JPH08220362A - Dispersion shift optical fiber - Google Patents

Dispersion shift optical fiber

Info

Publication number
JPH08220362A
JPH08220362A JP7023191A JP2319195A JPH08220362A JP H08220362 A JPH08220362 A JP H08220362A JP 7023191 A JP7023191 A JP 7023191A JP 2319195 A JP2319195 A JP 2319195A JP H08220362 A JPH08220362 A JP H08220362A
Authority
JP
Japan
Prior art keywords
core
diameter
small
optical fiber
mfd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7023191A
Other languages
Japanese (ja)
Inventor
Minoru Sawada
稔 澤田
Tomio Azebiru
富夫 畔蒜
Shigetoshi Yamada
成敏 山田
Kuniharu Himeno
邦治 姫野
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7023191A priority Critical patent/JPH08220362A/en
Publication of JPH08220362A publication Critical patent/JPH08220362A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE: To obtain a dispersion shift optical fiber which is large in a mode field diameter(MFD) and has a small nonlinear effect by adopting the constitution having a core diameter of a small diameter which is small in the value among the core diameters at which wavelength dispersion is made zero at a specific wavelength. CONSTITUTION: The outer side of a central core part 1 is provided with a staircase core part 2 and a core 3 is composed of such central core part 1 and the staircase core part 2. The outer side of the core 3 is provided with a clad 4. The core diameter (b) of the small diameter having the small value among the core diameters of the core 3 which has a staircase type refractive index distribution and at which the wavelength dispersion is made zero at the wavelength 1.55μm is selected. The core is otherwise so formed that the correction factor (k) in the relation Aeff=k.π/4.(MFD)<2> between the effective sectional area (Aeff) and MFD of the fiber attains >=0.95. The small core diameter among these core diameters (b) is adopted in such a manner, by which the correction factor (k) and the MFD are increased and further, (k) is specified to >=0.95, by which Aeff is increased and the nonlinear effect is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、階段型屈折率分布を
有し、波長1.55μmでの波長分散がほぼゼロである
分散シフト光ファイバ(以下、DSFと略記する。)に
関し、その非線形効果を低減したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion-shifted optical fiber (hereinafter abbreviated as DSF) having a stepwise refractive index distribution and having almost zero chromatic dispersion at a wavelength of 1.55 μm. The effect is reduced.

【0002】[0002]

【従来の技術】DSFは、石英系光ファイバの損失が最
小である波長1.55μm帯での波長分散値がゼロもし
くはほぼゼロである光ファイバであって、その具体的な
ものとしては、図1に示すような階段型の屈折率分布を
有するものが一般的である。図1において、符号1は中
心コア部であり、中心コア部1の外側には階段コア部2
が設けられ、これら中心コア部1と階段コア部2とでコ
ア3が構成され、コア3の外側にはクラッド4が設けら
れている。また、図1において、aは中心コア部1の直
径を、bは階段コア部2の外径を示し、Δ1 は中心コア
部1とクラッド4との比屈折率差、Δ2 は階段コア部2
とクラッド4との比屈折率差を示している。
2. Description of the Related Art A DSF is an optical fiber having a chromatic dispersion value of zero or almost zero in a wavelength band of 1.55 μm where the loss of a silica optical fiber is minimum. The one having a stepwise refractive index distribution as shown in 1 is general. In FIG. 1, reference numeral 1 is a central core portion, and a staircase core portion 2 is provided outside the central core portion 1.
The core 3 is composed of the central core portion 1 and the staircase core portion 2, and the clad 4 is provided outside the core 3. Further, in FIG. 1, a indicates the diameter of the central core portion 1, b indicates the outer diameter of the staircase core portion 2, Δ 1 is the relative refractive index difference between the central core portion 1 and the cladding 4, and Δ 2 is the staircase core. Part 2
And the relative refractive index difference between the clad 4 and the clad 4.

【0003】この階段型屈折率分布を有するDSFは、
他のタイプのDSF、例えばステップ型、三角型などの
屈折率分布を有するものに比べて曲げ損失が小さく、モ
ードフィールド径(以下、MFDと略記する。)が若干
大きいと言う特長を有するものではあるが、通常の1.
3μm帯用シングルモード光ファイバに比べればMFD
は小さく、約8μm弱となっている。
The DSF having this stepwise refractive index distribution is
Compared to other types of DSFs, such as step type and triangular type, which have a refractive index distribution, the bending loss is small and the mode field diameter (hereinafter abbreviated as MFD) is a little large. There is a normal 1.
MFD compared to single mode optical fiber for 3μm band
Is small, about 8 μm.

【0004】光ファイバのMFDが小さい場合には、接
続損失の点で不利となるばかりでなく、光ファイバ内に
伝搬される光のパワー密度が大きな場合、例えば光増幅
器などにあっては、非線形効果が大きくなり、伝送特性
が劣化するなどの不都合が生じる。
When the MFD of the optical fiber is small, it is not only disadvantageous in terms of connection loss, but also when the power density of the light propagated in the optical fiber is large, for example, in the case of an optical amplifier, it is nonlinear. The effect is increased, and inconveniences such as deterioration of transmission characteristics occur.

【0005】[0005]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、MFDが大きく、非線形効果が小さいDS
Fを得ることにある。
Therefore, an object of the present invention is to provide a DS with a large MFD and a small nonlinear effect.
To get F.

【0006】[0006]

【課題を解決するための手段】かかる課題は、階段型屈
折率分布を有し、波長1.55μmで波長分散がゼロと
なるコア径のうち、その値が小さい細径のコア径を選択
することあるいは、ファイバの実効断面積とMFDとの
関係式における補正係数(k)を0.95以上とするこ
とにより解決できる。
The problem is to select a small core diameter having a small value among core diameters having a stepwise refractive index distribution and having zero wavelength dispersion at a wavelength of 1.55 μm. Alternatively, it can be solved by setting the correction coefficient (k) in the relational expression between the effective area of the fiber and the MFD to 0.95 or more.

【0007】以下、本発明を詳しく説明する。一般に、
光ファイバにおける非線形効果の大きさは、n2/Aeff
で表される。ここで、n2 は光ファイバの非線形屈折
率、Aeff は光ファイバの実効断面積である。したがっ
て、非線形効果の大きさは、Aeff に反比例することに
なる。一方、DSFにおけるAeff とMFDとの間に
は、下記関係式 Aeff=k・π/4・(MFD)2 で表される関係があることが知られ、補正係数kの値が
ほぼ0.944で一定であると報告されている(Y.NAMI
HIRA, ELECTRONICS LETTERS. 第30巻,第3号,第2
62頁,1994年2月)。
The present invention will be described in detail below. In general,
The magnitude of the nonlinear effect in an optical fiber is n 2 / Aeff
It is represented by. Here, n 2 is the nonlinear refractive index of the optical fiber, and Aeff is the effective area of the optical fiber. Therefore, the magnitude of the nonlinear effect is inversely proportional to Aeff. On the other hand, it is known that there is a relationship represented by the following relational expression Aeff = k · π / 4 · (MFD) 2 between Aeff and MFD in the DSF, and the value of the correction coefficient k is approximately 0.944. Has been reported to be constant (Y.NAMI
HIRA, ELECTRONICS LETTERS. Volume 30, Issue 3, Issue 2
62, February 1994).

【0008】上記関係式から、DSFのAeff は単純に
MFDのみによって定まり、MFDが大きくなれば、A
eff が大きくなり、非線形効果が小さくなることがわか
る。ところが上述のように階段型屈折率分布を有するD
SFでは、MDFは約8μmであるから、Aeff はほぼ
一定となって非線形効果を低減し得ないことになる。そ
こで、本発明者は、上記関係式における補正係数kを大
きくできれば、Aeff が大きくなって非線形効果を低減
しうることになるため、これまで一定と考えられていた
補正係数kについて着目し、補正係数kを大きくできな
いか検討を行った。
From the above relational expression, Aeff of DSF is simply determined only by MFD, and if MFD becomes large, Aeff
It can be seen that the eff increases and the nonlinear effect decreases. However, as described above, D having a stepwise refractive index profile
In SF, since MDF is about 8 μm, Aeff is almost constant and the nonlinear effect cannot be reduced. Therefore, if the correction coefficient k in the above relational expression can be increased, the Aeff can be increased and the non-linear effect can be reduced. Therefore, the correction coefficient k, which has been considered to be constant until now, is corrected. It was examined whether the coefficient k could be increased.

【0009】図1に示す階段型屈折率分布を有するDS
Fについて、その屈折率分布を相似形に保ったまま、コ
ア3の外径(以下、コア径と言う)bを変化させると、
波長1.55μmで波長分散値がゼロになるコア径bは
最大4つ存在することが知られている(西出他,信学技
報 OQE 87.4,1987年)。また、屈折率分布
におけるb/a,Δ1 ,Δ2 などのパラメータを変化さ
せることにより、波長分散値がゼロになるコア径は2つ
になることも知られており、これらパラメータの実用的
な範囲では、コア径が2つ存在する場合が多く、従来は
曲げ損失を小さくできる大きいコア径が専ら採用されて
いる。
The DS having the stepwise refractive index distribution shown in FIG.
With respect to F, when the outer diameter b of the core 3 (hereinafter referred to as the core diameter) is changed while keeping the refractive index distribution in a similar shape,
It is known that there are up to four core diameters b at which the wavelength dispersion value becomes zero at a wavelength of 1.55 μm (Nishide et al., IEICE Tech. OQE 87.4, 1987). It is also known that changing the parameters such as b / a, Δ 1 and Δ 2 in the refractive index distribution results in two core diameters at which the chromatic dispersion value becomes zero. In such a range, there are often two core diameters, and conventionally, a large core diameter that can reduce bending loss is exclusively used.

【0010】本発明では、従来のものとは逆に小さいコ
ア径を採用する。図2は、図1に示す階段型屈折率分布
を有するDSFについて、b/a,Δ1,Δ2 を各々変
化させて、補正係数kとMFDを算出したもので、b/
a=4.5,Δ1 =0.96%,Δ2 =0.15%の場
合のものである。本グラフ中の曲線における×印および
●印の点は、このパラメータの値における波長1.55
μmでの波長分散がゼロとなるコア径の点を示し、×印
がコア径が小さいもの(細径解)を、●印はコア径が大
きいもの(太径解)を表している。なお、図2のグラフ
のMFDの範囲ではコア径bが小さくなると、MFDが
大きくなる領域にある。
In the present invention, a core diameter smaller than the conventional one is adopted. FIG. 2 shows the correction coefficient k and the MFD of the DSF having the stepwise refractive index distribution shown in FIG. 1, which are calculated by changing b / a, Δ 1 and Δ 2.
This is for a = 4.5, Δ 1 = 0.96%, and Δ 2 = 0.15%. The points marked with x and ● on the curve in this graph are the wavelength of 1.55 at the value of this parameter.
The point of the core diameter at which the wavelength dispersion in μm becomes zero is shown, and the x mark shows a small core diameter (small diameter solution), and the ● mark shows a large core diameter (large diameter solution). It should be noted that in the MFD range of the graph of FIG. 2, the MFD increases as the core diameter b decreases.

【0011】図2のグラフより、波長1.55μmで波
長分散がゼロになるコア径bとして、大きなコア径を採
用した場合には補正係数kは0.945であり、MFD
は6.6μmとなり、小さなコア径を採用した場合には
補正係数kは0.967で、MFDは8.5μmとな
る。この結果から明らかなように、コア径の小さいもの
を採用することで、補正係数kが0.944よりも大き
くなり、MFDも大きくなる。したがって、細径解を採
用することで、補正係数kおよびMFDが大きくなり、
Aeff が大きくなって非線形効果が小さくなることがわ
かる。
From the graph of FIG. 2, the correction coefficient k is 0.945 when a large core diameter is adopted as the core diameter b at which the wavelength dispersion becomes zero at the wavelength of 1.55 μm.
Is 6.6 μm, and when a small core diameter is adopted, the correction coefficient k is 0.967 and the MFD is 8.5 μm. As is clear from this result, by adopting a core having a small core diameter, the correction coefficient k becomes larger than 0.944 and the MFD also becomes large. Therefore, by adopting the small diameter solution, the correction coefficient k and the MFD are increased,
It can be seen that Aeff increases and the nonlinear effect decreases.

【0012】図3のグラフは、図1の階段型屈折率分布
におけるb/a,Δ1 ,Δ2 を種々変化させ、波長1.
55μmで波長分散値がゼロとなるコア径bの多数の組
み合わせ(細径解と太径解との組み合わせ)について、
図2と同様にその時の補正係数とMFDとを算出し、プ
ロットしたもので、×印はコア径が小さいもの、●印は
コア径が大きいものを表している。このグラフから明ら
かなように、1.55μmで波長分散値がゼロであるD
SFについて、そのコア径bに太径のものを採用した場
合には、補正係数kは0.941から0.948の狭い
範囲に集中して分布することがわかり、先の報告はこの
範囲をバラツキと解したものと思われる。
The graph of FIG. 3 shows that when b / a, Δ 1 and Δ 2 in the stepwise refractive index distribution of FIG.
For many combinations of core diameters b at which the chromatic dispersion value becomes zero at 55 μm (combinations of small diameter solution and large diameter solution),
Similar to FIG. 2, the correction coefficient and the MFD at that time are calculated and plotted, where x indicates a small core diameter, and ● indicates a large core diameter. As is clear from this graph, D at which the chromatic dispersion value is zero at 1.55 μm
As for SF, when a large core diameter b is adopted, it is found that the correction coefficient k is concentrated and distributed in a narrow range of 0.941 to 0.948. It seems that it was understood as variation.

【0013】一方、本発明のようにコア径bに細径のも
のを採用した場合には、補正係数kは0.945から
0.97までの広い範囲に分布しており、MFDが大き
くなるにつれて補正係数kが急激に大きくなることがわ
かり、MFDの値も7.8μmから8.6μmまでその
値の大きな範囲の方に分布することがわかる。
On the other hand, when a small core diameter b is adopted as in the present invention, the correction coefficient k is distributed over a wide range from 0.945 to 0.97 and the MFD becomes large. It can be seen that the correction coefficient k rapidly increases as the MFD value increases, and the MFD values are distributed in the larger range of 7.8 μm to 8.6 μm.

【0014】このように、波長1.55μmで波長分散
がゼロとなるコア径bのうち、その小さいコア径を採用
することにより、補正係数kおよびMFDが大きくな
り、さらに補正係数kを0.95以上とすることで、A
eff が大きくなって非線形効果を大きく低減することが
できる。具体的に好適な値として補正係数kは0.95
〜0.97の範囲であり、MFDは8.0〜8.5μm
の範囲である。
As described above, by adopting the smaller core diameter b among the core diameters b at which the wavelength dispersion is zero at the wavelength of 1.55 μm, the correction coefficient k and MFD are increased, and the correction coefficient k is set to 0. By setting 95 or more, A
The non-linear effect can be greatly reduced by increasing eff. As a concretely preferable value, the correction coefficient k is 0.95.
To 0.97 and the MFD is 8.0 to 8.5 μm.
Range.

【0015】なお、小さいコア径を採用することによ
り、曲げ損失の増大が懸念されるが、他のパラメータを
適宜変更すること、例えばΔ1 を大きくすることなどに
より、設計の自由度は若干低下するものの実用上問題の
生じない程度に抑えることができる。
Although there is a concern that the bending loss may be increased by adopting a small core diameter, the degree of freedom in design is slightly reduced by appropriately changing other parameters, for example, increasing Δ 1. However, it can be suppressed to such an extent that there is no practical problem.

【0016】[0016]

【発明の効果】以上説明したように、本発明のDSFに
あっては、そのMFDが大きくなって、接続損失が少な
くなり、しかも実効断面積Aeff も大きくなって、非線
形効果を低く抑えることができる。このため、光増幅器
などのパワー密度の高い用途に好適に供することができ
る。
As described above, in the DSF of the present invention, the MFD becomes large, the connection loss becomes small, and the effective area Aeff becomes large, so that the nonlinear effect can be suppressed to a low level. it can. Therefore, it can be suitably used for applications with high power density such as optical amplifiers.

【図面の簡単な説明】[Brief description of drawings]

【図1】 階段型屈折率分布を示す図である。FIG. 1 is a diagram showing a stepwise refractive index distribution.

【図2】 図1に示す屈折率分布を持つDSFについて
の補正係数kとMFDとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the correction coefficient k and MFD for a DSF having the refractive index distribution shown in FIG.

【図3】 波長1.55μmで波長分散値がゼロである
コア径の多数の組み合わせについての補正係数kとMF
Dとの関係を示すグラフである。
FIG. 3 is a correction coefficient k and MF for many combinations of core diameters having a wavelength dispersion value of zero at a wavelength of 1.55 μm.
It is a graph which shows the relationship with D.

【符号の説明】[Explanation of symbols]

b…コア径 b ... Core diameter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 姫野 邦治 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内 (72)発明者 山内 良三 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniharu Himeno 1440 Rokuzaki, Sakura City, Chiba Prefecture Fujikura Co., Ltd.Sakura Plant (72) Ryozo Yamauchi 1440, Rokuzaki, Sakura City, Chiba Prefecture Fujikura Sakura Plant, Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長1.55μmでの波長分散がほぼゼ
ロであり、階段型屈折率分布を有する分散シフト光ファ
イバであって、波長1.55μmで波長分散がゼロとな
るコア径のうち、その値が小さい細径のコア径を有する
分散シフト光ファイバ。
1. A dispersion-shifted optical fiber having a stepwise refractive index distribution, which has a chromatic dispersion of almost zero at a wavelength of 1.55 μm, and has a chromatic dispersion of zero at a wavelength of 1.55 μm. A dispersion-shifted optical fiber having a small core diameter with a small value.
【請求項2】 波長1.55μmでの波長分散がほぼゼ
ロであり、階段型屈折率分布を有する分散シフト光ファ
イバであって、この光ファイバの実効断面積とモードフ
ィールド径との関係式における補正係数(k)が0.9
5以上である分散シフト光ファイバ。
2. A dispersion-shifted optical fiber having a staircase type refractive index distribution, which has a wavelength dispersion of almost zero at a wavelength of 1.55 μm, and has a relational expression between an effective cross-sectional area and a mode field diameter of the optical fiber. Correction coefficient (k) is 0.9
A dispersion-shifted optical fiber of 5 or more.
【請求項3】 波長1.55μmでの波長分散がほぼゼ
ロであり、階段型屈折率分布を有する分散シフト光ファ
イバであって、波長1.55μmで波長分散がゼロとな
るコア径のうちその値が小さい細径のコア径を有し、か
つこの光ファイバの実効断面積とモードフィールド径と
の関係式における補正係数(k)が0.95以上である
分散シフト光ファイバ。
3. A dispersion-shifted optical fiber having a chromatic dispersion at a wavelength of 1.55 μm which is substantially zero and having a stepwise refractive index distribution, wherein a core diameter of which the chromatic dispersion is zero at a wavelength of 1.55 μm A dispersion-shifted optical fiber having a small core diameter with a small value and having a correction coefficient (k) in the relational expression between the effective cross-sectional area of this optical fiber and the mode field diameter of 0.95 or more.
JP7023191A 1995-02-10 1995-02-10 Dispersion shift optical fiber Pending JPH08220362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023191A JPH08220362A (en) 1995-02-10 1995-02-10 Dispersion shift optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023191A JPH08220362A (en) 1995-02-10 1995-02-10 Dispersion shift optical fiber

Publications (1)

Publication Number Publication Date
JPH08220362A true JPH08220362A (en) 1996-08-30

Family

ID=12103778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023191A Pending JPH08220362A (en) 1995-02-10 1995-02-10 Dispersion shift optical fiber

Country Status (1)

Country Link
JP (1) JPH08220362A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091873A (en) * 1997-10-14 2000-07-18 Fujikura Ltd. Dispersion shifted optical fiber
US6181858B1 (en) 1997-02-12 2001-01-30 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
WO2001007943A1 (en) * 1999-07-27 2001-02-01 Fujikura Ltd. Dispersion shift optical fiber
US6546177B1 (en) 1999-09-09 2003-04-08 Fujikura Ltd. Dispersion shifted optical fiber
US6785453B1 (en) 1999-07-12 2004-08-31 Fujikura Ltd. Dispersion shifted optical fiber
US6895140B2 (en) 2001-10-29 2005-05-17 Fujikura, Ltd. Single-mode optical fiber and composite optical line

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181858B1 (en) 1997-02-12 2001-01-30 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
US6091873A (en) * 1997-10-14 2000-07-18 Fujikura Ltd. Dispersion shifted optical fiber
US6785453B1 (en) 1999-07-12 2004-08-31 Fujikura Ltd. Dispersion shifted optical fiber
WO2001007943A1 (en) * 1999-07-27 2001-02-01 Fujikura Ltd. Dispersion shift optical fiber
US6694079B1 (en) 1999-07-27 2004-02-17 Fujikura Ltd. Disperson-shifted optical fiber employing dual shape core profile
US6546177B1 (en) 1999-09-09 2003-04-08 Fujikura Ltd. Dispersion shifted optical fiber
US6895140B2 (en) 2001-10-29 2005-05-17 Fujikura, Ltd. Single-mode optical fiber and composite optical line

Similar Documents

Publication Publication Date Title
JP3226218B2 (en) Dispersion shifted single mode optical fiber
KR100419418B1 (en) Dispersion-controlled fiber
JP3219200B2 (en) Large effective area single mode light guide
JP3830636B2 (en) Dispersion-shifted optical fiber
JP3409120B2 (en) Single mode optical waveguide fiber
US6424775B1 (en) Single mode dispersion-shifted optical fiber comprising an external refractive index ring
JPH07261048A (en) Dispersion compensating fiber
JPH09171117A (en) Single mode optical waveguide fiber
JP2002525671A (en) Optical fiber with optimized ratio of effective area to dispersion gradient for WDM optical fiber transmission systems
US6516125B1 (en) Dispersion shifted optical fiber having triple clad
WO1999030194A1 (en) Dispersion-shifted optical fiber
US6510268B1 (en) Optical fiber for compensating the chromatic dispersion of an optical fiber having positive chromatic dispersion
JP2001166171A (en) Optical fiber
JP2002503824A (en) Single mode optical fiber
JPH08220362A (en) Dispersion shift optical fiber
JP4192424B2 (en) Optical fiber
JP2000206355A (en) Optical fiber with low wave-length dispersion gradient
JP2003131059A (en) Single mode optical fiber and composite optical line
WO2000052507A1 (en) Optical fiber
JP3408713B2 (en) Dispersion shifted optical fiber
JPH1062640A (en) Dispersion shifted optical fiber
JP3808247B2 (en) Dispersion-shifted optical fiber
JP4413456B2 (en) Negative dispersion optical fiber and optical transmission line using the negative dispersion optical fiber
JP2000347056A5 (en)
JP3399092B2 (en) Single mode optical fiber