JPH08220052A - Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument - Google Patents

Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument

Info

Publication number
JPH08220052A
JPH08220052A JP7030332A JP3033295A JPH08220052A JP H08220052 A JPH08220052 A JP H08220052A JP 7030332 A JP7030332 A JP 7030332A JP 3033295 A JP3033295 A JP 3033295A JP H08220052 A JPH08220052 A JP H08220052A
Authority
JP
Japan
Prior art keywords
ion concentration
sample
ion
measured
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7030332A
Other languages
Japanese (ja)
Inventor
Masatake Tomimura
真武 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7030332A priority Critical patent/JPH08220052A/en
Publication of JPH08220052A publication Critical patent/JPH08220052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the ion concentration measuring accuracy of a method and instrument for measuring ion concentration even when the ion concentration of a serum sample is abnormally high or abnormally low. CONSTITUTION: In an ion concentration measuring method in which the ion concentration of a sample to be measured composed of an electrolytic solution by using ion selective electrodes 5a, 5b, and 5c, the relation between the electromotive force and ion concentration of a calibrator solution having a known ion concentration is calculated by measuring the electromotive force of the solution and the ion concentration of the sample is corrected by using the correcting value of one of three samples for correction respectively having a known normal ion concentration value, high ion concentration value, and low ion concentration value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、イオン選択性電極を
用いて被測定試料中のイオン濃度を測定するイオン濃度
測定方法および同測定装置ならびにこの装置を用いた自
動化学分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion concentration measuring method and apparatus for measuring the ion concentration in a sample to be measured using an ion selective electrode, and an automatic chemical analyzer using this apparatus.

【0002】[0002]

【従来の技術】従来から、人体の血液,尿などの電解質
溶液中におけるイオン濃度を測定する際には、図3の断
面図および図4の斜視図に示すようなフロースルー型の
マルチイオン電極を用いた装置が用いられている。この
マルチイオン電極は、一対の絶縁基体1a,1b相互間
に、一つの比較電極3と三つのイオン選択性電極5a,
5b,5cとが、絶縁スペーサ7a,7b,7cを間に
挟んで配置されている。
2. Description of the Related Art Conventionally, when measuring an ion concentration in an electrolyte solution such as blood or urine of a human body, a flow-through type multi-ion electrode as shown in a sectional view of FIG. 3 and a perspective view of FIG. A device using is used. This multi-ion electrode includes one reference electrode 3 and three ion-selective electrodes 5a, 5a, between the pair of insulating substrates 1a, 1b.
5b and 5c are arranged with the insulating spacers 7a, 7b and 7c interposed therebetween.

【0003】イオン選択性電極5a,5b,5cは、電
極ボディ9a,9b,9c内に埋め込まれたリング状の
導電性端子板11a,11b,11cの外周に、外部に
引き出されるリード線13a,13b,13cが接続さ
れ、電極ボディ9a,9b,9cの内周側には、前記導
電性端子板11a,11b,11cの内周側が接続され
るイオン感応層15a,15b,15cが形成されてい
る。比較電極3についてもイオン選択性電極5と同様
に、電極ボディ17,導電性端子板19,リード線21
およびイオン感応層23をそれぞれ備えている。
The ion-selective electrodes 5a, 5b, 5c are provided with lead wires 13a, which are led out to the outside, on the outer circumferences of ring-shaped conductive terminal plates 11a, 11b, 11c embedded in the electrode bodies 9a, 9b, 9c. 13b, 13c are connected, and ion sensitive layers 15a, 15b, 15c are formed on the inner peripheral sides of the electrode bodies 9a, 9b, 9c to which the inner peripheral sides of the conductive terminal plates 11a, 11b, 11c are connected. There is. Similarly to the ion-selective electrode 5, the reference electrode 3 has an electrode body 17, a conductive terminal plate 19, and a lead wire 21.
And an ion sensitive layer 23, respectively.

【0004】上記一対の絶縁基体1a,1b、絶縁スペ
ーサ7a,7b,7cおよびイオン感応層15a,15
b,15c,23の中心には、いずれも同径の貫通孔が
相互に連通して形成され、これら貫通孔が、電解質溶液
が供給される流通路25となる。
The pair of insulating substrates 1a, 1b, insulating spacers 7a, 7b, 7c and ion-sensitive layers 15a, 15
At the centers of b, 15c, and 23, through holes having the same diameter are formed so as to communicate with each other, and these through holes serve as a flow passage 25 to which the electrolyte solution is supplied.

【0005】三つのイオン選択性電極5a,5b,5c
は、電解質溶液中の特定イオン、例えばナトリウムイオ
ン(Na+ ),カリウムイオン(K+ ),塩素イオン
(Cl- )にそれぞれ感応するもので、各イオン感応層
15a,15b,15cの感応物質としては、ナトリウ
ムイオン(Na+ )およびカリウムイオン(K+ )で
は、クラウンエーテル誘導体およびバリノマイシンを含
む高分子膜が知られ、塩素イオン(Cl- )では、銀
(Ag)電極上に塩化銀(AgCl)膜を電界析出させ
たものが知られている。
Three ion-selective electrodes 5a, 5b, 5c
Are sensitive to specific ions in the electrolyte solution, such as sodium ions (Na + ), potassium ions (K + ), and chloride ions (Cl ), respectively, and serve as sensitive materials for the ion sensitive layers 15a, 15b, and 15c. For sodium ion (Na + ) and potassium ion (K + ), a polymer film containing a crown ether derivative and valinomycin is known, and for chloride ion (Cl ), silver chloride (AgCl) on a silver (Ag) electrode is known. ) It is known that the film is deposited by electric field.

【0006】このような構成のマルチイオン電極の流通
路25内に被測定試料である血清試料を供給すると、各
イオン選択性電極5a,5b,5cと比較電極3との間
に、各イオン独自の起電力が生じる。したがって、この
起電力を検出することにより、各種のイオン濃度を測定
することが可能となる。
When a serum sample, which is a sample to be measured, is supplied into the flow path 25 of the multi-ion electrode having such a configuration, each ion is independently provided between each ion-selective electrode 5a, 5b, 5c and the reference electrode 3. Electromotive force is generated. Therefore, it becomes possible to measure various ion concentrations by detecting this electromotive force.

【0007】起電力からイオン濃度への換算は、あらか
じめ各種イオン濃度既知のキャリブレータと称する溶液
の起電力を測定して作成した、起電力とイオン濃度との
相関関係を示す検量線に基づいて行われる。キャリブレ
ータは、高濃度と低濃度との2種類が用いられる。
The conversion of the electromotive force into the ion concentration is performed based on a calibration curve showing the correlation between the electromotive force and the ion concentration, which is created by measuring the electromotive force of a solution called a calibrator with various known ion concentrations. Be seen. Two types of calibrators, high density and low density, are used.

【0008】上記したような検量線を用いて一つの試料
測定が終了すると、流通路25内には正常値血清試料と
同程度のイオン濃度既知の校正液が供給され、各種イオ
ン電極の電位(電圧)校正が行われる。ここで、キャリ
ブレータおよび校正液の各成分は、製造コストなどの問
題から様々な物質が混入している血清試料と同一ではな
いため、これらの溶液を用いてイオン濃度の換算を行っ
たときに、データの乖離(正確度のずれ)が生じること
がある。これは、イオン電極が血清試料中のある物質に
妨害されて応答してしまうためと考えられている。
When the measurement of one sample is completed using the calibration curve as described above, a calibration solution having a known ion concentration similar to that of the normal value serum sample is supplied into the flow passage 25, and the potentials of various ion electrodes ( Voltage) calibration is performed. Here, since each component of the calibrator and the calibration solution is not the same as the serum sample in which various substances are mixed due to problems such as manufacturing cost, when the ion concentration is converted using these solutions, Data divergence (deviation in accuracy) may occur. It is considered that this is because the ion electrode responds by being disturbed by a substance in the serum sample.

【0009】そこで、この影響を排除するために、さら
に、正常値血清試料とほぼ同程度の既知イオン濃度の補
正用試料である補正用コントロール血清の濃度測定を行
い、この測定濃度と既知濃度との差を補正値として、被
測定試料のイオン濃度に対するデータ補正が行われてい
る。
Therefore, in order to eliminate this effect, the concentration of a control serum for correction, which is a correction sample having a known ion concentration of about the same level as that of a normal value serum sample, is further measured. The difference is corrected as data to correct the ion concentration of the sample to be measured.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記し
たように正常値血清試料と同程度のイオン濃度を備えた
補正用試料を用いて補正を行う場合には、正常値濃度付
近の血清試料については特に問題はないものの、異常高
値または異常低値の血清試料を測定する際の補正が充分
ではなく、補正後の測定データは、異常高値の試料のと
きには高めの値を、異常低値の試料のときには低めの値
を、それぞれ示すことが経験的にしばしば見られ、測定
精度に問題があった。そこで、この発明は、イオン濃度
が異常高値または異常低値の被測定試料であっても、イ
オン濃度の測定精度を向上させることを目的としてい
る。
However, when the correction is performed using the correction sample having the same ion concentration as that of the normal value serum sample as described above, the serum sample in the vicinity of the normal value concentration is Although there are no particular problems, the correction when measuring serum samples with abnormally high or abnormally low values is not sufficient, and the corrected measurement data shows higher values for samples with abnormally high values and those for samples with abnormally low values. Occasionally, it was empirically seen that lower values were shown, and there was a problem in measurement accuracy. Therefore, it is an object of the present invention to improve the measurement accuracy of the ion concentration even when the sample to be measured has an abnormally high or extremely low ion concentration.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、被測定試料の接触によりイオン濃度に
対応する起電力を発生するイオン選択性電極を用いて前
記被測定試料中のイオン濃度を測定するイオン濃度測定
方法において、イオン濃度が既知となっている溶液の起
電力を前記イオン選択性電極により求めてこの起電力と
イオン濃度との相関関係をあらかじめ算出し、この算出
した相関関係を基に、前記イオン選択性電極によって測
定した被測定試料の起電力から被測定試料中のイオン濃
度を求め、この求めたイオン濃度を補正するための複数
の異なる既知イオン濃度の補正用試料の起電力を前記イ
オン選択性電極によりそれぞれ測定し、この測定した各
起電力から前記算出した相関関係に基づいてそれぞれの
イオン濃度を算出し、この算出した補正用試料の各イオ
ン濃度と各既知濃度との差をそれぞれ算出してこれらを
補正値とし、この各補正値のいずれかを用いて前記求め
た被測定試料中のイオン濃度を補正するイオン濃度測定
方法としてある。
In order to achieve the above-mentioned object, the present invention uses an ion-selective electrode which generates an electromotive force corresponding to an ion concentration when a sample to be measured is brought into contact with the sample to be measured. In the ion concentration measuring method for measuring the ion concentration, the electromotive force of a solution having a known ion concentration is obtained by the ion-selective electrode, and the correlation between the electromotive force and the ion concentration is calculated in advance, and this is calculated. Based on the correlation, the ion concentration in the sample to be measured is obtained from the electromotive force of the sample to be measured measured by the ion selective electrode, and a plurality of different known ion concentrations for correcting the obtained ion concentration are corrected. The electromotive force of the sample is measured by the ion-selective electrode, and the ion concentration of each is calculated from the measured electromotive force based on the calculated correlation. The difference between each of the calculated ion concentrations of the correction sample and each known concentration is calculated as a correction value, and the ion concentration in the measured sample obtained using any one of the correction values is calculated. This is a method for measuring the ion concentration to be corrected.

【0012】[0012]

【作用】このようなイオン濃度測定方法によれば、起電
力とイオン濃度との関係に基づき求めた被測定試料中の
イオン濃度に応じ、複数の異なる既知イオン濃度の補正
用試料による各補正値のいずれかを用いて被測定試料中
のイオン濃度データを補正することで、イオン濃度が異
常高値あるいは異常低値であっても、補正後の測定デー
タが正確なものとなる。
According to such an ion concentration measuring method, according to the ion concentration in the sample to be measured obtained based on the relationship between the electromotive force and the ion concentration, each correction value by the correction sample having a plurality of different known ion concentrations is obtained. By correcting the ion concentration data in the sample to be measured using any of the above, the corrected measurement data becomes accurate even if the ion concentration has an abnormally high value or an abnormally low value.

【0013】[0013]

【実施例】以下、この発明の実施例を図面に基づき説明
する。図1は、この発明の一実施例を示すイオン濃度測
定方法が適用されるイオン濃度測定装置の全体構成の一
例を示すブロック図である。この濃度測定装置は、従来
例で示した前記図3と同様な構造を持つマルチイオン電
極27を備えている。マルチイオン電極27の両端の絶
縁基体1a,1bにおける流通路25の開口部にはチュ
ーブ29,31が接続され、被測定試料である例えば血
清が、矢印A方向に流通する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an example of the overall configuration of an ion concentration measuring apparatus to which an ion concentration measuring method showing an embodiment of the present invention is applied. This concentration measuring device includes a multi-ion electrode 27 having a structure similar to that shown in FIG. Tubes 29 and 31 are connected to the openings of the flow paths 25 in the insulating substrates 1a and 1b at both ends of the multi-ion electrode 27, and a sample to be measured, for example, serum circulates in the direction of arrow A.

【0014】イオン選択性電極5a,5b,5cから引
き出される各リード線13a,13b,13cは、三つ
の増幅器33a,33b,33cのそれぞれの一方の入
力端子に接続され、各増幅器33a,33b,33cの
それぞれの他方の入力端子には、比較電極3から引き出
されているリード線21が接続されている。この各増幅
器33a,33b,33cは、比較電極3から出力され
た起電力と、各イオン選択性電極5a,5b,5cから
出力された起電力とのそれぞれの差を増幅する。
Each lead wire 13a, 13b, 13c led out from the ion selective electrodes 5a, 5b, 5c is connected to one input terminal of each of the three amplifiers 33a, 33b, 33c, and each amplifier 33a, 33b, The lead wire 21 led out from the comparison electrode 3 is connected to the other input terminal of each of 33c. Each of the amplifiers 33a, 33b, 33c amplifies the difference between the electromotive force output from the comparison electrode 3 and the electromotive force output from each of the ion selective electrodes 5a, 5b, 5c.

【0015】演算部35は、各増幅器33a,33b,
33cの出力信号の入力を受け、ナトリウムイオン(N
+ ),カリウムイオン(K+ )および塩素イオン(C
-)の濃度をそれぞれ演算し、表示部37は、演算さ
れた各種イオン濃度を表示する。
The operation unit 35 includes amplifiers 33a, 33b,
In response to the input of the output signal of 33c, sodium ion (N
a + ), potassium ion (K + ) and chlorine ion (C
Each of the concentrations of l ) is calculated, and the display unit 37 displays the calculated various ion concentrations.

【0016】このような構成のイオン濃度測定装置を用
い、以下の手順で被測定試料中のイオン濃度の測定を行
う。まず、各種イオン濃度既知の2種類のキャリブレー
タ溶液(低濃度および高濃度)をマルチイオン電極27
の流通路25内に供給し、起電力の測定をそれぞれ複数
回ずつ行う。1回の測定が行われる毎に、流通路25内
には正常値血清試料の濃度とほぼ同程度の既知イオン濃
度の校正液を供給し、各種イオン電極の電位校正を行
う。校正液を用いて電位校正を行った各キャリブレータ
の起電力と既知のイオン濃度との関係から検量線を作成
する。
Using the ion concentration measuring device having such a configuration, the ion concentration in the sample to be measured is measured by the following procedure. First, two kinds of calibrator solutions with known various ion concentrations (low concentration and high concentration) are applied to the multi-ion electrode 27.
And the electromotive force is measured a plurality of times. Every time one measurement is performed, a calibration solution having a known ion concentration approximately the same as the concentration of the normal value serum sample is supplied into the flow passage 25 to calibrate the potentials of various ion electrodes. A calibration curve is created from the relationship between the electromotive force of each calibrator whose potential has been calibrated using the calibration liquid and the known ion concentration.

【0017】次に、正常値血清試料とほぼ同程度のイオ
ン濃度の中濃度コントロール血清と、イオン濃度が異常
高値領域にある高濃度コントロール血清と、イオン濃度
が異常低値領域にある低濃度コントロール血清との3種
類の補正用試料を流通路25内にそれぞれ供給し、これ
ら3種類の補正用試料の起電力の測定を行って、上記検
量線により各補正用試料のイオン濃度を求める。これら
求めた3種類の補正用試料の各イオン濃度と各既知濃度
との差をそれぞれ算出し、これらの差を、正常値濃度用
補正値PM ,高濃度用補正値PH および低濃度用補正値
L として演算部35に内蔵されるメモリにそれぞれ記
憶しておく。
Next, a medium-concentration control serum having an ion concentration almost equal to that of a normal-value serum sample, a high-concentration control serum having an ion concentration in an abnormally high value region, and a low-concentration control serum having an ion concentration in an abnormally low value region. Three types of correction samples with serum are supplied into the flow passage 25, the electromotive forces of these three types of correction samples are measured, and the ion concentration of each correction sample is obtained from the calibration curve. The differences between the obtained ion concentrations of the three types of correction samples and the known concentrations are respectively calculated, and these differences are used as the normal value concentration correction value P M , the high concentration correction value P H, and the low concentration The correction value P L is stored in each of the memories built in the calculation unit 35.

【0018】以上の動作が終了してから始めて血清試料
の測定に入る。血清試料をマルチイオン電極27の流通
路25内に供給すると、血清中の各種イオン濃度に応じ
た起電力が生じて、キャリブレータの測定で作成した検
量線から各種イオン濃度が求められる。
The measurement of the serum sample is started only after the above operation is completed. When the serum sample is supplied into the flow passage 25 of the multi-ion electrode 27, electromotive force corresponding to various ion concentrations in serum is generated, and various ion concentrations are obtained from the calibration curve created by the calibrator measurement.

【0019】ここで、求めた各種イオン濃度のうち、一
部の項目、例えばナトリウムイオン(Na+ )の濃度が
異常高値を示し、他の項目、例えばカリウムイオン(K
+ )および塩素イオン(Cl- )は正常値を示した場
合、Na+ については、異常高値領域濃度のコントロー
ル血清より算出された高濃度用補正値PH を用いてデー
タの補正を行い、他の項目については、正常値コントロ
ール血清より算出された正常値濃度用補正値PM を用い
てデータの補正を行う。また、異常低値の濃度を示した
イオンについては、異常低値領域濃度のコントロール血
清より算出された低濃度用補正値PL を用いてデータの
補正を行う。
Among the various ion concentrations thus obtained, some items, for example, the concentration of sodium ion (Na + ) shows an abnormally high value, and other items, for example, potassium ion (K + ).
+) And chlorine ions (Cl -) if showed normal values for Na + performs correction of the data by using the high density correction value P H calculated from the control sera abnormally high area density, other For the item, the data is corrected using the normal value concentration correction value P M calculated from the normal value control serum. Further, for ions showing an abnormally low value concentration, the data is corrected using the low concentration correction value P L calculated from the control serum having an abnormally low value region concentration.

【0020】このように、血清試料の各項目の測定値濃
度に最も近い濃度のコントロール血清の補正値を用いて
測定データの補正を行うことで、正常値濃度の血清試料
についてはもちろんのこと、異常高値および異常低値の
血清試料についても、測定データの正確度が向上する。
As described above, by correcting the measurement data using the correction value of the control serum having the concentration closest to the measured value concentration of each item of the serum sample, not only for the serum sample having the normal value concentration, The accuracy of measurement data is also improved for serum samples with abnormally high and extremely low values.

【0021】なお、上記実施例では、正常値濃度用,高
濃度用および低濃度用の各補正値PM ,PH およびPL
を用いてデータ補正を行うようにしているが、これら各
補正値PM ,PH およびPL と、コントロール血清既知
濃度値との関係を示した補正用検量線を作成し、血清試
料の測定で算出された各種イオン濃度とこの補正用検量
線との比較から求めた補正値を用いて補正を行うように
してもよい。
In the above embodiment, the correction values P M , P H and P L for normal density, high density and low density are used.
Although the data is corrected by using, the correction calibration curve showing the relationship between each of these correction values P M , P H and P L and the known concentration value of the control serum was prepared, and the serum sample was measured. The correction may be performed using the correction value obtained by comparing the various ion concentrations calculated in step 1 with this correction calibration curve.

【0022】また、以上の実施例では、3種類の補正用
コントロール血清を用いているが、これは2種類でも4
種類でもよく、また補正用血清濃度値についても、特に
限定されるものではない。
In the above examples, three types of correction control sera were used.
The type may be different, and the correction serum concentration value is not particularly limited.

【0023】図2は、上記したようなイオン濃度測定装
置を備えた自動化学分析装置の概略を示す斜視図であ
る。この自動化学分析装置は、人体から採取した血清な
どを分析するものであり、血清などの被測定試料が入れ
られた複数の試料容器39を備えた試料部41と、試験
項目に対応する試薬をその種類毎に入れた試薬管43を
有する試薬部45と、被測定試料と試薬とを混合させて
被測定試料を反応させる複数の反応管47を有する反応
部49とを備えている。
FIG. 2 is a perspective view showing the outline of an automatic chemical analyzer equipped with the ion concentration measuring device as described above. This automatic chemical analyzer is for analyzing serum collected from a human body, and includes a sample section 41 having a plurality of sample containers 39 containing a sample to be measured such as serum and a reagent corresponding to a test item. It is provided with a reagent section 45 having a reagent tube 43 inserted for each type, and a reaction section 49 having a plurality of reaction tubes 47 for reacting the sample to be measured by mixing the sample to be measured and the reagent.

【0024】試料部41には、試料容器39内の試料液
を反応管47に供給する試料分注部51が設けられると
ともに、試薬部45には、試薬管43に入れられた試薬
を反応管47に供給する試薬分注部53が設けられてい
る。反応部49には、反応管47に入れられた被測定試
料と試薬とを攪拌する攪拌部55と、攪拌された被測定
試料のイオン濃度を測定する、前記図1に示したイオン
濃度測定装置を備えたイオン濃度測定部57と、反応管
47を洗浄する洗浄槽59とが設けられている。
The sample section 41 is provided with a sample dispensing section 51 for supplying the sample solution in the sample container 39 to the reaction tube 47, and the reagent section 45 is provided with the reagent contained in the reagent tube 43. A reagent dispensing unit 53 that supplies the reagent to the unit 47 is provided. The reaction unit 49 includes a stirring unit 55 for stirring the sample to be measured and the reagent contained in the reaction tube 47, and the ion concentration measuring device shown in FIG. 1 for measuring the ion concentration of the sample to be stirred. An ion concentration measuring unit 57 having the above and a cleaning tank 59 for cleaning the reaction tube 47 are provided.

【0025】イオン濃度測定部57には吸引ノズル57
aが設けられ、吸引ノズル57aにより反応管47から
血清を含む被測定試料を吸引し、イオン濃度測定装置に
内蔵されるマルチイオン電極27の流通孔25に試料が
流通し、イオン濃度が測定される。
The ion concentration measuring section 57 has a suction nozzle 57.
a is provided, the sample to be measured including serum is sucked from the reaction tube 47 by the suction nozzle 57a, the sample is circulated through the flow hole 25 of the multi-ion electrode 27 incorporated in the ion concentration measuring device, and the ion concentration is measured. It

【0026】[0026]

【発明の効果】以上説明してきたように、この発明によ
れば、起電力とイオン濃度との関係に基づき求めた被測
定試料中のイオン濃度に応じ、複数の異なる既知イオン
濃度の補正用試料のいずれかの補正値を用いて被測定試
料中のイオン濃度データを補正するようにしたため、イ
オン濃度が異常高値あるいは異常低値の被測定試料であ
っても、補正後の測定データを正確なものとすることが
できる。
As described above, according to the present invention, a plurality of different known ion concentration correcting samples are prepared according to the ion concentration in the sample to be measured, which is obtained based on the relationship between the electromotive force and the ion concentration. Since the ion concentration data in the sample to be measured is corrected using any of the correction values of the above, even if the sample to be measured has an abnormally high or abnormally low ion concentration, the corrected measured data will be accurate. Can be one.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すイオン濃度測定方法
が適用されるイオン濃度測定装置の全体構成の一例を示
すブロック図である。
FIG. 1 is a block diagram showing an example of the overall configuration of an ion concentration measuring apparatus to which an ion concentration measuring method according to an embodiment of the present invention is applied.

【図2】図1のイオン濃度測定装置を備えた自動化学分
析装置の概略を示す斜視図である。
FIG. 2 is a perspective view showing an outline of an automatic chemical analysis device equipped with the ion concentration measuring device of FIG.

【図3】イオン濃度測定装置におけるマルチイオン電極
の断面図である。
FIG. 3 is a cross-sectional view of a multi-ion electrode in an ion concentration measuring device.

【図4】図3のマルチイオン電極の斜視図である。FIG. 4 is a perspective view of the multi-ion electrode of FIG.

【符号の説明】[Explanation of symbols]

5a,5b,5c イオン選択性電極 27 マルチイオン電極 35 演算部 5a, 5b, 5c Ion-selective electrode 27 Multi-ion electrode 35 Operation unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料の接触によりイオン濃度に対
応する起電力を発生するイオン選択性電極を用いて前記
被測定試料中のイオン濃度を測定するイオン濃度測定方
法において、イオン濃度が既知となっている溶液の起電
力を前記イオン選択性電極により求めてこの起電力とイ
オン濃度との相関関係をあらかじめ算出し、この算出し
た相関関係を基に、前記イオン選択性電極によって測定
した被測定試料の起電力から被測定試料中のイオン濃度
を求め、この求めたイオン濃度を補正するための複数の
異なる既知イオン濃度の補正用試料の起電力を前記イオ
ン選択性電極によりそれぞれ測定し、この測定した各起
電力から前記算出した相関関係に基づいてそれぞれのイ
オン濃度を算出し、この算出した補正用試料の各イオン
濃度と各既知濃度との差をそれぞれ算出してこれらを補
正値とし、この各補正値のいずれかを用いて前記求めた
被測定試料中のイオン濃度を補正することを特徴とする
イオン濃度測定方法。
1. An ion concentration measuring method for measuring an ion concentration in a sample to be measured using an ion-selective electrode that generates an electromotive force corresponding to the ion concentration when the sample to be measured is brought into contact with the sample. The electromotive force of the resulting solution is calculated by the ion-selective electrode, and the correlation between the electromotive force and the ion concentration is calculated in advance. Based on the calculated correlation, the measurement target measured by the ion-selective electrode Obtaining the ion concentration in the sample to be measured from the electromotive force of the sample, the electromotive force of the correction sample of a plurality of different known ion concentration for correcting the obtained ion concentration is measured by the ion-selective electrode, Each ion concentration is calculated based on the calculated correlation from each measured electromotive force, and each ion concentration and each known concentration of the calculated correction sample Is calculated as a correction value, and the ion concentration in the sample to be measured thus obtained is corrected using any one of the correction values.
【請求項2】 複数の異なる既知イオン濃度の補正用試
料は、イオン濃度が高・中・低の3種類あり、この3種
類の補正用試料による補正値を、被測定試料のイオン濃
度の高・中・低にそれぞれ対応させて使用することを特
徴とする請求項1記載のイオン濃度測定方法。
2. A plurality of correction samples with different known ion concentrations have three types of high, medium, and low ion concentrations, and the correction values obtained by these three types of correction samples are used as the high ion concentration of the sample to be measured. The method for measuring ion concentration according to claim 1, wherein the method is used in correspondence with medium and low.
【請求項3】 イオン濃度が高・中・低3種類の補正用
試料による各補正値と、前記3種類の補正用試料の各既
知イオン濃度値との関係を示した検量線を作成し、この
作成した検量線に基づいて、被測定試料中のイオン濃度
の補正を行うことを特徴とする請求項2記載のイオン濃
度測定方法。
3. A calibration curve showing the relationship between each correction value by three types of correction samples having high, medium, and low ion concentrations and each known ion concentration value of the three types of correction samples is prepared, The ion concentration measuring method according to claim 2, wherein the ion concentration in the sample to be measured is corrected based on the created calibration curve.
【請求項4】 被測定試料の接触によりイオン濃度に対
応する起電力を発生するイオン選択性電極と、このイオ
ン選択性電極で発生した起電力に対応したイオン濃度を
算出する演算部とを有し、この演算部は、あらかじめ測
定したイオン濃度既知の溶液の起電力とイオン濃度との
関係に基づき求めた被測定試料中のイオン濃度を、複数
の異なる既知イオン濃度の補正用試料による各補正値の
いずれかを用いて補正する構成であることを特徴とする
イオン濃度測定装置。
4. An ion selective electrode for generating an electromotive force corresponding to an ion concentration when a sample to be measured is brought into contact, and an arithmetic unit for calculating an ion concentration corresponding to an electromotive force generated at this ion selective electrode. Then, this calculation unit corrects the ion concentration in the sample to be measured, which is obtained based on the relationship between the electromotive force and the ion concentration of the solution whose ion concentration is known in advance, by each of the correction samples of different known ion concentrations. An ion concentration measuring device, characterized in that the correction is performed using any of the values.
【請求項5】 被測定試料が入れられた複数の試料容器
を備えたサンプル部と、試験項目に対応する試薬をその
種類毎に入れた試薬管を有する試薬部と、前記被測定試
料と試薬とを混合させて被測定試料を反応させる複数の
反応管を有する反応部とを備えた自動化学分析装置にお
いて、前記反応部に、請求項4記載のイオン濃度測定装
置を用いたことを特徴とする自動化学分析装置。
5. A sample part having a plurality of sample containers containing a sample to be measured, a reagent part having a reagent tube containing a reagent corresponding to a test item for each type, and the sample to be measured and the reagent. 5. An automatic chemical analyzer comprising: a reaction part having a plurality of reaction tubes for mixing and reacting a sample to be measured, wherein the ion concentration measuring device according to claim 4 is used in the reaction part. Automatic chemical analyzer.
JP7030332A 1995-02-20 1995-02-20 Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument Pending JPH08220052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7030332A JPH08220052A (en) 1995-02-20 1995-02-20 Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7030332A JPH08220052A (en) 1995-02-20 1995-02-20 Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument

Publications (1)

Publication Number Publication Date
JPH08220052A true JPH08220052A (en) 1996-08-30

Family

ID=12300866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7030332A Pending JPH08220052A (en) 1995-02-20 1995-02-20 Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument

Country Status (1)

Country Link
JP (1) JPH08220052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490453B1 (en) * 1999-05-28 2005-05-19 동양화학공업주식회사 Electrochemical determination and measuring devices and measuring electrode of organic contaminant by using micro-structured electrodes
CN111656173A (en) * 2018-01-26 2020-09-11 A&T株式会社 Electrolyte measuring device and method for determining connection state of electrode portion of electrolyte measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490453B1 (en) * 1999-05-28 2005-05-19 동양화학공업주식회사 Electrochemical determination and measuring devices and measuring electrode of organic contaminant by using micro-structured electrodes
CN111656173A (en) * 2018-01-26 2020-09-11 A&T株式会社 Electrolyte measuring device and method for determining connection state of electrode portion of electrolyte measuring device

Similar Documents

Publication Publication Date Title
JP4814952B2 (en) Method for measuring hematocrit value of blood sample, method for measuring concentration of analyte in blood sample, sensor chip and sensor unit
JP2651278B2 (en) Biosensor system and method used therein
JP4272524B2 (en) Concentration measuring method and concentration measuring device for specific component
US7297241B2 (en) Method and a device for monitoring a medical microsample in the flow measuring cell of an analyzer
US6554982B1 (en) Miniaturized solid-state reference electrode with self-diagnostic function
US4762594A (en) Apparatus and methods for sensing fluid components
US20040050694A1 (en) Portable multi-functional electrochemical biosensor system
JP4486702B2 (en) Creatinine concentration measuring method, measuring device and measuring apparatus, and salinity measuring method, measuring device and measuring apparatus using them
US7949473B2 (en) Method for detecting erroneous measurement results obtained with ion-selective electrodes
JPWO2004074827A1 (en) Measuring device for biosensor and measuring method using the same
EP0667522A2 (en) Method of measuring ion concentration and apparatus therefor
US20210325335A1 (en) Mixed ionophore ion-selective electrode for the improved dectection of urea in blood
US20150276670A1 (en) Electrochemical biosensing meter, system and measuring method for analyte measurement incorporating filled sample detection
KR101357134B1 (en) Method for Measuring Analytes in Blood Samples Using Electrochemical Biosensor and a Portable Analyzer
EP0188319B1 (en) Method and apparatus for measuring halogen ion concentration
WO2021161704A1 (en) Electrolyte analysis apparatus
JP2004233294A (en) Electrochemical sensor measuring device and its measuring method
JPS62294959A (en) Measurement of ion activity
Rumpf et al. Calibration-free measurement of sodium and potassium in undiluted human serum with an electrically symmetric measuring system
JPH08220052A (en) Method and instrument for measuring ion concentration and automatic chemical analyzer using the instrument
JPH1096710A (en) Measuring method for ion concentration
CA2593815A1 (en) Amperometric sensor comprising counter electrode isolated from liquid electrolyte
KR101989310B1 (en) Bio measurement device and bio apparatus having the bio measurement device
JP3442458B2 (en) Selection coefficient measurement method and ion concentration measurement device
JPH068796B2 (en) Ion concentration measurement method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040702