JPH08220004A - Apparatus and method for member inspection - Google Patents

Apparatus and method for member inspection

Info

Publication number
JPH08220004A
JPH08220004A JP2148195A JP2148195A JPH08220004A JP H08220004 A JPH08220004 A JP H08220004A JP 2148195 A JP2148195 A JP 2148195A JP 2148195 A JP2148195 A JP 2148195A JP H08220004 A JPH08220004 A JP H08220004A
Authority
JP
Japan
Prior art keywords
light
defect
change
difference
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2148195A
Other languages
Japanese (ja)
Inventor
Shigeji Kimura
茂治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2148195A priority Critical patent/JPH08220004A/en
Publication of JPH08220004A publication Critical patent/JPH08220004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE: To make it possible to discriminate a foreign matter present on the surface of a member such as a semiconductor substrate and a defect of the member present in the vicinity of the surface and to improve the quality of the semiconductor substrate or the like. CONSTITUTION: The inspecting apparatus scans the light transmitted through a member such as a semiconductor substrate and has at least a light splitting detector 50 for detecting the change in phase of the light caused by the defect of the member. A detecting circuit 62 for a signal changing state detects the appearing state of the phase change of the detected light. A defect-site discriminating circuit 63 discriminates the defect in the member and the foreign matter attached on the surface of the member based on the appearing state of the phase change of the light, which is detected with the detecting circuit 62 for the signal changing state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板などの部材
の検査技術に係り、特に、チョクラルスキ−(CZ:Czoc
hralski)法で成長させたシリコン部材表面の近傍に存
在する微小な結晶欠陥である酸素析出物を高精度に検出
するのに好適な部材の検査装置および部材の検査方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection technique for a member such as a semiconductor substrate, and more particularly to a Czochralski (CZ: Czoc).
The present invention relates to a member inspection apparatus and a member inspection method suitable for highly accurately detecting oxygen precipitates which are minute crystal defects existing near the surface of a silicon member grown by the hralski) method.

【0002】[0002]

【従来の技術】高集積回路素子は、半導体基板の表面お
よび近傍に形成され、その素子の特性は半導体基板の表
面近傍の状態に強く影響される。特に、半導体基板の表
面近傍に結晶欠陥が存在すると、ゲート酸化膜の耐圧低
下やキャパシタの電流リークの増加などの素子特性の劣
化が起こると考えられている。この表面近傍の結晶欠陥
密度、特に、格子間酸素を多量に含むCZシリコン基板に
おける酸素析出物密度と素子の歩留りとの相関関係が明
らかになれば、どのようなシリコン結晶を使用すべき
か、あるいはどのようなシリコン基板は不良が多発する
ので使用すべきでないということが明らかになるはずで
ある。従って、シリコン半導体基板の表面近傍の酸素析
出物密度を評価する技術が求められている。
2. Description of the Related Art Highly integrated circuit devices are formed on and near the surface of a semiconductor substrate, and the characteristics of the device are strongly influenced by the conditions near the surface of the semiconductor substrate. In particular, it is considered that if crystal defects exist near the surface of the semiconductor substrate, the device characteristics such as the breakdown voltage of the gate oxide film and the current leakage of the capacitor are deteriorated. If the correlation between the crystal defect density near this surface, especially the oxygen precipitate density in the CZ silicon substrate containing a large amount of interstitial oxygen and the device yield becomes clear, what kind of silicon crystal should be used, or It should be clear that any silicon substrate should not be used as it is prone to failure. Therefore, there is a demand for a technique for evaluating the density of oxygen precipitates near the surface of a silicon semiconductor substrate.

【0003】熱処理によってCZシリコン結晶中に析出し
てくる酸素析出物は大きくても直径0.3μm程度の大
きさである。表面近傍において、これ以上の大きさのも
のが存在する場合は、これは酸素析出物以外のものであ
ると考えて間違いない。従って、これより小さいものに
おいて、酸素析出物であるか、基板の表面に付着した異
物であるかを判別する必要がある。
Oxygen precipitates precipitated in the CZ silicon crystal by the heat treatment have a diameter of about 0.3 μm at the maximum. If there is a larger size near the surface, it can be safely considered that it is other than oxygen precipitates. Therefore, it is necessary to discriminate whether it is an oxygen precipitate or a foreign substance adhering to the surface of the substrate when the size is smaller than this.

【0004】シリコン半導体結晶基板の表面近傍に存在
する微小結晶欠陥である酸素析出物を検出する技術とし
て、表面をエッチングした後、光学顕微鏡で観察するこ
とがよく行われる。すなわち、欠陥の存否によってエッ
チング速度が異なるので基板表面に凹凸ができ、光学顕
微鏡による欠陥の存在場所の確認が可能となる。しか
し、この検査技術には、破壊検査であること、および、
化学的な処理が必要であることなどの欠点がある。この
ようなエッチングをする検査に代わるものとして、半導
体結晶を透過する光の側方散乱光を検出するものが知ら
れており、「ジャーナル・オブ・クリスタル・グロース
(Journal of Crystal Growth)」誌の108巻(19
91)の第482頁から第490頁に詳しく述べてあ
る。この技術においては、エッチングはしないが基板を
割る必要があり、非破壊ではない。散乱光を検出するこ
の半導体の検査技術は、結晶内部の欠陥を検出するのに
適している。
As a technique for detecting oxygen precipitates which are fine crystal defects existing in the vicinity of the surface of a silicon semiconductor crystal substrate, the surface is often etched and then observed with an optical microscope. That is, since the etching rate varies depending on the presence or absence of defects, irregularities are formed on the substrate surface, and it becomes possible to confirm the location of the defects by an optical microscope. However, this inspection technology requires destructive inspection, and
There are drawbacks such as the need for chemical treatment. As an alternative to such an etching test, one that detects the side scattered light of the light that passes through the semiconductor crystal is known, and is disclosed in "Journal of Crystal Growth" magazine. Volume 108 (19
91), pp. 482-490. This technique does not etch but requires breaking the substrate and is not non-destructive. This semiconductor inspection technique that detects scattered light is suitable for detecting defects inside the crystal.

【0005】しかし、この側方散乱光を用いた検出技術
では、基板の表面近傍の欠陥計測は困難であり、表面近
傍の欠陥を検出するのには適していない。また、半導体
結晶からの反射散乱光を検出することにより表面近傍に
存在する結晶欠陥を検出する従来技術があるが、この技
術においても、結晶欠陥からの反射散乱光を検出した場
合、それが基板表面に付着した異物によるものなのか、
あるいは、結晶欠陥によるものなのか容易に区別がつか
ない。その結果、このようなデータを用いて半導体基板
に対する歩留まりの評価をすると、その評価は誤差を含
むことになる。
However, with this detection technique using side scattered light, it is difficult to measure defects near the surface of the substrate, and it is not suitable for detecting defects near the surface. In addition, there is a conventional technique for detecting a crystal defect existing near the surface by detecting the reflected and scattered light from the semiconductor crystal. In this technique as well, when the reflected and scattered light from the crystal defect is detected, it is detected. Is it due to foreign matter adhering to the surface?
Alternatively, it cannot be easily distinguished whether it is due to a crystal defect. As a result, if the yield of a semiconductor substrate is evaluated using such data, the evaluation will include an error.

【0006】[0006]

【発明が解決しようとする課題】解決しようとする問題
点は、従来の技術では、半導体基板等の表面に付着した
異物と、表面近傍に存在する欠陥とを容易に区別するこ
とができない点である。本発明の目的は、これら従来技
術の課題を解決し、半導体等の結晶欠陥の検出精度を向
上させ、半導体基板等に対する歩留まりの評価を高信頼
化させ、半導体基板等の部材の品質の向上を可能とする
部材の検査装置および部材の検査方法を提供することで
ある。
The problem to be solved is that the conventional technique cannot easily distinguish a foreign substance attached to the surface of a semiconductor substrate or the like from a defect existing in the vicinity of the surface. is there. The object of the present invention is to solve the problems of these conventional techniques, improve the detection accuracy of crystal defects of semiconductors, etc., make the evaluation of yield for semiconductor substrates highly reliable, and improve the quality of members such as semiconductor substrates. An object of the present invention is to provide a member inspection apparatus and a member inspection method that enable the inspection.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の部材の検査装置は、(1)部材(半導体内
部)を透過する光を走査させ、半導体の欠陥による光の
位相の変化を検出する手段(光分割検出器50)を少な
くとも有する検査装置であって、検出した光の位相変化
の現われ方を検出する検出手段(信号変化状態検出回路
62)と、この信号変化状態検出回路62で検出した光
の位相変化の現われ方に基づき、半導体基板41内の欠
陥と半導体基板41の表面に付着した異物との判別を行
なう判別手段(欠陥部位判別回路63)とを設けること
を特徴とする。また、(2)上記(1)に記載の部材の
検査装置において、各々隣接した位置で部材(半導体基
板41)を走査および透過した光を受光し、この受光し
た光の強度に対応する信号強度を出力する第1、第2の
受光回路(検出面51、52を有する光分割検出器5
0)と、この光分割検出器50から出力された信号強度
の差を走査順に出力する比較回路(差分電子回路61)
とを設け、信号変化状態検出回路62は、差分電子回路
61から走査順に出力される信号強度差の変化の現われ
方に基づき上記光の位相変化の現われ方の検出を行なう
ことを特徴とする。また、(3)部材(例えばグラファ
イトのような結晶性試料で良く、ここでは半導体基板4
1を例に上げている)を透過する波長の光(出射光1
2)を発生する光源11と、この光源11からの光を集
光する光学系(レンズ21、22)と、集光位置で半導
体基板41を保持して走査させる走査機構60と、半導
体基板41を透過した光を複数に面積分割して受光し、
各々の受光強度に対応する信号を出力する光分割検出器
50と、この光分割検出器50から走査順に出力される
各信号の差分を出力する差分電子回路61とを少なくと
も有し、この差分電子回路61から走査順に出力される
差分信号の変化に基づき、半導体基板41の欠陥を検出
する検査装置であって、差分電子回路61から走査順に
出力される差分信号の変化の現われ方を検出する信号変
化状態検出回路62と、この信号変化状態検出回路62
で検出した差分信号の変化の現われ方に基づき、半導体
基板41の欠陥と半導体基板41の表面に付着した異物
との判別を行なう欠陥部位判別回路63とを設けること
を特徴とする。そして、本発明の部材の検査方法は、
(4)部材(半導体基板41)を透過する光を走査さ
せ、半導体基板41の欠陥による光の位相の変化を検出
して、半導体基板41の欠陥の有無を判定する検査方法
であって、半導体基板41を走査および透過した光の位
相変化の現われ方を検出し、この検出した光の位相変化
の現われ方に基づき、半導体基板41上記部材内の欠陥
と上記部材の表面に付着した異物との判別を行なうこと
を特徴とする。また、(5)上記(4)に記載の部材の
検査方法において、各々隣接した位置で部材を走査およ
び透過した光を受光し、この受光した各々の光の強度に
対応する信号強度を出力し、この各々の信号強度の差を
走査順に出力し、この走査順に出力される信号強度差の
変化の現われ方に基づき、光の位相変化の現われ方の検
出を行なうことを特徴とする。また、(6)部材(半導
体基板41)を透過する波長の光を発生させ、この光を
集光し、この集光位置で半導体基板41を保持して走査
し、半導体基板41を透過した光を複数に面積分割して
受光し、各々の受光強度に対応する信号を走査順に出力
し、この出力信号の差分を出力し、この差分信号の走査
順の変化に基づき半導体基板41の欠陥の検出を行なう
検査方法であって、走査順に出力される差分信号の変化
の現われ方を検出し、検出した差分信号の変化の現われ
方に基づき、半導体基板41の欠陥と、この半導体基板
41の表面に付着した異物との判別を行なうことを特徴
とする。
In order to achieve the above object, the member inspection apparatus according to the present invention comprises: (1) scanning of light transmitted through a member (inside of a semiconductor) to change the phase of light due to a defect in the semiconductor. And a signal change state detection circuit for detecting the appearance of a phase change of the detected light, which is an inspection apparatus having at least a means (light splitting detector 50) for detecting A discriminating means (defect portion discriminating circuit 63) for discriminating between a defect in the semiconductor substrate 41 and a foreign substance adhering to the surface of the semiconductor substrate 41 on the basis of the appearance of the phase change of the light detected in 62 is provided. And (2) In the member inspection apparatus according to (1) above, the light that has been scanned and transmitted through the member (semiconductor substrate 41) at adjacent positions is received, and the signal intensity corresponding to the intensity of the received light is received. First and second light receiving circuits (optical splitting detector 5 having detection surfaces 51 and 52) for outputting
0) and a comparison circuit (difference electronic circuit 61) that outputs the difference between the signal intensities output from the light split detector 50 in the scanning order.
And the signal change state detection circuit 62 detects the appearance of the phase change of the light based on the appearance of the change of the signal intensity difference output from the difference electronic circuit 61 in the scanning order. Further, (3) a member (for example, a crystalline sample such as graphite, which may be a semiconductor substrate 4 in this case).
1 is given as an example) and light of a wavelength that transmits (emission light 1
2) generating light source 11, an optical system (lenses 21, 22) for condensing the light from the light source 11, a scanning mechanism 60 for holding and scanning the semiconductor substrate 41 at the condensing position, and the semiconductor substrate 41. The light transmitted through is divided into multiple areas and received,
At least a light split detector 50 that outputs a signal corresponding to each received light intensity and a difference electronic circuit 61 that outputs a difference between the respective signals output from the light split detector 50 in the scanning order are provided. An inspection device for detecting a defect of a semiconductor substrate 41 based on a change in a differential signal output from a circuit 61 in a scanning order, the signal being for detecting how a change in a differential signal output from a differential electronic circuit 61 appears. Change state detection circuit 62 and this signal change state detection circuit 62
It is characterized in that a defect part discriminating circuit 63 for discriminating between a defect of the semiconductor substrate 41 and a foreign substance adhering to the surface of the semiconductor substrate 41 is provided on the basis of the appearance of the change of the differential signal detected in step. And the inspection method of the member of the present invention,
(4) An inspection method for scanning the light passing through a member (semiconductor substrate 41), detecting a change in the phase of light due to a defect in the semiconductor substrate 41, and determining the presence or absence of a defect in the semiconductor substrate 41. The appearance of the phase change of the light that has scanned and transmitted through the substrate 41 is detected, and based on the detected appearance of the phase change of the light, the semiconductor substrate 41 detects defects in the member and foreign matter attached to the surface of the member. It is characterized by making a determination. (5) In the member inspection method according to (4), the light beams that have been scanned and transmitted through the members at adjacent positions are received, and signal intensities corresponding to the intensities of the received lights are output. The difference between the signal intensities is output in the scanning order, and the appearance of the phase change of the light is detected based on the appearance of the change in the signal intensity difference output in the scanning order. Further, (6) light having a wavelength that passes through the member (semiconductor substrate 41) is generated, this light is condensed, the semiconductor substrate 41 is held and scanned at this condensing position, and the light transmitted through the semiconductor substrate 41 Is divided into a plurality of areas to receive light, the signals corresponding to the respective received light intensities are output in the scanning order, the difference between the output signals is output, and the defect of the semiconductor substrate 41 is detected based on the change in the scanning order of the difference signal. Of the difference signal output in the scanning order, the defect of the semiconductor substrate 41 and the surface of the semiconductor substrate 41 are detected based on the detected change signal of the difference signal. The feature is that it is distinguished from the adhered foreign matter.

【0008】[0008]

【作用】本発明においては、例えば、半導体基板中の酸
素析出物の検出信号の方向と、半導体基板の表面の異物
の検出信号の方向とに相違があることに着目して、半導
体基板の表面近傍に存在する結晶欠陥と半導体基板の表
面に付着した異物との判別を行なう。シリコン結晶マト
リックスの屈折率は3.57で、酸素析出物の屈折率は
およそ1.47であるので、酸素析出物の存在しないと
ころと比較して波面の進行に差が生じる。すなわち、光
の位相に変化が生じ、酸素析出物中では光の波面はシリ
コン結晶中より早く進むことになり、もし、酸素析出物
を含んだ半導体基板をレーザ光に対して左から移動させ
ていくと、このときの信号強度の波形は図3のように、
増加した後、減少し、さらに、増加に転じる。このこと
により、半導体基板内部の酸素析出物の検出が可能とな
る。また、半導体基板の表面に異物が付着している場
合、表面の異物の屈折率は一般的に空気より大きいの
で、表面異物中での出射光の波面の速度は空気中と比較
して遅くなる。すなわち、位相の遅れが生じる。このた
め、表面異物を出射光が照射したとき、出射光の曲がる
方向は、シリコン結晶中の酸素析出物の場合とは逆とな
る。従って、表面異物の付着した半導体基板を左から移
動させると、図5のように、減少した後に増加し、さら
に、減少に転じる。このように、例えば半導体基板中の
酸素析出物と半導体基板表面に存在する異物とは、異な
る出力信号を発生するので、この出力信号を比較するこ
とにより、それぞれを判別することができる。
In the present invention, for example, the difference in the direction of the detection signal of the oxygen precipitates in the semiconductor substrate and the direction of the detection signal of the foreign matter on the surface of the semiconductor substrate is taken into consideration. A crystal defect existing in the vicinity and a foreign substance attached to the surface of the semiconductor substrate are discriminated. Since the refractive index of the silicon crystal matrix is 3.57 and the refractive index of the oxygen precipitates is about 1.47, there is a difference in the progress of the wavefront as compared with the absence of the oxygen precipitates. That is, the phase of light changes, and the wavefront of light in oxygen precipitates advances faster than in silicon crystals.If the semiconductor substrate containing oxygen precipitates is moved from the left with respect to the laser light, Then, the waveform of the signal strength at this time is as shown in FIG.
After increasing, it decreases and then starts increasing. This makes it possible to detect oxygen precipitates inside the semiconductor substrate. Further, when foreign matter is attached to the surface of the semiconductor substrate, the refractive index of the foreign matter on the surface is generally larger than that of air, so the speed of the wavefront of the emitted light in the foreign matter on the surface becomes slower than in air. . That is, a phase delay occurs. Therefore, when the surface foreign matter is irradiated with the emitted light, the direction in which the emitted light bends is opposite to that of the case of oxygen precipitates in the silicon crystal. Therefore, when the semiconductor substrate having the surface foreign matter attached thereto is moved from the left, it decreases and then increases as shown in FIG. 5, and then starts to decrease. In this way, for example, oxygen precipitates in the semiconductor substrate and foreign substances existing on the surface of the semiconductor substrate generate different output signals. Therefore, by comparing the output signals, they can be distinguished from each other.

【0009】[0009]

【実施例】以下、本発明の実施例を、図面により詳細に
説明する。図1は、本発明の部材の検査装置の本発明に
係る構成の一実施例を示すブロック図である。本実施例
は、半導体基板の検査装置を例としており、本図におい
て、11はシリコン結晶の半導体基板41内部を透過す
る波長の光を発生する光源、21、22は光源11から
の光(出射光12)を集光する光学系としてのレンズ、
60は集光位置で半導体基板41を保持して走査させる
走査機構、50は半導体基板41を透過した光を複数に
面積分割して受光し、各々の受光強度に対応する信号を
出力する本発明の第1、第2の受光手段としての光分割
検出器、61は光分割検出器50から走査順に出力され
る各信号の差分を出力する本発明の比較手段としての差
分電子回路、62は差分電子回路61から走査順に出力
される差分信号の変化状態を検出する信号変化状態検出
回路、63は信号変化状態検出回路62の検出結果に基
づき、差分信号の変化が半導体基板の表面近傍に存在す
る結晶欠陥によるものか、もしくは、半導体基板の表面
に付着した異物によるものかを判別する欠陥部位判別回
路である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a configuration according to the present invention of a member inspection apparatus according to the present invention. The present embodiment exemplifies a semiconductor substrate inspection apparatus. In the figure, 11 is a light source for generating light having a wavelength that passes through the inside of the semiconductor substrate 41 of silicon crystal, and 21 and 22 are light from the light source 11 (output A lens as an optical system that collects the incident light 12),
Reference numeral 60 denotes a scanning mechanism for holding and scanning the semiconductor substrate 41 at a condensing position, and 50, which receives the light transmitted through the semiconductor substrate 41 by dividing the light into a plurality of areas and outputs a signal corresponding to each received light intensity. , 61 is a light splitting detector as first and second light receiving means, 61 is a difference electronic circuit as a comparing means of the present invention for outputting the difference between the respective signals output from the light splitting detector 50 in the scanning order, and 62 is a difference A signal change state detection circuit for detecting a change state of the differential signal output from the electronic circuit 61 in the scanning order, 63 is based on the detection result of the signal change state detection circuit 62, and the change of the differential signal exists near the surface of the semiconductor substrate. It is a defective portion discrimination circuit that discriminates whether it is due to a crystal defect or a foreign substance attached to the surface of the semiconductor substrate.

【0010】このような構成とし、また、以下の動作に
より、本実施例の半導体基板検査装置では、検査試料と
しての半導体基板41の表面近傍に存在する結晶欠陥と
半導体基板表面に付着した異物との判別を容易に行なう
ことができる。すなわち、光源11からは、シリコン結
晶の半導体基板41を透過可能な波長の光(出射光1
2)が出射する。この出射光12をレンズ21でコリメ
ートし、レンズ22で半導体基板41上に細く絞り込
む。半導体基板41からの透過光は検出面51、52で
構成される光分割検出器50で検出される。差分電子回
路61では光分割検出器50からの各々の信号を増幅し
た後、両者の差分を取る。それぞれの増幅率は、酸素析
出物あるいは表面上の異物を光が照射しないとき、両者
の差がほぼ零となるように設定する。
With such a structure and the following operation, in the semiconductor substrate inspection apparatus of this embodiment, the crystal defects existing near the surface of the semiconductor substrate 41 as the inspection sample and the foreign substances attached to the surface of the semiconductor substrate are detected. Can be easily discriminated. That is, from the light source 11, light having a wavelength that can be transmitted through the semiconductor substrate 41 of silicon crystal (emitted light 1
2) is emitted. The emitted light 12 is collimated by the lens 21 and narrowed down on the semiconductor substrate 41 by the lens 22. The transmitted light from the semiconductor substrate 41 is detected by the light split detector 50 including the detection surfaces 51 and 52. The difference electronic circuit 61 amplifies each signal from the light split detector 50 and then takes the difference between the two. The respective amplification factors are set so that the difference between the two becomes substantially zero when light is not irradiated on the oxygen precipitates or the foreign substances on the surface.

【0011】このような状態で、走査機構60により、
半導体基板41に含まれる酸素析出物を通過するよう
に、もしくは、半導体基板41の表面上の異物を通過す
るように走査すると、後述の図3、図5に示すような信
号が得られる。欠陥の中心を走査したとき、差分信号は
ほぼ零となる。信号変化状態検出回路62、および、欠
陥部位判別回路63は、コンピュータを含む電子回路で
あり、信号変化状態検出回路62は、画像記憶装置を有
して、後述の図3、図5に示すような波形を記憶し、ソ
フトウエアにより、記憶した波形を解析して、信号の変
化状態を検出する。そして、欠陥部位判別回路63は、
この信号の変化状態に基づき、検出された欠陥が、表面
上の異物によるものか、あるいは、酸素析出物によるも
のかを判別する。その判別結果を、図示していない表示
装置に画像等の情報として表示する。
In this state, the scanning mechanism 60
When scanning is performed so as to pass through oxygen precipitates contained in the semiconductor substrate 41 or pass through foreign substances on the surface of the semiconductor substrate 41, signals as shown in FIGS. 3 and 5 described later are obtained. When scanning the center of the defect, the difference signal becomes almost zero. The signal change state detection circuit 62 and the defective portion determination circuit 63 are electronic circuits including a computer, and the signal change state detection circuit 62 has an image storage device, as shown in FIGS. A waveform is stored, and the stored waveform is analyzed by software to detect the change state of the signal. Then, the defective portion determination circuit 63
Based on the change state of this signal, it is determined whether the detected defect is due to a foreign substance on the surface or due to an oxygen precipitate. The determination result is displayed as information such as an image on a display device (not shown).

【0012】尚、本実施例の半導体基板検査装置は、半
導体基板の表面における異物と表面近傍に存在する酸素
析出物との判別を行なうことを主たる目的としている
が、半導体基板41内部の酸素析出物の検出も当然可能
である。そのとき、照射光の焦点位置が基板表面からど
の程度の深さにあるかを知るために、本図1に示す実施
例においては、共焦点顕微鏡光学系を付加している。こ
の共焦点顕微鏡光学系により半導体基板表面の位置を特
定できるので、そこを基準として、絞り込まれた光のビ
ームウエストが半導体内部にどの程度入ったかを知るこ
とができる。本実施例においては、半導体基板41の表
面からの反射光はレンズ22を戻り、半透鏡31で反射
され、レンズ23でピンホール32上に絞り込まれる。
ピンホール32を透過した光は検出器56で検出され
る。共焦点光学系においては、絞り込んだ照射光のビー
ムウエストに反射面があるとき、検出光量が最大にな
る。すなわち、半導体基板41の表面がレンズ22の焦
点位置にあるとき、検出器56の出力が最大になる。こ
の位置を表面とすることによりビームウエストの深さを
推定できる。検出器56の信号を画像信号として使用す
るならば、高分解能な共焦点画像を得ることが可能であ
る。
The main purpose of the semiconductor substrate inspection apparatus of this embodiment is to distinguish between foreign substances on the surface of the semiconductor substrate and oxygen precipitates existing in the vicinity of the surface. It is naturally possible to detect an object. At that time, a confocal microscope optical system is added in the embodiment shown in FIG. 1 in order to know how deep the focal position of the irradiation light is from the substrate surface. Since the position of the semiconductor substrate surface can be specified by this confocal microscope optical system, it is possible to know how much the beam waist of the narrowed light enters the inside of the semiconductor with reference to the position. In the present embodiment, the reflected light from the surface of the semiconductor substrate 41 returns to the lens 22, is reflected by the semitransparent mirror 31, and is focused on the pinhole 32 by the lens 23.
The light transmitted through the pinhole 32 is detected by the detector 56. In the confocal optical system, the amount of detected light becomes maximum when the beam waist of the narrowed irradiation light has a reflecting surface. That is, when the surface of the semiconductor substrate 41 is at the focal position of the lens 22, the output of the detector 56 becomes maximum. By setting this position as the surface, the depth of the beam waist can be estimated. If the signal of the detector 56 is used as an image signal, a high resolution confocal image can be obtained.

【0013】従来の技術において述べたように、熱処理
によってCZシリコン結晶中に析出してくる酸素析出物は
大きくても直径0.3μm程度の大きさであり、表面近
傍においてこれ以上の大きさのものが存在する場合は、
これは酸素析出物以外のものであると考えて間違いな
い。従って、本実施例の半導体検査装置では、これより
小さいものにおいて、酸素析出物であるか異物であるか
を判別する。以下、このような判別動作の詳細を、図2
〜図5を用いて説明する。まず、図2および図3を用い
て、異物が半導体基板の表面近傍に存在する場合を考え
る。
As described in the prior art, the oxygen precipitates precipitated in the CZ silicon crystal by the heat treatment have a diameter of about 0.3 μm at the maximum, and have a larger size in the vicinity of the surface. If something exists,
There is no doubt that this is something other than oxygen precipitates. Therefore, in the semiconductor inspection apparatus of the present embodiment, a smaller one is discriminated as an oxygen precipitate or a foreign substance. Details of such a determination operation will be described below with reference to FIG.
~ It demonstrates using FIG. First, with reference to FIGS. 2 and 3, let us consider a case where a foreign substance exists near the surface of the semiconductor substrate.

【0014】図2は、図1における半導体検査装置によ
る半導体基板の欠陥検出状態の第1の具体例を示す説明
図であり、図3は、その欠陥検出状態の信号波形例を示
すグラフである。本例においては、シリコン結晶からな
る半導体基板41に、表面近傍に酸素析出物42が存在
している。この半導体基板41の表面上にレーザ光(出
射光12)を細く集光する。そして、透過光を検出面5
1、52で構成される光分割検出器50で検出し、その
出力をオペアンプ等からなる差分電子回路61に入力し
て差をとる。半導体基板41の表面が清浄で、かつ酸素
析出物が照射光の照射領域に存在しないとき、すなわち
照射光の波面に乱れが生じないとき、差分電子回路61
からの信号強度はゼロになるように設定してある。
FIG. 2 is an explanatory view showing a first specific example of a defect detection state of a semiconductor substrate by the semiconductor inspection apparatus in FIG. 1, and FIG. 3 is a graph showing an example of a signal waveform in the defect detection state. . In this example, the oxygen precipitate 42 exists near the surface of the semiconductor substrate 41 made of silicon crystal. The laser light (emitted light 12) is finely focused on the surface of the semiconductor substrate 41. Then, the transmitted light is detected by the detection surface 5.
It is detected by the light splitting detector 50 composed of 1 and 52, and its output is input to the difference electronic circuit 61 composed of an operational amplifier or the like to take the difference. When the surface of the semiconductor substrate 41 is clean and oxygen precipitates are not present in the irradiation region of the irradiation light, that is, when the wavefront of the irradiation light is not disturbed, the difference electronic circuit 61
The signal strength from is set to zero.

【0015】本図2に示すように、半導体基板41中の
酸素析出物42を照射光が照射しているときは、シリコ
ン結晶マトリックスの屈折率は3.57であり、酸素析
出物42の屈折率はおよそ1.47であるので、酸素析
出物42の存在しないところと比較して波面の進行に差
が生じる。すなわち、光の位相に変化が生じ、酸素析出
物42中では光の波面はシリコン結晶中より早く進むこ
とになる。ここで、酸素析出物42を含んだ半導体基板
41をレーザ光(出射光12)に対して左から移動させ
ていく場合を考える。このときの信号強度の波形は図3
のようになり、酸素析出物42のないところを照射光が
照射しているときは差分電子回路61からの出力信号6
4はゼロである。
As shown in FIG. 2, when the oxygen precipitate 42 in the semiconductor substrate 41 is irradiated with the irradiation light, the refractive index of the silicon crystal matrix is 3.57, and the refractive index of the oxygen precipitate 42 is reduced. Since the rate is about 1.47, there is a difference in the progress of the wavefront as compared with the place where the oxygen precipitate 42 does not exist. That is, the phase of light changes, and the wavefront of light advances earlier in the oxygen precipitate 42 than in the silicon crystal. Here, consider a case where the semiconductor substrate 41 containing the oxygen precipitate 42 is moved from the left with respect to the laser light (emitted light 12). The waveform of the signal strength at this time is shown in FIG.
When the irradiation light irradiates the place where there is no oxygen precipitate 42, the output signal 6 from the differential electronic circuit 61
4 is zero.

【0016】酸素析出物42が出射光12の左に入った
ときは、出射光12の進行方向は右に曲げられ、光分割
検出器50の検出面52に光が強く入射することにな
る。差分電子回路61からの差分出力は、光分割検出器
50の検出面52の強度から検出面51の強度を減じた
ものになっているので、図3に示すように、増加した
後、減少することになる。さらに半導体基板41が移動
して、出射光12の右側に存在するようになると、検出
面51の方に光が強く入射するので、図3に示すよう
に、差分信号はさらに減少した後、増加に転じることに
なる。
When the oxygen precipitate 42 enters the left side of the emitted light 12, the traveling direction of the emitted light 12 is bent to the right, and the light is strongly incident on the detection surface 52 of the light splitting detector 50. Since the difference output from the difference electronic circuit 61 is obtained by subtracting the intensity of the detection surface 51 from the intensity of the detection surface 52 of the light split detector 50, it increases and then decreases as shown in FIG. It will be. When the semiconductor substrate 41 is further moved and comes to be on the right side of the emitted light 12, the light is strongly incident on the detection surface 51. Therefore, as shown in FIG. 3, the differential signal further decreases and then increases. Will turn to.

【0017】次に、図4および図5を用いて、異物が半
導体基板の表面に存在する場合を考える。図4は、図1
における半導体検査装置による半導体基板の欠陥検出状
態の第2の具体例を示す説明図であり、図5は、その欠
陥検出状態の信号波形例を示すグラフである。図4に示
すように、半導体基板41の表面に異物(表面異物4
3)が付着している。表面異物43の屈折率は一般的に
空気より大きいので、表面異物43中での出射光12の
波面の速度は空気中と比較して遅くなる。すなわち、位
相の遅れが生じる。このため、表面異物43を出射光1
2が照射したとき、出射光12の曲がる方向はシリコン
結晶中の酸素析出物の場合とは逆となる。従って、表面
異物43の付着した半導体基板41を左から移動させた
とき、図5のような出力波形を得ることになる。このよ
うに、シリコン結晶中の酸素析出物とシリコン結晶基板
表面に存在する異物とは異なる出力信号を発生するの
で、この出力信号の状態を比較することにより、それぞ
れの判別を容易に行なうことができる。
Next, with reference to FIGS. 4 and 5, let us consider a case where a foreign substance is present on the surface of the semiconductor substrate. 4 is shown in FIG.
5 is an explanatory diagram showing a second specific example of a defect detection state of the semiconductor substrate by the semiconductor inspection apparatus in FIG. 5, and FIG. 5 is a graph showing an example of a signal waveform in the defect detection state. As shown in FIG. 4, foreign matter (surface foreign matter 4
3) is attached. Since the refractive index of the surface foreign matter 43 is generally larger than that of air, the velocity of the wavefront of the emitted light 12 in the surface foreign matter 43 is slower than that in the air. That is, a phase delay occurs. For this reason, the surface foreign matter 43 is reflected by the emitted light 1
When 2 is irradiated, the bending direction of the emitted light 12 is opposite to that of the case of oxygen precipitates in the silicon crystal. Therefore, when the semiconductor substrate 41 having the surface foreign matter 43 attached thereto is moved from the left, the output waveform as shown in FIG. 5 is obtained. As described above, since the oxygen precipitates in the silicon crystal and the foreign matter existing on the surface of the silicon crystal substrate generate different output signals, the states of the output signals can be compared to easily determine the respective signals. it can.

【0018】以上、図1〜図5を用いて説明したよう
に、本実施例の半導体基板検査装置では、微小欠陥の屈
折率と半導体結晶マトリックスの屈折率の差をもとに半
導体内部に存在する微小欠陥を検出するだけでなく、検
出した信号強度の増加減少の順序を解析し、半導体基板
の表面近傍に存在する結晶欠陥と半導体基板表面に付着
した空気中に存在する異物とを判別することができる。
一般に、半導体製造工程における半導体基板は、種々の
熱処理工程を通過する。この熱処理工程により半導体基
板内部の酸素析出物の大きさあるいは分布、個数密度が
変化するが、本実施例の半導体基板検査装置では、特に
基板の表面近傍における酸素析出物の変化を、表面異物
の存在を除外して、知ることができる。その変化を検出
する場合、同じ半導体製造工程にダミー基板を流し、そ
れぞれの工程の後で抜き取り、本実施例の半導体基板検
査装置で検査することができる。
As described above with reference to FIGS. 1 to 5, in the semiconductor substrate inspection apparatus of the present embodiment, the semiconductor substrate exists inside the semiconductor based on the difference between the refractive index of the minute defect and the refractive index of the semiconductor crystal matrix. In addition to detecting small defects, the order of increase and decrease of the detected signal intensity is analyzed to distinguish between crystal defects existing near the surface of the semiconductor substrate and foreign particles existing in the air adhering to the semiconductor substrate surface. be able to.
Generally, a semiconductor substrate in a semiconductor manufacturing process passes through various heat treatment processes. This heat treatment step changes the size or distribution of oxygen precipitates inside the semiconductor substrate, and the number density, but in the semiconductor substrate inspection apparatus of the present embodiment, the change of oxygen precipitates particularly near the surface of the substrate is You can know it by excluding its existence. When detecting the change, a dummy substrate can be flown in the same semiconductor manufacturing process, extracted after each process, and inspected by the semiconductor substrate inspection apparatus of this embodiment.

【0019】また、本実施例の半導体基板検査装置によ
る検査は非破壊であるので、一枚のダミー基板を検査
後、工程に戻すことにより、同一場所の欠陥の変化をモ
ニタすることも可能である。また、製造途中の半導体装
置において、本実施例の半導体基板検査装置によりパタ
ーンの少ない部分を検査することにより、不良の発生を
早い段階で探知することもできる。さらに不良品を、そ
れが発覚した段階で抜き取ることにより、それ以降の工
程の無駄を防止することもできる。このようにして半導
体製造工程の品質管理の向上が可能になる。
Further, since the inspection by the semiconductor substrate inspection apparatus of this embodiment is non-destructive, it is possible to monitor the change of the defect at the same place by returning to the process after inspecting one dummy substrate. is there. Further, in the semiconductor device in the process of manufacturing, the semiconductor substrate inspection apparatus of this embodiment inspects a portion having a small number of patterns, so that the occurrence of defects can be detected at an early stage. Further, by removing the defective product at the stage when it is discovered, it is possible to prevent waste of the subsequent steps. In this way, the quality control of the semiconductor manufacturing process can be improved.

【0020】尚、本発明は、図1〜図5を用いて説明し
た実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能である。例えば、本実施
例では、半導体基板内部の酸素析出物が基板表面からど
の程度の深さにあるかを知るために、共焦点顕微鏡光学
系を付加した構成としているが、このような共焦点顕微
鏡光学系を具備しないものでも良い。また、本実施例の
光分割検出器は2分割での例を示しているが、2分割以
上の検出器を使用することでも良い。さらに、本実施例
では半導体基板の検査を例にして説明したが、光を透過
する他の部材、例えば、液晶などに対しても適用可能で
ある。
The present invention is not limited to the embodiment described with reference to FIGS. 1 to 5, and various modifications can be made without departing from the scope of the invention. For example, in this embodiment, a confocal microscope optical system is added in order to know the depth of oxygen precipitates inside the semiconductor substrate from the substrate surface. It may not have an optical system. Further, the light splitting detector of the present embodiment shows an example of splitting into two, but it is also possible to use a detector of splitting into two or more. Further, although the semiconductor substrate inspection is described as an example in the present embodiment, the present invention can be applied to other members that transmit light, such as liquid crystal.

【0021】[0021]

【発明の効果】本発明によれば、半導体基板等の部材の
表面に存在する異物と部材の表面近傍に存在する欠陥と
を容易に区別することができ、半導体等の結晶欠陥の検
出精度を向上させ、例えば半導体基板に対する歩留まり
の評価を高信頼化でき、また、本発明の部材基板検査装
置を半導体製造工程に使用することで、半導体製造工程
の品質管理を向上でき、半導体基板の品質を向上させる
ことが可能である。
According to the present invention, a foreign substance existing on the surface of a member such as a semiconductor substrate and a defect existing near the surface of the member can be easily distinguished from each other, and the detection accuracy of crystal defects such as a semiconductor can be improved. It is possible to improve, for example, the yield evaluation for a semiconductor substrate with high reliability, and by using the member substrate inspection apparatus of the present invention in the semiconductor manufacturing process, the quality control of the semiconductor manufacturing process can be improved and the quality of the semiconductor substrate can be improved. It is possible to improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体基板検査装置の本発明に係る構
成の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a configuration of a semiconductor substrate inspection apparatus of the present invention according to the present invention.

【図2】図1における半導体検査装置による半導体基板
の欠陥検出状態の第1の具体例を示す説明図である。
FIG. 2 is an explanatory diagram showing a first specific example of a defect detection state of a semiconductor substrate by the semiconductor inspection device in FIG.

【図3】図2における半導体基板の欠陥検出状態の信号
波形例を示すグラフである。
3 is a graph showing an example of a signal waveform in a defect detection state of the semiconductor substrate in FIG.

【図4】図1における半導体検査装置による半導体基板
の欠陥検出状態の第2の具体例を示す説明図である。
FIG. 4 is an explanatory diagram showing a second specific example of a defect detection state of a semiconductor substrate by the semiconductor inspection device in FIG.

【図5】図4における半導体基板の欠陥検出状態の信号
波形例を示すグラフである。
5 is a graph showing an example of signal waveforms in a defect detection state of the semiconductor substrate in FIG.

【符号の説明】[Explanation of symbols]

11:光源、12:出射光、21、22、23:レン
ズ、31:半透鏡、32:ピンホール、41:半導体基
板、42:酸素析出物、43:表面異物、50:光分割
検出器、51、52:検出面、56:検出器、60:走
査機構、61:差分電子回路、62:信号変化状態検出
回路、63:欠陥部位判別回路、64:出力信号
11: light source, 12: emitted light, 21, 22, 23: lens, 31: semi-transparent mirror, 32: pinhole, 41: semiconductor substrate, 42: oxygen precipitate, 43: surface foreign matter, 50: light splitting detector, 51: 52: detection surface, 56: detector, 60: scanning mechanism, 61: differential electronic circuit, 62: signal change state detection circuit, 63: defective portion discrimination circuit, 64: output signal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 部材を透過する光を走査させ、上記部材
の欠陥による上記光の位相の変化を検出する手段を少な
くとも有する検査装置であって、上記検出した光の位相
変化の現われ方を検出する検出手段と、該検出手段で検
出した上記光の位相変化の現われ方に基づき、上記部材
内の欠陥と上記部材の表面に付着した異物との判別を行
なう判別手段とを設けることを特徴とする部材の検査装
置。
1. An inspection apparatus having at least means for scanning light passing through a member to detect a change in the phase of the light due to a defect in the member, wherein the appearance of the phase change of the detected light is detected. And a determining means for determining a defect in the member and a foreign substance adhering to the surface of the member based on how the phase change of the light detected by the detecting means appears. Inspection device
【請求項2】 請求項1に記載の部材の検査装置におい
て、各々隣接した位置で上記部材を走査および透過した
光を受光し、該受光した光の強度に対応する信号強度を
出力する第1、第2の受光手段と、該第1、第2の受光
手段から出力された信号強度の差を走査順に出力する比
較手段とを設け、上記検出手段は、上記比較手段から走
査順に出力される信号強度差の変化の現われ方に基づ
き、上記光の位相変化の現われ方の検出を行なうことを
特徴とする部材の検査装置。
2. The member inspection apparatus according to claim 1, wherein the light which has been scanned and transmitted through the members at adjacent positions is received, and a signal intensity corresponding to the intensity of the received light is output. , Second light receiving means and comparing means for outputting the difference in the signal intensities outputted from the first and second light receiving means in the scanning order, and the detecting means is outputted from the comparing means in the scanning order. An inspection apparatus for a member, which detects the appearance of the phase change of the light based on the appearance of the change in the signal intensity difference.
【請求項3】 部材を透過する波長の光を発生する光源
と、該光源からの光を集光する光学系と、集光位置で上
記部材を保持して走査させる走査機構と、上記部材を透
過した光を複数に面積分割して受光し、各々の受光強度
に対応する信号を出力する光分割検出器と、該光分割検
出器から走査順に出力される各信号の差分を出力する差
分電子回路とを少なくとも有し、上記差分電子回路から
走査順に出力される差分信号の変化に基づき上記部材の
欠陥を検出する検査装置であって、上記差分電子回路か
ら走査順に出力される差分信号の変化の現われ方を検出
する検出手段と、該検出手段で検出した上記差分信号の
変化の現われ方に基づき、上記部材の欠陥と上記部材の
表面に付着した異物との判別を行なう判別手段とを設け
ることを特徴とする部材の検査装置。
3. A light source that emits light of a wavelength that passes through a member, an optical system that collects light from the light source, a scanning mechanism that holds and scans the member at the light collecting position, and the member. An optical division detector that receives the transmitted light by dividing it into a plurality of areas and outputs a signal corresponding to each received light intensity, and a differential electron that outputs the difference between the signals output from the optical division detector in the scanning order. And a circuit for detecting a defect of the member based on a change of a difference signal output from the difference electronic circuit in a scanning order, the change of the difference signal output from the difference electronic circuit in a scanning order. A detecting means for detecting the appearance of the defect and a determining means for determining the defect of the member and the foreign matter adhering to the surface of the member based on the appearance of the change of the differential signal detected by the detecting means. Characterized by Inspection device for parts.
【請求項4】 部材を透過する光を走査させ、上記部材
の欠陥による上記光の位相の変化を検出して、上記部材
の欠陥の有無を判定する検査方法であって、上記部材を
走査および透過した光の位相変化の現われ方を検出し、
該検出した光の位相変化の現われ方に基づき、上記部材
内の欠陥と上記部材の表面に付着した異物との判別を行
なうことを特徴とする部材の検査方法。
4. An inspection method for determining the presence or absence of a defect in the member by scanning light passing through the member, detecting a change in the phase of the light due to a defect in the member, and scanning the member. The appearance of the phase change of the transmitted light is detected,
A method for inspecting a member, wherein a defect in the member and a foreign substance adhering to the surface of the member are discriminated based on how the detected phase change of the light appears.
【請求項5】 請求項4に記載の部材の検査方法におい
て、各々隣接した位置で上記部材を走査および透過した
光を受光し、該受光した各々の光の強度に対応する信号
強度を出力し、該各々の信号強度の差を走査順に出力
し、該走査順に出力される信号強度差の変化の現われ方
に基づき、上記光の位相変化の現われ方の検出を行なう
ことを特徴とする部材の検査方法。
5. The method for inspecting a member according to claim 4, wherein the light beams that have been scanned and transmitted through the members at adjacent positions are received, and a signal intensity corresponding to the intensity of each received light is output. , A difference in the signal intensities is output in the scanning order, and the appearance of the phase change of the light is detected based on the appearance of the change in the signal intensity difference output in the scanning order. Inspection methods.
【請求項6】 部材を透過する波長の光を発生させ、該
光を集光し、該集光位置で上記部材を保持して走査し、
上記部材を透過した光を複数に面積分割して受光し、各
々の受光強度に対応する信号を走査順に出力し、該出力
信号の差分を出力し、該差分信号の走査順の変化に基づ
き上記部材の欠陥の検出を行なう検査方法であって、上
記走査順に出力される差分信号の変化の現われ方を検出
し、該検出した差分信号の変化の現われ方に基づき、上
記部材の欠陥と上記部材の表面に付着した異物との判別
を行なうことを特徴とする部材の検査方法。
6. A light having a wavelength that passes through a member is generated, the light is condensed, and the member is held and scanned at the condensed position.
The light transmitted through the member is divided into a plurality of areas to receive light, signals corresponding to the respective received light intensities are output in the scanning order, the difference between the output signals is output, and the difference signal is output based on the change in the scanning order. An inspection method for detecting a defect of a member, wherein the appearance of the change of the differential signal output in the scanning order is detected, and the defect of the member and the member are detected based on the appearance of the change of the detected differential signal. A method for inspecting a member, which is characterized in that it is distinguished from a foreign matter attached to the surface of the.
JP2148195A 1995-02-09 1995-02-09 Apparatus and method for member inspection Pending JPH08220004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2148195A JPH08220004A (en) 1995-02-09 1995-02-09 Apparatus and method for member inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2148195A JPH08220004A (en) 1995-02-09 1995-02-09 Apparatus and method for member inspection

Publications (1)

Publication Number Publication Date
JPH08220004A true JPH08220004A (en) 1996-08-30

Family

ID=12056172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148195A Pending JPH08220004A (en) 1995-02-09 1995-02-09 Apparatus and method for member inspection

Country Status (1)

Country Link
JP (1) JPH08220004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210571A (en) * 2005-01-27 2006-08-10 Sumco Corp Wafer evaluation method and evaluation apparatus
JP2011107144A (en) * 2009-11-20 2011-06-02 Foundation Seoul Technopark Junction wafer inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210571A (en) * 2005-01-27 2006-08-10 Sumco Corp Wafer evaluation method and evaluation apparatus
JP4604734B2 (en) * 2005-01-27 2011-01-05 株式会社Sumco Wafer evaluation method
JP2011107144A (en) * 2009-11-20 2011-06-02 Foundation Seoul Technopark Junction wafer inspection method

Similar Documents

Publication Publication Date Title
US7643139B2 (en) Method and apparatus for detecting defects
US7046355B2 (en) Dual stage defect region identification and defect detection method and apparatus
JP5032114B2 (en) Patterned or non-patterned wafer and other specimen inspection systems
JP3381924B2 (en) Inspection device
JP3996728B2 (en) Surface inspection apparatus and method
JP5243699B2 (en) System and method for specimen edge inspection
JP4631002B2 (en) Method for detecting defects and apparatus therefor
JPH081416B2 (en) Particle sorter
JP2008218799A (en) Surface inspection method and surface inspection device
JP3404274B2 (en) Wafer inspection equipment
JPH08247959A (en) Inspecting instrument and exposing device using the same and device production method
KR100389524B1 (en) Defect inspection method and device thereof
US7426031B2 (en) Method and apparatus for inspecting target defects on a wafer
JP2014137229A (en) Inspection system and defect inspection method
JP4359689B2 (en) Inspection apparatus and inspection method, pattern substrate manufacturing method
JP2002188999A (en) Detector and method for detecting foreign matter and defect
KR100684102B1 (en) Method of inspecting a defect and apparatus for inspecting a defect using the same
US7175875B2 (en) Method and apparatus for plasma processing
JPH0518889A (en) Method and device for inspecting foreign matter
JPH08220004A (en) Apparatus and method for member inspection
JP2001083080A (en) Crystal defect measuring device
JPH07318500A (en) Inspection device for vicinity of object surface
JPH0291504A (en) Method for inspecting cross-sectional profile of fine pattern
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JP3338118B2 (en) Method for manufacturing semiconductor device