinear optical material and manufacturing method thereof
Haglund Jr et al. Metal-nanocluster composites made by ion implantation: a novel third-order nonlinear material
JPH1010306A (en) Artificial lattice and formation of artificial lattice