JPH04281433A - Superfine particle dispersion thin film - Google Patents

Superfine particle dispersion thin film

Info

Publication number
JPH04281433A
JPH04281433A JP6906491A JP6906491A JPH04281433A JP H04281433 A JPH04281433 A JP H04281433A JP 6906491 A JP6906491 A JP 6906491A JP 6906491 A JP6906491 A JP 6906491A JP H04281433 A JPH04281433 A JP H04281433A
Authority
JP
Japan
Prior art keywords
thin film
film
optical
columnar structure
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6906491A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6906491A priority Critical patent/JPH04281433A/en
Publication of JPH04281433A publication Critical patent/JPH04281433A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To offer a thin film useful for a nonlinear optical material which shows 0-th dimensional behavior of electron or exciton, so-called quantum sizing effect, due to three-dimensional sealing effect. CONSTITUTION:The superfine particle dispersion thin film is formed by dispersing superfine particles of metal or semiconductor at a concn. as high as >=15 atomic % in a transparent matrix, and forming a columnar structure perpendicular to the film plane in the film so as to regularly align the superfine particles of metal and semiconductor in the vertical direction. The thin film can be used for an optical bistable element, optical gate, optical switch, wavelength converter, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は超微粒子分散薄膜に関し
、詳しくは、三次元の閉込み効果によって電子や励起子
が0次元的振舞いを示す所謂“量子サイズ効果”によっ
て非線形光学材料として有用な、超微粒子を透明マトリ
ックス中に分散させた薄膜に関する。そして、この超微
粒子分散薄膜は光双安定素子、光ゲート光スイッチ、波
長変換素子等への利用が可能である。
[Industrial Application Field] The present invention relates to ultrafine particle-dispersed thin films, and more specifically, they are useful as nonlinear optical materials due to the so-called "quantum size effect" in which electrons and excitons exhibit zero-dimensional behavior due to a three-dimensional confinement effect. , relates to a thin film in which ultrafine particles are dispersed in a transparent matrix. This ultrafine particle dispersed thin film can be used for optical bistable devices, optical gate optical switches, wavelength conversion devices, etc.

【0002】0002

【従来の技術】微粒子分散ガラスの量子サイズ効果が最
近になって見出され注目されるようになってきている。 一般的には、例えばガラス、高分子など透明な絶縁物(
マトリックス)中に粒径が数100Å以下の半導体や金
属の超微粒子を分散し埋め込み薄膜として形成したもの
であり、これによれば量子サイズ効果による非線形性増
大効果が大いに期待できるとされている。
BACKGROUND OF THE INVENTION The quantum size effect of fine particle dispersed glass has recently been discovered and is attracting attention. Generally, transparent insulating materials such as glass and polymers (
It is formed by dispersing ultrafine semiconductor or metal particles with a particle diameter of several hundred angstroms or less in a matrix) and forming an embedded thin film, and it is said that it can be expected to greatly increase nonlinearity due to the quantum size effect.

【0003】そのような例として、「光学」第19巻第
1号(1990年1月)の第10〜16頁及び第17〜
24頁、「応用物理」第59巻第2号(1990)の第
155(23)〜162(30)頁、「応用物理」第5
9巻第6号(1990)の第738(52)〜745(
59)頁などには、種々のマトリックス中の半導体や金
属の超微粒子における3次の光学非線形性についての研
究が発表されている。
[0003] As an example, "Optics" Vol. 19, No. 1 (January 1990), pages 10-16 and 17-
24 pages, “Applied Physics” Vol. 59, No. 2 (1990), pp. 155 (23) to 162 (30), “Applied Physics” No. 5
Volume 9, No. 6 (1990), Nos. 738 (52) to 745 (
Research on third-order optical nonlinearity in ultrafine semiconductor and metal particles in various matrices has been published on page 59).

【0004】だが、これまでに発表された文献を考察し
た限りにおいては、現時点では、(1)前記超微粒子の
平均サイズは、それを薄膜とする場合には、基板温度や
製膜後の熱処理等によってコントロールされることが多
く、加えて、粒径のバラツキが多いといった問題が残さ
れており、また(2)前記超微粒子のマトリックス中へ
の含有量はせいぜい15atmic%と低く、それ以上
の含有は難かしいとされている。
However, as far as the literature published so far has been considered, at present, (1) the average size of the ultrafine particles is determined depending on the substrate temperature and the heat treatment after film formation when forming the ultrafine particles into a thin film. (2) The content of the ultrafine particles in the matrix is as low as 15 atomic% at most; It is said to be difficult to contain.

【0005】超微粒子の平均サイズ(粒径)は製膜時の
基板温度(150〜400℃)や製膜後の熱処理によっ
て制御することが一般的に行なわれる。熱処理は場合に
よって600〜700℃で実施されるため、基板にプラ
スチックを使用できないという不利がある。一方、薄膜
中の超微粒子の含有量が数%〜15atmic%に抑え
られてきたのは、一つには、FRスパッタ法という手段
に限られていたこと、更には、製膜中又は製膜後の加熱
手段を用いていたといった理由からであり、光学非線形
性を機能させるには光量を多くせざるを得ないといった
不利がある。逆にいえば、薄膜中の超微粒子の含有量を
多くできれば、少ない光量で光学非線形性を機能せしめ
ることができる。
[0005] The average size (particle diameter) of ultrafine particles is generally controlled by the substrate temperature (150 to 400°C) during film formation and heat treatment after film formation. The heat treatment is optionally carried out at 600-700° C., which has the disadvantage that plastics cannot be used for the substrate. On the other hand, the reason why the content of ultrafine particles in a thin film has been suppressed to a few percent to 15 atomic percent is that it is limited to the FR sputtering method, and that This is because a later heating means was used, and there is a disadvantage that the amount of light must be increased in order to make the optical nonlinearity function. Conversely, if the content of ultrafine particles in the thin film can be increased, optical nonlinearity can be activated with a small amount of light.

【0006】[0006]

【発明が解決しようとする課題】本発明は基板にプラス
チックを使用できるようにするとともに、透明マトリッ
クス中の超微粒子の含有量を15atmic%以上にし
た薄膜を提供するものである。
SUMMARY OF THE INVENTION The present invention allows the use of plastic for the substrate and provides a thin film in which the content of ultrafine particles in the transparent matrix is 15 atomic % or more.

【0007】[0007]

【課題を解決するための手段】本発明の超微粒子分散薄
膜は、透明マトリックス中に金属又は半導体の超微粒子
が15atmic%以上分散され、柱状構造を有し、そ
の柱状構造は膜面に垂直でかつ該膜面中に形成されてな
ることを特徴としている。
[Means for Solving the Problems] The ultrafine particle-dispersed thin film of the present invention has 15 atomic% or more of ultrafine particles of metal or semiconductor dispersed in a transparent matrix, and has a columnar structure, and the columnar structure is perpendicular to the film surface. And it is characterized by being formed in the surface of the film.

【0008】以下に本発明をさらに詳細に説明するが、
それに先立って簡単に「非線形光効果」及び「量子サイ
ズ効果」について、更に、それらの関連について触れる
ことにする。非線形効果とは、物質に光を照射するその
物質の吸収係数や屈折率など光学特性が光の強度に応じ
て変化する現象であり、これを利用することによって光
による光の制御が可能になり、入出力に光のみを使う全
光型の論理素子を実現できるというものである。量子サ
イズ効果とは、可視光領域で透明なガラスなどの中に埋
め込まれた半導体超微粒子の電子及び正孔はガラス等の
つくる深いポテンシャルによって三次元的に閉じこめら
める、というものである。そこで、電子を波動のように
考えるならば、小さい箱の中では波動様式は特定のもの
に制限されてしまうので、量子サイズ効果における前記
の電子状態は離散的になり、振動子強度や非線形感受率
は増大する。
The present invention will be explained in more detail below.
Prior to that, I will briefly touch on the "nonlinear optical effect" and "quantum size effect" and the relationship between them. Nonlinear effect is a phenomenon in which optical properties such as the absorption coefficient and refractive index of a material that is irradiated with light change depending on the intensity of light, and by using this, it is possible to control light with light. , it is possible to realize an all-optical logic element that uses only light for input and output. The quantum size effect means that electrons and holes in semiconductor ultrafine particles embedded in transparent glass or the like in the visible light region are three-dimensionally confined by the deep potential created by the glass or the like. Therefore, if we think of electrons as waves, the wave mode is limited to a specific one within a small box, so the electronic state mentioned above in the quantum size effect becomes discrete, and the oscillator strength and nonlinear sensitivity rate increases.

【0009】本発明に係る薄膜は、可視光領域で透明な
基板と透明なマトリックス中に金属や半導体の超微粒子
を15atomic%以上の高濃度で分散せしめ、かつ
、膜面に垂直な柱状構造を膜中に形成せしめることによ
って金属・半導体超微粒子を規則正しく縦に並べるよう
にしたものであり、このような構造をとることによって
、基板温度とか熱処理等の加熱の加減で粒径を制御する
のではなく、柱状構造の柱径を容易に制御して柱内の粒
子径を変えることができる。
The thin film according to the present invention has ultrafine metal or semiconductor particles dispersed in a transparent matrix and a transparent matrix at a high concentration of 15 atomic% or more in the visible light region, and has a columnar structure perpendicular to the film surface. By forming them in a film, ultrafine metal/semiconductor particles are arranged vertically in an orderly manner, and by adopting this structure, the particle size can be controlled by controlling the substrate temperature or heating such as heat treatment. Therefore, it is possible to easily control the column diameter of the columnar structure and change the particle diameter within the column.

【0010】柱状構造の柱径は、例えばイオンビームス
パッタ法を用いれば、導入するガスの量やイオンビーム
の強度によって基板上の原子のふるまい(マイグレーシ
ョン)を制御できるので、100〜500Åのサイズで
変化させうる。柱と柱の間は超微粒子の存在確立が極端
に減少するので、超微粒子を縦に高濃度に並べることが
できる。光デバイスとする場合、光は膜面にできるだけ
垂直に入射させて用いるので、この柱状構造が光の透過
を邪魔することは少ない。
[0010] The diameter of the columnar structure is determined to be 100 to 500 Å because, for example, if ion beam sputtering is used, the behavior (migration) of atoms on the substrate can be controlled by the amount of gas introduced and the intensity of the ion beam. It can be changed. Since the probability of ultrafine particles existing between the pillars is extremely reduced, ultrafine particles can be arranged vertically at a high concentration. In the case of an optical device, the light is incident on the film surface as perpendicularly as possible, so this columnar structure rarely interferes with the transmission of light.

【0011】前記のように、柱状構造は製膜条件によっ
て柱径が揃えられ、かつ、縦に垂直な規則正しいものと
して形成されるため、電子線リソグラフィーや反応性イ
オンエッチングなどの微細加工技術を用いることなく、
縦形非線形光学薄膜とすることが容易にできる。柱間の
間隔も導入するガス圧力によって制御することができる
As mentioned above, the columnar structure has a uniform column diameter depending on the film forming conditions and is formed vertically and regularly, so microfabrication techniques such as electron beam lithography and reactive ion etching are used. without any
It can easily be made into a vertical nonlinear optical thin film. The spacing between columns can also be controlled by the gas pressure introduced.

【0012】マトリックス中に含有される超微粒子の大
きさは、ボーア半径以下に制御する必要がある。但し、
例えば半導体CdSxSey(但しy=1−xである)
の超微粒子がガラス中に点在する場合は、ボーア半径は
30〜50Åであるが、本発明では100Å以下であれ
ば良い。これは本発明の薄膜では超微粒子が縦方向に柱
状に重ねられていくためである。もっとも、粒子サイズ
の大きさは大略、柱状構造の柱径によって制御できると
ころに本発明の特徴がある。即ち粒子径に柱径より大き
くならない。柱径は50Å以上で制御できる。
[0012] The size of the ultrafine particles contained in the matrix must be controlled to be less than the Bohr radius. however,
For example, the semiconductor CdSxSey (where y=1-x)
When ultrafine particles of 1 are scattered in the glass, the Bohr radius is 30 to 50 Å, but in the present invention, it is sufficient that it is 100 Å or less. This is because in the thin film of the present invention, the ultrafine particles are stacked vertically in a columnar manner. However, a feature of the present invention is that the particle size can be roughly controlled by the diameter of the columnar structure. That is, the particle size does not become larger than the column diameter. The column diameter can be controlled to 50 Å or more.

【0013】微粒子材料には、半導体としてCdSxS
ey(但しy=1−xである)、CdS、CdSe、C
uCl、GaAs、ZnSe、InSb、InP、Cd
Te等があげられ、金属ではAu、Agなど、酸化物で
はMnO等があげられる。
[0013] The fine particle material includes CdSxS as a semiconductor.
ey (however, y=1-x), CdS, CdSe, C
uCl, GaAs, ZnSe, InSb, InP, Cd
Examples include Te, metals such as Au and Ag, and oxides such as MnO.

【0014】非線形性の大きさを表わす3次の非線形感
受率は超微粒子の数密度に比例する。従って、超微粒子
の数は多い方が望ましい。ところが、従来のrfスパッ
タ法などで基板を加熱して製膜を行なった場合には、薄
膜中の超微粒子の含有量は、前記のとおり、数atom
ic%が平均で最大でも15atomic%である。こ
れに対して、本発明では、薄膜中の超微粒子の含有量は
20atomic%以上であり、これは例えばXPSに
よって確認できる。この理由は必ずしも明らかではない
が、本発明は柱状構造を得る為にイオンビームスパッタ
法を好ましく用い、製膜時ガスを導入しながら作製する
という手段に帰因していると考えられる。
The third-order nonlinear susceptibility, which represents the magnitude of nonlinearity, is proportional to the number density of ultrafine particles. Therefore, it is desirable that the number of ultrafine particles be large. However, when a film is formed by heating a substrate using conventional RF sputtering method, the content of ultrafine particles in the thin film is a few atoms, as mentioned above.
The average ic% is at most 15 atomic%. In contrast, in the present invention, the content of ultrafine particles in the thin film is 20 atomic% or more, which can be confirmed by, for example, XPS. Although the reason for this is not necessarily clear, it is thought that this is attributable to the fact that the present invention preferably uses ion beam sputtering to obtain a columnar structure, and manufactures the film while introducing gas during film formation.

【0015】なお、ガスを導入しながらイオンビームス
パッタ法により製膜する方法によれば、例えば透明基板
としてガラスを用いてもガラス直上面から柱状構造がで
きる。この柱径を変化させたい場合には、ガス圧力を変
化させても良いが、例えば下地層として多結晶の粒子の
サイズを変化できる膜(例えばAu、ZnO、TiO2
など)を設け、その上に柱状構造を設ければ柱径は下地
の粒子サイズに影響をうけて制御可能となる。
[0015] If a film is formed by ion beam sputtering while introducing a gas, a columnar structure can be formed directly above the glass even if glass is used as the transparent substrate, for example. If you want to change the column diameter, you can change the gas pressure, but for example, you can use a film (such as Au, ZnO, TiO2
), and a columnar structure is provided on top of it, the column diameter can be controlled by being influenced by the particle size of the base.

【0016】基板は可視光に透明であればなんでも良く
、ガラス、石英やポリカーボネート、ポリエチレンテレ
フタレート等のプラスチックが用いられる。
The substrate may be of any material as long as it is transparent to visible light, and glass, quartz, polycarbonate, polyethylene terephthalate, or other plastics are used.

【0017】製膜法にはイオンビームスパッタ法、PV
D法、CVD法などが採用しうるが、反応性の良好なイ
オンビームスパッタ法が好ましい。
Film forming methods include ion beam sputtering, PV
D method, CVD method, etc. can be used, but ion beam sputtering method with good reactivity is preferable.

【0018】膜厚は特に限定されるわけではないが、1
00Å〜1μmくらいが適当である。
The film thickness is not particularly limited, but is 1
Approximately 00 Å to 1 μm is suitable.

【0019】[0019]

【実施例】次に実施例を示すが、本発明はこれらに限定
されるものではない。なお併せて、比較例を示す。
[Examples] Examples will be shown next, but the present invention is not limited thereto. In addition, a comparative example is also shown.

【0020】実施例1 透明なガラス基板上にイオンビームスパッタ法を用いて
下記の条件で約1200Å厚の薄膜を作製した。ここで
は、導入酸素のガス圧力のみ変化させて(A)(B)(
C)及び(D)の4種類の異なる薄膜とした。   ターゲット              AuSi
(Si50atomic%)  基板加熱      
          なし  イオン化ガス     
       Ar(純度99.999%)  導入ガ
ス                酸素(99.99
9%)  導入ガス圧力            (A
)0.6/106Torr             
             (B)0.8/106To
rr                       
   (C)1.0/106Torr        
                  (D)1.2/
106Torr  イオン銃(電圧×電流)  9KV
×1.7mA  イオン入射角           
 30度  ベースプレッシャー      4/10
7Torr  ターゲット−基板間距離  14mm
Example 1 A thin film approximately 1200 Å thick was prepared on a transparent glass substrate by ion beam sputtering under the following conditions. Here, by changing only the gas pressure of introduced oxygen, (A) (B) (
Four different types of thin films were prepared: C) and (D). Target AuSi
(Si50atomic%) Substrate heating
None Ionized gas
Ar (purity 99.999%) Introduced gas Oxygen (99.99%)
9%) Introduced gas pressure (A
)0.6/106Torr
(B) 0.8/106To
rr
(C) 1.0/106Torr
(D)1.2/
106Torr ion gun (voltage x current) 9KV
×1.7mA Ion incident angle
30 degrees base pressure 4/10
7Torr Target-board distance 14mm


0021】これらの透明膜をX線回折法で調べたところ
、SiO2のブロードな微少ピークをAuの微少ピーク
が観察された。側断面をTEM法で観察したところ、径
に下記のような柱状構造が見出された。(A)約160
Å  (B)約130Å  (C)約110Å  (D
)約70ÅTEM像から求めた各試料のAuの平均粒径
は(A)約61Å、(B)約45Å、(C)約30Å、
(D)約21Åであった。また、XPSから求めたAu
の組成比は約20atomic%以上であった。
[
When these transparent films were examined by X-ray diffraction, a broad minute peak of SiO2 and a minute peak of Au were observed. When the side cross section was observed using a TEM method, a columnar structure as shown below was found in the diameter. (A) Approximately 160
Å (B) Approx. 130 Å (C) Approx. 110 Å (D
) The average particle size of Au in each sample determined from the approximately 70 Å TEM image is (A) approximately 61 Å, (B) approximately 45 Å, (C) approximately 30 Å,
(D) It was about 21 Å. In addition, Au obtained from XPS
The composition ratio was about 20 atomic% or more.

【0022】更に、室温で分光光度計を用いて調べた光
学吸収端の測定結果から、明確な高エネルギーシフト(
ブルーシフト)が全ての試料で認められ、その大きさは
微粒子の平均粒径の2乗に比例し、量子サイズ効果を示
すのが確められた。
Furthermore, from the measurement results of the optical absorption edge investigated using a spectrophotometer at room temperature, a clear high energy shift (
A blue shift) was observed in all samples, and its size was proportional to the square of the average particle diameter of the particles, confirming that it shows a quantum size effect.

【0023】比較例1 透明なガラス基板上にrfスパッタ法を用いて下記の条
件で約1200Å厚の薄膜を作製した。なお、ターゲッ
トにおけるAu/SiO2の面積比、ガラス基板温度、
高周波電力を変化させて(E)(F)(G)及び(H)
の4種類の異なる薄膜とした。 ターゲット              SiO2の上
にAuチップを置く 導入ガス                Ar(99
.999%)導入ガス圧力            4
/103Torrガラス基板温度          
200〜350℃ベースプレッシャー      5/
107Torrターゲット−基板間距離  50mm 高周波電力              205〜30
0W
Comparative Example 1 A thin film with a thickness of about 1200 Å was prepared on a transparent glass substrate using the RF sputtering method under the following conditions. In addition, the area ratio of Au/SiO2 in the target, the glass substrate temperature,
By changing the high frequency power (E) (F) (G) and (H)
Four different types of thin films were prepared. Placing the Au chip on the target SiO2 Introducing gas Ar (99
.. 999%) Introduced gas pressure 4
/103Torr glass substrate temperature
200-350℃ base pressure 5/
107Torr Target-board distance 50mm High frequency power 205~30
0W

【0024】各試料のAuの平均粒径は(E)約7
7Å、(F)約52Å、(G)約33Å、(H)約29
Åであり、膜の断面TEM像からはいずれの試料からも
柱状構造は認められなかった。また、X線回折図形から
は、SiO2のブロードな微少ピークとAuの微少ピー
クが観察された。XPSから求めた光学吸収端の測定結
果から、実施例1と同様の高エネルギーシフトが認めら
れたが、Au超微粒子の平均粒径の2乗には比例してい
なかった。
The average particle size of Au in each sample is (E) approximately 7
7 Å, (F) about 52 Å, (G) about 33 Å, (H) about 29
Å, and no columnar structure was observed in any of the samples from the cross-sectional TEM images of the films. Further, from the X-ray diffraction pattern, a broad minute peak of SiO2 and a minute peak of Au were observed. From the measurement results of the optical absorption edge obtained from XPS, a high energy shift similar to that in Example 1 was observed, but it was not proportional to the square of the average particle size of the ultrafine Au particles.

【0025】[0025]

【発明の効果】本発明の超微粒子分散薄膜は下記のよう
な利点を有している。 (1)約100Å以下の超微粒子を高濃度に含有しかつ
柱状構造を有しており、特に製膜時の基板加熱や製膜後
の熱処理が不要であるため、プラスチック基板などを用
いることができる。従って、3次の非線形感受率の大き
な膜の作製が容易である。 (2)膜面に対して垂直方向に超微粒子が並べられてい
るので、特に膜に垂直に光を入射させて利用するのに効
果的である。
Effects of the Invention The ultrafine particle dispersed thin film of the present invention has the following advantages. (1) It contains a high concentration of ultrafine particles of approximately 100 Å or less and has a columnar structure, and it does not require substrate heating during film formation or heat treatment after film formation, so it is possible to use a plastic substrate etc. can. Therefore, it is easy to produce a film with high third-order nonlinear susceptibility. (2) Since the ultrafine particles are arranged in a direction perpendicular to the film surface, it is particularly effective for making use of light incident perpendicularly to the film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  透明なマトリックス中に金属又は半導
体の超微粒子が15atomic%以上分散され、柱状
構造を有し、その柱状構造は膜面に垂直でかつ該膜面中
に形成されていることを特徴とする超微粒子分散薄膜。
Claim 1: Ultrafine particles of metal or semiconductor are dispersed in a transparent matrix at 15 atomic % or more and have a columnar structure, and the columnar structure is perpendicular to the film surface and formed in the film surface. Characteristic ultrafine particle dispersed thin film.
【請求項2】  前記超微粒子の粒径は100Å以下で
ある請求項1記載の超微粒子分散薄膜。
2. The ultrafine particle dispersed thin film according to claim 1, wherein the particle size of the ultrafine particles is 100 Å or less.
JP6906491A 1991-03-08 1991-03-08 Superfine particle dispersion thin film Pending JPH04281433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6906491A JPH04281433A (en) 1991-03-08 1991-03-08 Superfine particle dispersion thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6906491A JPH04281433A (en) 1991-03-08 1991-03-08 Superfine particle dispersion thin film

Publications (1)

Publication Number Publication Date
JPH04281433A true JPH04281433A (en) 1992-10-07

Family

ID=13391771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6906491A Pending JPH04281433A (en) 1991-03-08 1991-03-08 Superfine particle dispersion thin film

Country Status (1)

Country Link
JP (1) JPH04281433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9276168B2 (en) 2007-07-23 2016-03-01 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US10393940B2 (en) 2006-03-07 2019-08-27 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
US9276168B2 (en) 2007-07-23 2016-03-01 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US9680054B2 (en) 2007-07-23 2017-06-13 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US10096744B2 (en) 2007-07-23 2018-10-09 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots

Similar Documents

Publication Publication Date Title
Lu et al. Reversible tuning of Mie resonances in the visible spectrum
Qiu et al. Manipulation of gold nanoparticles inside transparent materials
Shi et al. Structural and optical characteristics of SiO2 thin film containing GaAs microcrystallites
Mir et al. Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb-doped SnO 2 thin films
Irimpan et al. Effect of annealing on the spectral and nonlinear optical characteristics of thin films of nano-ZnO
Stronski et al. Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their application in holographic grating recording
Shyam et al. Improved optical properties of ion beam irradiated (K, Na) NbO3 thin films
JPH04281433A (en) Superfine particle dispersion thin film
Salwa et al. Linear and nonlinear optical studies of indium selenide thin films prepared by thermal evaporation technique
Htwe et al. Ultrafast carrier dynamics and third order nonlinear optical properties of aluminum doped zinc oxide (AZO) thin films
Ellis On the growth of gallium arsenide crystals from the melt
Wang et al. Nonlinear optics of nanoparticles and nanocomposites
White et al. Nanocrystals and quantum dots formed by high-dose ion implantation
JPH05224262A (en) Nonlinear optical material
JPH04338733A (en) Nonlinear optical material containing superfine particle of quasi-crystal
Jena et al. An experimental and computational study for enhancement in optical nonlinearity and dielectric behaviour in thermal annealing induced Ag diffusion at Ag/Sb-S-Se interface
JPH06301071A (en) Semiconductor superfine particle-dispersed nonlinear optical element
JPH04338735A (en) Nonlinear optical material
Boranna et al. Studies on microstructural dependence of nonlinear optical properties in PSAN/CdS polymer nanocomposites
Reisfeld Nonlinear optical properties of semiconductor quantum dots and organic molecules in glasses prepared by the sol-gel method
JPH07114048A (en) Nonlinear optical material
JPH05158093A (en) Superfine grain dispersed thin film and its production
Shi et al. Nonlinear optical absorption of InAs nanocrystals embedded in SiO2 thin films
JPH05249514A (en) Nonlinear optical material
Goncharova et al. Subpicosecond-scale change in transmission spectrum of vacuum-deposited thin-film CdS interferometers