JPH05249514A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH05249514A
JPH05249514A JP8448192A JP8448192A JPH05249514A JP H05249514 A JPH05249514 A JP H05249514A JP 8448192 A JP8448192 A JP 8448192A JP 8448192 A JP8448192 A JP 8448192A JP H05249514 A JPH05249514 A JP H05249514A
Authority
JP
Japan
Prior art keywords
film
superfine particles
particles
matrix
superfine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8448192A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8448192A priority Critical patent/JPH05249514A/en
Publication of JPH05249514A publication Critical patent/JPH05249514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a film having high nonlinearity by using amorphous carbon as the matrix of superfine particles of a metal, thereby enabling the incorporation of the superfine particles to be conducted at a high density into the thin film. CONSTITUTION:The film dispersed with the superfine particles is formed by dispersing the superfine particles of the fine crystalline metal into the matrix of the amorphous carbon, by which the value its X<3> (nonlinear sensitivity) is improved. Namely, the content of the superfine particles of the fine crystalline metal is increased by adopting the amorphous carbon as the matrix to be dispersed with these superfine particles. The metallic material constituting the superfine particles is preferably Ag and Au and more particularly the Au. Further, the grain sizes of the superfine particles are preferably in the range where the quantum size effect of electrons and excitons appear; for example, the grain sizes are confined to <=100Angstrom . The size control of the superfine particle are executable by, for example, heating a substrate at the time of the film formation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、非線形感受率TECHNICAL FIELD The present invention relates to a nonlinear susceptibility.

【数1】 の値が向上した非線形光学材料に関する。本発明の非線
形光学材料は、薄膜として光双安定素子、光ゲート光ス
イッチ、波長変換素子等の分野に用いられる。
[Equation 1] The present invention relates to a nonlinear optical material having an improved value of. The nonlinear optical material of the present invention is used as a thin film in the fields of optical bistable elements, optical gate optical switches, wavelength conversion elements, and the like.

【0002】[0002]

【従来技術】非線形光学薄膜としては、従来透明な絶縁
物(例えばアモルファスAl23やアモルファスSiO
2)中に100Å以下の半導体超微粒子が分散されたも
のが用いられた。しかしながら、この非線形光学薄膜で
は十分な大きさのX3が得られない。非線形性の大きさ
を表わすX3は微粒子の数密度に比例するから粒子数は
多い方が好ましいが、従来RFスパッタ法等で基板を加
熱して製造する場合は、その粒子密度は数atm%が平
均で、最大でも15atm%であった。このX3が更に
大きい材料を得ることができれば、更に弱い光によって
スイッチング動作を行うことができ、その効果は大き
い。本発明はこの点を改善するものである。
2. Description of the Related Art Non-linear optical thin films have been conventionally used as transparent insulators (for example, amorphous Al 2 O 3 and amorphous SiO 2).
2 ) In which semiconductor ultrafine particles of 100 Å or less are dispersed is used. However, this non-linear optical thin film cannot provide sufficiently large X 3 . Although X 3 representing the nonlinearity of magnitude particle number proportional to the number density of fine particles it is preferably larger, when manufacturing by heating the substrate in the conventional RF sputtering method, etc., the particle density is the number atm% Was 15 atm% at the maximum. If a material having a larger X 3 can be obtained, the switching operation can be performed with weaker light, and the effect is great. The present invention improves this point.

【0003】[0003]

【目的】本発明は、金属の微結晶の超微粒子がアモルフ
ァスカーボンをマトリックス中に含有されていることを
特徴とするX3の値が改善された非線形光学材料の提供
を目的とする。
An object of the present invention is to provide a non-linear optical material having an improved X 3 value, characterized in that ultrafine particles of metal microcrystals contain amorphous carbon in a matrix.

【0004】[0004]

【構成】本発明は三次元の閉込め効果によって電子や励
起子が0次元的挙動を示す、いわゆる量子サイズ効果を
示す非線形光学材料に関するものである。
The present invention relates to a non-linear optical material exhibiting a so-called quantum size effect in which electrons and excitons exhibit zero-dimensional behavior due to a three-dimensional confinement effect.

【0005】ここで非線形光学効果とは、物質に光を照
射すると、その物質の吸収係数や屈折率等の光学特性が
光の強度に応じて変化する現象であり、これを利用する
ことによって光の制御が可能になり、入出力に光のみを
使用する全光型の論理素子を実現できる。
Here, the non-linear optical effect is a phenomenon in which, when a substance is irradiated with light, the optical characteristics such as the absorption coefficient and the refractive index of the substance change according to the intensity of the light. Can be controlled, and an all-optical logic element that uses only light for input and output can be realized.

【0006】また、量子サイズ効果とは、可視光領域で
透明なガラス中に埋め込まれた半導体粒子の電子と正孔
は、ガラスの作る深いポテンシャルによって三次元的に
閉じ込められるが、電子を波動のように考えるならば、
小さい箱の中では波動様式は特定のものに制限されてし
まうので、電子状態は離散的になり振動強度や非線形感
受率が増大する。
The quantum size effect means that the electrons and holes of semiconductor particles embedded in transparent glass in the visible light region are three-dimensionally confined by the deep potential created by the glass. If you think
In a small box, the wave pattern is limited to a specific one, so the electronic states become discrete and the vibration intensity and nonlinear susceptibility increase.

【0007】この微粒子分散ガラスの量子サイズ効果は
最近(7〜8年前)になって見出され、注目されるよう
になったものであり、絶縁物例えばガラス中に100Å
以下の半導体微粒子を分散させたものである。
The quantum size effect of this fine particle-dispersed glass has recently been discovered (7 to 8 years ago) and has come to the forefront, and 100 Å in an insulating material such as glass.
The following semiconductor fine particles are dispersed.

【0008】これらの技術的事項は、たとえば〔JAP
ANESE JOURNAL OFAPPLIED P
HYSICS, 28巻, 10号, 1928−193
3頁〕および「光学、第19巻、第1号(1990年1
月)10−16頁」に具体的に説明されている。
These technical matters are described in, for example, [JAP
ANESE JOURNAL OFAPPLIED P
HYSICS, Volume 28, No. 10, 1928-193.
3] and "Optics, Vol. 19, No. 1 (1990, 1
Mon) 10-16 ”.

【0009】本発明の超微粒子分散膜は、アモルフアス
カーボンをマトリックス中に微結晶の金属の超微粒子を
分散させ、そのX3の値を向上させたものである。すな
わち、本発明においては、微結晶の金属超微粒子を分散
させるマトリックスとして、アモルフアスカーボンを採
用することにより該粒子の含有量を増大させたことを特
徴とする。本発明において超微粒子を構成する金属材料
は、超微粒子とすることができる材料であれば特に限定
されないが、Ag、Au特にAuが好ましい。さらに、
該超微粒子の粒径は、電子や励起子の量子サイズ効果が
現れる範囲のものであるならば特に制限なく採用できる
が、たとえば100Å以下である。この超微粒子のサイ
ズコントロールは、例えば、製膜時に基板を加熱するこ
とによって行うことができる。本発明によれば粒子密度
を20atm%以上とすることが可能である。
The ultrafine particle dispersion film of the present invention is obtained by dispersing ultrafine particles of microcrystalline metal in a matrix of amorphous carbon to improve the value of X 3 . That is, the present invention is characterized in that the content of the particles is increased by adopting amorphous carbon as the matrix in which the microcrystalline ultrafine metal particles are dispersed. In the present invention, the metal material constituting the ultrafine particles is not particularly limited as long as it is a material that can be made into ultrafine particles, but Ag, Au and particularly Au are preferable. further,
The particle size of the ultrafine particles can be adopted without particular limitation as long as it is within the range where the quantum size effect of electrons or excitons appears, but it is, for example, 100 Å or less. The size control of the ultrafine particles can be performed, for example, by heating the substrate during film formation. According to the present invention, the particle density can be 20 atm% or more.

【0010】次に本発明で使用する硬質炭素膜について
説明する。硬質炭素膜を形成するためには有機化合物ガ
ス、特に炭化水素ガスが用いられる。これら原料におけ
る相状態は、常温常圧において必ずしも気相である必要
はなく、加熱或は減圧等により溶融、蒸発、昇華等を経
て気化し得るものであれば、液相でも固相でも使用可能
である。原料ガスとしての炭化水素ガスについては、例
えばCH4,C26,C38,C410等のパラフィン系
炭化水素、C24等のオレフィン系炭化水素、アセチレ
ン系炭化水素、ジオレフィン系炭化水素、さらには芳香
族炭化水素などすベての炭化水素を少なくとも含むガス
が使用可能である。さらに、炭化水素以外でも、例え
ば、アルコール類、ケトン類、エーテル類、エステル
類、CO,CO2等、少なくとも炭素元素を含む化合物
であれば使用可能である。
Next, the hard carbon film used in the present invention will be described. An organic compound gas, particularly a hydrocarbon gas is used to form the hard carbon film. The phase state of these raw materials does not necessarily have to be a gas phase at room temperature and normal pressure, and can be in a liquid phase or a solid phase as long as it can be vaporized through melting, evaporation, sublimation, etc. by heating or decompression. Is. Examples of the hydrocarbon gas as the raw material gas include paraffin hydrocarbons such as CH 4 , C 2 H 6 , C 3 H 8 and C 4 H 10 , olefin hydrocarbons such as C 2 H 4 and acetylene hydrocarbons. It is possible to use a gas containing at least all the hydrocarbons such as a diolefin hydrocarbon, and an aromatic hydrocarbon. In addition to hydrocarbons, compounds containing at least a carbon element such as alcohols, ketones, ethers, esters, CO and CO 2 can be used.

【0011】本発明における原料ガスからの硬質炭素膜
の形成方法としては、成膜活性種が、直流、低周波、高
周波、或いはマイクロ波等を用いたプラズマ法により生
成されるプラズマ状態を経て形成される方法が好ましい
が、より大面積化、均一性向上、低温成膜の目的で、低
圧下で堆積を行なうため、磁界効果を利用する方法がさ
らに好ましい。また高温における熱分解によっても活性
種を形成できる。その他にも、イオン化蒸着法、或いは
イオンビーム蒸着法等により生成されるイオン状態を経
て形成されてもよいし、真空蒸着法、或いはスパッタリ
ング法等により生成される中性粒子から形成されてもよ
いし、さらには、これらの組み合せにより形成されても
よい。こうして作製される硬質炭素膜の堆積条件の一例
は、プラズマCVD法の場合次の通りである。 RF出力:0.1〜50W/cm2 圧 力:10-3〜10Torr 堆積温度:室温〜950℃
As a method of forming a hard carbon film from a source gas in the present invention, a film formation active species is formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, or microwave. Although the method described above is preferable, the method of utilizing the magnetic field effect is more preferable because the deposition is performed under a low pressure for the purpose of increasing the area, improving the uniformity, and forming a film at a low temperature. Active species can also be formed by thermal decomposition at high temperature. Besides, it may be formed through an ionic state generated by an ionization vapor deposition method, an ion beam vapor deposition method, or the like, or may be formed from neutral particles generated by a vacuum vapor deposition method, a sputtering method, or the like. However, it may be formed by a combination thereof. An example of the deposition conditions of the hard carbon film thus produced is as follows in the case of the plasma CVD method. RF output: 0.1 to 50 W / cm 2 Pressure: 10 −3 to 10 Torr Deposition temperature: Room temperature to 950 ° C.

【0012】このプラズマ状態により原料ガスがラジカ
ルとイオンとに分解され反応することによって、基板上
に炭素原子Cと水素原子Hとからなるアモルファス(非
晶質)及び微結晶質(結晶の大きさは数10Å〜数μ
m)の少くとも一方を含む硬質炭素膜が堆積する。ま
た、硬質炭素膜の諸特性を表1に示す。
This plasma state causes the source gas to decompose into radicals and ions and react with each other, so that amorphous and microcrystalline (crystal size) consisting of carbon atoms C and hydrogen atoms H are formed on the substrate. Is several 10Å to several μ
A hard carbon film containing at least one of m) is deposited. Table 1 shows various characteristics of the hard carbon film.

【表1】 注)測定法; 比抵抗(ρ) :コプレナー型セルによるI-V特性より
求める。 光学的バンドギャップ(Egopt):分光特性から吸
収係数(α)を求め、数2式の関係より決定。
[Table 1] Note) Measurement method; Specific resistance (ρ): Determined from the IV characteristics of a coplanar cell. Optical bandgap (Egopt): The absorption coefficient (α) is obtained from the spectral characteristics, and is determined from the relationship of Equation 2.

【数2】 膜中水素量〔C(H)〕:赤外吸収スペクトルから29
00/cm付近のピークを積分し、吸収断面積Aを掛け
て求める。すなわち、 〔C(H)〕=A・∫α(ν)/ν・dν SP3/SP2比:赤外吸収スペクトルを、SP3,SP2
にそれぞれ帰属されるガウス関数に分解し、その面積比
より求める。 ビッカース硬度(H):マイクロビッカース計による。 屈折率(n) :エリプソメーターによる。 欠陥密度 :ESRによる。 こうして形成される硬質炭素膜はラマン分光法及びIR
吸収法による分析の結果、炭素原子がSP3の混成軌道
とSP2の混成軌道とを形成した原子間結合が混在して
いることが明らかになっている。SP3結合とSP2結合
の比率は、IRスペクトルをピーク分離することで概ね
推定できる。IRスペクトルには、2800〜3150
cm-1に多くのモードのスペクトルが重なって測定され
るが、夫々の波数に対応するピークの帰属は明らかにな
っており、ガウス分布によってピーク分離を行ない、夫
々のピーク面積を算出し、その比率を求めればSP3
SP2を知ることができる。また、X線及び電子回折分
析によればアモルファス状態(a-C:H)、及び/又
は約50Å〜数μm程度の微結晶粒を含むアモルファス
状態にあることが判っている。一般に量産に適している
プラズマCVD法の場合には、RF出力が小さいほど膜
の比抵抗値および硬度が増加し、低圧力なほど活性種の
寿命が増加するために基板温度の低温化、大面積での均
一化が図れ、かつ比抵抗、硬度が増加する傾向にある。
更に、低圧力ではプラズマ密度が減少するため、磁場閉
じ込め効果を利用する方法は比抵抗の増加には特に効果
的である。さらに、この方法は常温〜150℃程度の比
較的低い温度条件でも同様に良質の硬質炭素膜を形成で
きるという特徴を有している。
[Equation 2] Amount of hydrogen in film [C (H)]: 29 from infrared absorption spectrum
The peak around 00 / cm is integrated and multiplied by the absorption cross section A to obtain the value. That is, [C (H)] = A · ∫α (ν) / ν · dν SP 3 / SP 2 ratio: infrared absorption spectrum of SP 3 , SP 2
It is decomposed into the Gaussian functions respectively assigned to, and calculated from the area ratio. Vickers hardness (H): By micro Vickers meter. Refractive index (n): By ellipsometer. Defect density: According to ESR. The hard carbon film thus formed has Raman spectroscopy and IR.
As a result of analysis by the absorption method, it has been clarified that carbon atoms have mixed interatomic bonds forming SP 3 hybrid orbitals and SP 2 hybrid orbitals. The ratio of SP 3 bond to SP 2 bond can be roughly estimated by separating peaks in the IR spectrum. IR spectrum shows 2800-3150
Although the spectrum of many modes overlaps with cm -1 and is measured, the attribution of the peak corresponding to each wave number has been clarified, and the peak separation is performed by the Gaussian distribution, and the respective peak areas are calculated. If the ratio is calculated, SP 3 /
You can know SP 2 . Further, it is known by X-ray and electron diffraction analysis that it is in an amorphous state (a-C: H) and / or in an amorphous state containing fine crystal grains of about 50Å to several μm. Generally, in the case of the plasma CVD method suitable for mass production, the smaller the RF output, the more the specific resistance value and hardness of the film increase, and the lower the pressure, the longer the life of active species. The area can be made uniform, and the specific resistance and hardness tend to increase.
Further, since the plasma density decreases at a low pressure, the method utilizing the magnetic field confinement effect is particularly effective for increasing the specific resistance. Furthermore, this method has a feature that a good quality hard carbon film can be similarly formed even under a relatively low temperature condition of room temperature to about 150 ° C.

【0013】さらにこの硬質炭素膜が炭素原子及び水素
原子の他に、周期律表第III族元素、同第IV族元素、同
第V族元素、アルカリ金属元素、アルカリ土類金属元
素、窒素原子、酸素元素、カルコゲン系元素又はハロゲ
ン原子を構成元素として含んでもよい。構成元素の1つ
として周期律表第III族元素、同じく第V族元素、アルカ
リ金属元素、アルカリ土類金属元素、窒素原子又は酸素
原子を導入したものは硬質炭素膜の膜厚をノンドープの
ものに比べて約2〜3倍に厚くすることができ、またこ
れにより素子作製時のピンホールの発生を防止すると共
に、素子の機械的強度を飛躍的に向上することができ
る。更に窒素原子又は酸素原子の場合は以下に述べるよ
うな周期律表第IV族元素等の場合と同様な効果がある。
同様に周期律表第IV族元素、カルコゲン系元素又はハロ
ゲン元素を導入したものは硬質炭素膜の安定性が飛躍的
に向上すると共に膜の硬度も改善される。これらの効果
が得られるのは第IV族元素及びカルコゲン系元素の場合
は、硬質炭素膜中に存在する活性な2重結合を減少させ
るからであり、またハロゲン元素の場合は、1)水素に
対する引抜き反応により原料ガスの分解を促進して膜中
のダングリングボンドを減少させ、2)成膜過程でハロ
ゲン元素XがC−H結合中の水素を引抜いてこれと置換
し、C−X結合として膜中に入り、結合エネルギーが増
大する(C−H間及びC−X間の結合エネルギーはC−
X間の方が大きい)からである。これらの元素を膜の構
成元素とするためには、原料ガスとしては炭化水素ガス
及び水素の他に、ドーパントとして膜中に周期律表第II
I族元素、同第IV族元素、同第V族元素、アルカリ金属
元素、アルカリ土類金属元素、窒素原子、酸素原子、カ
ルコゲン系元素又はハロゲン元素を含有させるために、
これらの元素又は原子を含む化合物(又は分子)(以下、
これらを「他の化合物」ということもある)のガスが用
いられる。ここで周期律表第III族元素を含む化合物と
しては、例えばB(OC253,B26,BCl3,B
Br3,BF3,Al(O−i−C373,(CH33
Al,(C253Al,(i−C493Al,AlC
3,Ga(O−i−C373,(CH33Ga,(C
253Ga,GaCl3,GaBr3,(O−i−C3
73In,(C253In等がある。周期律表第IV族
元素を含む化合物としては、例えばSi26,(C
253SiH,SiF4,SiH2Cl2,SiCl4
Si(OCH34,Si(OC254,Si(OC3
74,GeCl4,GeH4,Ge(OC254,Ge
(C254,(CH34Sn,(C254Sn,Sn
Cl4等がある。周期律表第V族元素を含む化合物とし
ては、例えばPH3,PF3,PF5,PCl23,PC
3,PCl2F,PBr3,PO(OCH33,P(C2
53,POCl3,AsH3,AsCl3,AsBr3
AsF3,AsF5,AsCl3,SbH3,SbF3,S
bCl3,Sb(OC253等がある。アルカリ金属原
子を含む化合物としては、例えばLiO−i−C37
NaO−i−C37,KO−i−C37等がある。アル
カリ土類金属原子を含む化合物としては、例えばCa
(OC253,Mg(OC252,(C252Mg
等がある。窒素原子を含む化合物としては、例えば窒素
ガス、アンモニア等の無機化合物、アミノ基、シアノ基
等の官能基を有する有機化合物及び窒素を含む複素環等
がある。酸素原子を含む化合物としては、例えば酸素ガ
ス、オゾン、水(水蒸気)、過酸化水素、一酸化炭素、
二酸化炭素、亜酸化炭素、一酸化窒素、二酸化窒素、三
酸化二窒素、五酸化二窒素、三酸化窒素等の無機化合
物、水酸基、アルデヒド基、アシル基、ケトン基、ニト
ロ基、ニトロソ基、スルホン基、エーテル結合、エステ
ル結合、ペプチド結合、酸素を含む複素環等の官能基或
いは結合を有する有機化合物、更には金属アルコキシド
等が挙げられる。カルコゲン系元素を含む化合物として
は、例えばH2S,(CH3)(CH24S(CH24
3,CH2=CHCH2SCH2CH=CH2,C25
25,C25SCH3,チオフェン、H2Se,(C2
52Se,H2Te等がある。またハロゲン元素を含
む化合物としては、例えば弗素、塩素、臭素、沃素、弗
化水素、弗化炭素、弗化塩素、弗化臭素、弗化沃素、塩
化水素、塩化臭素、塩化沃素、臭化水素、臭化沃素、沃
化水素等の無機化合物、ハロゲン化アルキル、ハロゲン
化アリール、ハロゲン化スチレン、ハロゲン化ポリメチ
レン、ハロホルム等の有機化合物が用いられる。
Further, the hard carbon film is composed of a group III element, a group IV element, a group V element, an alkali metal element, an alkaline earth metal element and a nitrogen atom of the periodic table in addition to carbon atoms and hydrogen atoms. , An oxygen element, a chalcogen element, or a halogen atom may be included as a constituent element. Those in which a Group III element of the periodic table, a Group V element, an alkali metal element, an alkaline earth metal element, a nitrogen atom or an oxygen atom is introduced as one of the constituent elements is a non-doped hard carbon film. It is possible to make the thickness about 2 to 3 times larger than that of the above, and by this, it is possible to prevent the occurrence of pinholes at the time of manufacturing the element and to dramatically improve the mechanical strength of the element. Further, in the case of a nitrogen atom or an oxygen atom, the same effect as that in the case of the group IV element of the periodic table as described below can be obtained.
Similarly, the introduction of a Group IV element, a chalcogen element, or a halogen element of the periodic table dramatically improves the stability of the hard carbon film and also improves the hardness of the film. These effects are obtained because the active double bond existing in the hard carbon film is reduced in the case of the group IV element and the chalcogen element, and in the case of the halogen element, 1) to hydrogen. The extraction reaction promotes decomposition of the source gas to reduce dangling bonds in the film, and 2) during the film formation process, the halogen element X extracts hydrogen in the C—H bond and replaces it with the C—X bond. And enters the film to increase the binding energy (the binding energy between C-H and C-X is C-
This is because the distance between X is larger). In order to use these elements as the constituent elements of the film, in addition to hydrocarbon gas and hydrogen as the source gas, the periodic table II is used as a dopant in the film.
In order to contain a Group I element, a Group IV element, a Group V element, an alkali metal element, an alkaline earth metal element, a nitrogen atom, an oxygen atom, a chalcogen element or a halogen element,
Compounds (or molecules) containing these elements or atoms (hereinafter,
These are sometimes referred to as "other compounds"). Examples of the compound containing a Group III element of the periodic table include B (OC 2 H 5 ) 3 , B 2 H 6 , BCl 3 , and B.
Br 3, BF 3, Al ( O-i-C 3 H 7) 3, (CH 3) 3
Al, (C 2 H 5) 3 Al, (i-C 4 H 9) 3 Al, AlC
l 3, Ga (O-i -C 3 H 7) 3, (CH 3) 3 Ga, (C
2 H 5) 3 Ga, GaCl 3, GaBr 3, (O-i-C 3 H
7 ) 3 In, (C 2 H 5 ) 3 In and the like. Examples of the compound containing a Group IV element of the periodic table include Si 2 H 6 and (C
2 H 5 ) 3 SiH, SiF 4 , SiH 2 Cl 2 , SiCl 4 ,
Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H
7 ) 4 , GeCl 4 , GeH 4 , Ge (OC 2 H 5 ) 4 , Ge
(C 2 H 5) 4, (CH 3) 4 Sn, (C 2 H 5) 4 Sn, Sn
Cl 4 etc. Examples of the compound containing a Group V element of the periodic table include PH 3 , PF 3 , PF 5 , PCl 2 F 3 and PC.
l 3 , PCl 2 F, PBr 3 , PO (OCH 3 ) 3 , P (C 2
H 5) 3, POCl 3, AsH 3, AsCl 3, AsBr 3,
AsF 3, AsF 5, AsCl 3 , SbH 3, SbF 3, S
bCl 3 , Sb (OC 2 H 5 ) 3 and the like. As the compound containing an alkali metal atom, for example LiO-i-C 3 H 7 ,
NaO-i-C 3 H 7 , there is KO-i-C 3 H 7 or the like. Examples of the compound containing an alkaline earth metal atom include Ca
(OC 2 H 5 ) 3 , Mg (OC 2 H 5 ) 2 , (C 2 H 5 ) 2 Mg
Etc. Examples of the compound containing a nitrogen atom include an inorganic compound such as nitrogen gas and ammonia, an organic compound having a functional group such as an amino group and a cyano group, and a heterocycle containing nitrogen. Examples of the compound containing an oxygen atom include oxygen gas, ozone, water (water vapor), hydrogen peroxide, carbon monoxide,
Inorganic compounds such as carbon dioxide, carbon suboxide, nitric oxide, nitrogen dioxide, dinitrogen trioxide, dinitrogen pentoxide, nitric oxide, hydroxyl group, aldehyde group, acyl group, ketone group, nitro group, nitroso group, sulfone Examples thereof include organic compounds having functional groups or bonds such as groups, ether bonds, ester bonds, peptide bonds, oxygen-containing heterocycles, and metal alkoxides. Examples of the compound containing a chalcogen element include H 2 S, (CH 3 ) (CH 2 ) 4 S (CH 2 ) 4 C
H 3 , CH 2 = CHCH 2 SCH 2 CH = CH 2 , C 2 H 5 S
C 2 H 5 , C 2 H 5 SCH 3 , thiophene, H 2 Se, (C 2
H 5 ) 2 Se, H 2 Te and the like. Examples of compounds containing a halogen element include fluorine, chlorine, bromine, iodine, hydrogen fluoride, carbon fluoride, chlorine fluoride, bromine fluoride, iodine fluoride, hydrogen chloride, bromine chloride, iodine chloride and hydrogen bromide. Inorganic compounds such as iodine bromide and hydrogen iodide, and organic compounds such as alkyl halides, aryl halides, styrene halides, polymethylene halides and haloforms are used.

【0014】本発明で使用する基板は、可視光に透明で
あればその材質に特に制限はなく、ガラス、石英あるい
はポリカーボネート、ポリエステル等のプラスチックが
あげられる。
The substrate used in the present invention is not particularly limited in its material as long as it is transparent to visible light, and examples thereof include glass, quartz, and plastics such as polycarbonate and polyester.

【0015】また、製膜法としても特に制限はなく、P
VDおよびCVDの両法が使用し得るが、結晶化が良好
なイオンビームスパッタ法が好ましい。その膜厚も特に
限定されないが、100Å〜1μmが適当である。
The film forming method is also not particularly limited, and P
Both VD and CVD methods can be used, but the ion beam sputtering method, which has good crystallization, is preferable. The film thickness is not particularly limited, but 100 Å to 1 μm is suitable.

【0016】[0016]

【実施例】【Example】

実施例1 石英基板上に、イオンビームスパッタ法を用いて次の条
件で約1500Å厚の透明薄膜を作製した。基板温度を
常温、100℃、250℃と変化させて3種類作製し
た。 ターゲット Au イオン化ガス Ar(50%)+CH4(5
0%) イオン銃 4mA×9KV イオン入射角 30度 ベースプレッシャー 6×10-6Torr ターゲット−基板間距離 15mm 作製した3種類の薄膜を(X線回折法、TEM法)で調
べたところ、常温作製膜には約25ÅのAu微粒子が、
100℃作製膜には約35Åの、250℃作製膜には約
48ÅのAu微粒子がアモルファスカーボン膜中に存在
することがわかった。また、常温で分光光度計を用いて
調べた光学吸収端の測定結果から高エネルギーシフト
(ブルーシフト)が認められ、その大きさは微粒子の平
均粒径の2乗に比例し、量子サイズ効果を示した。
Example 1 A transparent thin film having a thickness of about 1500 Å was formed on a quartz substrate by the ion beam sputtering method under the following conditions. Three types of substrates were manufactured by changing the substrate temperature to room temperature, 100 ° C., and 250 ° C. Target Au Ionized gas Ar (50%) + CH 4 (5
0%) Ion gun 4 mA x 9 KV Ion incidence angle 30 degrees Base pressure 6 x 10 -6 Torr Target-substrate distance 15 mm Three types of thin films prepared were examined by (X-ray diffraction method, TEM method) Approximately 25Å fine Au particles are
It was found that Au particles of about 35 Å existed in the film formed at 100 ° C and about 48 Å in the film formed at 250 ° C in the amorphous carbon film. In addition, a high energy shift (blue shift) was recognized from the measurement result of the optical absorption edge examined using a spectrophotometer at room temperature, and its size is proportional to the square of the average particle size of the fine particles, and the quantum size effect is Indicated.

【0017】比較例1 RFスパッタ法を用いて実施例1と同様に、約1580
Å厚の透明薄膜を作製した。 ターゲット SiO2の上にAuのチッ
プを置いた。 導入ガス Ar(99.999%) 導入ガス圧力 4×10-3Torr 石英基板温度 200℃〜400℃ ベースプレッシャー 8×10-7Torr ターゲット−基板間距離 50mm 高周波電力 200〜300W 上に示したように、ガラス基板温度と高周波電力を変化
させて、やはり3種類の膜とした。各試料の平均粒径
は、実施例1と同様に約25、35、48Åとした。X
線回折とTEM法から膜はSiOxのアモルファス膜で
Auの上記粒子が存在していた。室温で調べた光学吸収
端の測定結果から実施例1と同様の高エネルギーラフト
が認められたが、シフト量は、実施例1より小さかっ
た。
Comparative Example 1 Using RF sputtering, as in Example 1, approximately 1580.
Å A transparent thin film was prepared. An Au chip was placed on the target SiO 2 . Introduced gas Ar (99.999%) Introduced gas pressure 4 × 10 −3 Torr Quartz substrate temperature 200 ° C. to 400 ° C. Base pressure 8 × 10 −7 Torr Target-substrate distance 50 mm High frequency power 200 to 300 W As shown above Then, the glass substrate temperature and the high frequency power were changed to form three types of films. The average particle size of each sample was set to about 25, 35, 48 Å as in Example 1. X
From the line diffraction and the TEM method, the film was an amorphous film of SiOx and the above-mentioned particles of Au were present. From the measurement result of the optical absorption edge examined at room temperature, the same high energy raft as in Example 1 was recognized, but the shift amount was smaller than that in Example 1.

【0018】[0018]

【効果】本発明によれば、金属超微粒子のマトリックス
としてアモルファスカーボンを使用することにより、薄
膜中に高濃度で該微粒子を含有することができるので、
非線形性の大きな膜を容易に得ることができる。
[Effect] According to the present invention, by using amorphous carbon as a matrix of ultrafine metal particles, the fine particles can be contained in a high concentration in the thin film.
A film with large non-linearity can be easily obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属の微結晶の超微粒子が、アモルファ
スカーボンをマトリックスとする膜中に含有されている
ことを特徴とする超微粒子分散薄膜から成る非線形光学
材料。
1. A nonlinear optical material comprising an ultrafine particle-dispersed thin film, wherein ultrafine particles of metal microcrystals are contained in a film having amorphous carbon as a matrix.
JP8448192A 1992-03-06 1992-03-06 Nonlinear optical material Pending JPH05249514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8448192A JPH05249514A (en) 1992-03-06 1992-03-06 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8448192A JPH05249514A (en) 1992-03-06 1992-03-06 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH05249514A true JPH05249514A (en) 1993-09-28

Family

ID=13831840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8448192A Pending JPH05249514A (en) 1992-03-06 1992-03-06 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH05249514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0705232A4 (en) * 1991-08-21 1995-05-09 Matthew R Callstrom Glassy carbon containing metal particles
US5645809A (en) * 1991-08-21 1997-07-08 Ohio State University Method of producing glassy carbon containing metal particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0705232A4 (en) * 1991-08-21 1995-05-09 Matthew R Callstrom Glassy carbon containing metal particles
EP0705232A1 (en) * 1991-08-21 1996-04-10 CALLSTROM, Matthew R. Glassy carbon containing metal particles
US5645809A (en) * 1991-08-21 1997-07-08 Ohio State University Method of producing glassy carbon containing metal particles

Similar Documents

Publication Publication Date Title
Hammadi et al. Farbication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques
Rougier et al. Characterization of pulsed laser deposited WO3 thin films for electrochromic devices
US4483725A (en) Reactive vapor deposition of multiconstituent material
Cho et al. Structural transition of crystalline Y2O3 film on Si (111) with substrate temperature
KR20020048372A (en) Method of forming indum tin oxide thin film using magnetron negative ion sputter source
JPH055871A (en) Thin film laminated device with substrate and production thereof
El-Hagary et al. Microstructural and optoelectronic properties of diluted magnetic semiconducting Cd1− xFexS nanocrystalline films
Louloudakis et al. Novel spark method for deposition of metal oxide thin films: Deposition of hexagonal tungsten oxide
El‐Hagary et al. Influences of Mn doping on the microstructural, semiconducting, and optoelectronic properties of HgO nanostructure films
Rathore et al. Role of oxygen pressure on the structural and photoluminescence properties of pulsed laser deposited GeO2 thin films
Rebib et al. SiOxNy thin films deposited by reactive sputtering: Process study and structural characterisation
Chen et al. Stable p-type nitrogen-doped zinc oxide films prepared by magnetron sputtering
Nagabharana et al. Effect of thermal annealing on structural and electrical properties of tio2 thin films
Azens et al. Electrochromism of fluorinated and electron‐bombarded tungsten oxide films
Sarma et al. Role of ion energy on growth and optical dispersion of nanocrystalline TiO2 films prepared by magnetron sputtering with ion assistance at the substrate
Boltz Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides
JPH05249514A (en) Nonlinear optical material
Zhang et al. Indium‐doped zinc oxide films prepared by simultaneous rf and dc magnetron sputtering
Priya et al. Structural, optical, and electrical properties of V2O5 thin films: Nitrogen implantation and the role of different substrates
Farhan et al. Impact of substrate temperatures on the properties of V2O5 thin films deposited by pulsed laser deposition
Chawla et al. Sputter Deposited Mn‐doped ZnO Thin Film for Resistive Memory Applications
Liang et al. Correlation between composition, microstructure, and emission properties in Nd-doped Si-rich Si oxynitride films: investigation into the nature of the sensitizer
Cho et al. Microstructure of indium oxide films in oxygen ion-assisted deposition
JPH04281433A (en) Superfine particle dispersion thin film
Jin et al. Effect of low energy ion bombardment on structure and photoluminescence characterization of Al-doped ZnO thin films