JPH08219421A - Radiant tube - Google Patents

Radiant tube

Info

Publication number
JPH08219421A
JPH08219421A JP2674995A JP2674995A JPH08219421A JP H08219421 A JPH08219421 A JP H08219421A JP 2674995 A JP2674995 A JP 2674995A JP 2674995 A JP2674995 A JP 2674995A JP H08219421 A JPH08219421 A JP H08219421A
Authority
JP
Japan
Prior art keywords
radiant tube
heat
tube unit
radiant
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2674995A
Other languages
Japanese (ja)
Inventor
Akira Tsuyuki
明 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2674995A priority Critical patent/JPH08219421A/en
Publication of JPH08219421A publication Critical patent/JPH08219421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)

Abstract

PURPOSE: To reduce thermal strain and prevent the generation of deformation or crack by a method wherein two kinds or more of heat resistant alloys, having different coefficients of linear thermal expansion, are used to reduce a difference between the coefficients of linear thermal expansion of radiant tubes at a combustion burner side and an exhaust gas side. CONSTITUTION: A radiant tube, having W-shape, is constituted of a first straight tube unit 1, a second straight tube unit 2, a third straight tube unit 3, a fourth straight tube unit 4, a first bent tube unit 5, a second bent tube unit 6, a third bent tube unit 7 and connecting parts 8 through welding. Both end parts of the radiant tube are fixed rigidly to the outer surface of a furnace wall 9. Accordingly, a temperature difference is generated between the high-temperature unit of a combustion burner 10 side and the low-temperature unit of exhaust gas 11 side whereby a difference of the length of thermal expansion of the radiant tube between the first straight tube unit 1 and the fourth straight tube unit 4 is generated thereby generating a thermal stress. Due to such a reason, two kinds or more of alloys having different coefficient of linear thermal expansion are used for the material of the heat resistant alloys constituting the radiant tubes to reduce the difference of the coefficient of linear thermal expansion due to the temperature difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷間圧延後の鋼板の熱
処理炉の間接加熱に用いるラジアントチューブに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiant tube used for indirect heating of a steel sheet after cold rolling in a heat treatment furnace.

【0002】[0002]

【従来の技術】一般に冷延鋼板およびブリキ原板等の連
続焼鈍炉およびその他多種の熱処理炉、加熱炉等の加熱
設備おいて使用されるラジアントチューブについては、
図5および図6に示すようにW型およびU型ラジアント
チューブが知られている。すなわち、図5はW型ラジア
ントチューブの構造を示す断面図である。この図に示す
ように、W字形をなすラジアントチューブは第1直管部
1、第2直管部2、第3直管部3および第4直管部4と
第1曲管部5、第2曲管部6及び第3曲管部7並びに溶
接接合部8より構成され、この連続焼鈍炉のW型ラジア
ントチューブはラジアントチューブの両端部分が炉壁9
の炉壁外面部に堅固に固定されているために、燃焼バー
ナ10側の高温部と排気ガス側11の低温部との温度差
による熱歪が生じた場合に、その伸縮を開放することが
出来ないために、ラジアントチューブに大きな変形や亀
裂が生じたり、あるいはラジアントチューブと炉壁の炉
壁外面部との取付部分が破損することもあり、このよう
な場合には付帯設備の補修をしなければならない等の問
題がある。
2. Description of the Related Art Radiant tubes which are generally used in continuous annealing furnaces for cold rolled steel sheets and tin plates and various other heat treatment furnaces and heating equipment such as heating furnaces are
As shown in FIGS. 5 and 6, W-shaped and U-shaped radiant tubes are known. That is, FIG. 5 is a sectional view showing the structure of the W-shaped radiant tube. As shown in this figure, the W-shaped radiant tube includes a first straight pipe portion 1, a second straight pipe portion 2, a third straight pipe portion 3, a fourth straight pipe portion 4, a first curved pipe portion 5, and a first straight pipe portion 5. The W-shaped radiant tube of the continuous annealing furnace is composed of the second curved pipe portion 6, the third curved pipe portion 7 and the welded joint portion 8. Both end portions of the radiant tube are the furnace wall 9
Since it is firmly fixed to the outer surface of the furnace wall, the expansion and contraction can be released when thermal strain occurs due to the temperature difference between the high temperature part on the combustion burner 10 side and the low temperature part on the exhaust gas side 11. Because of this, the radiant tube may be greatly deformed or cracked, or the attachment part between the radiant tube and the outer surface of the furnace wall of the furnace wall may be damaged.In such a case, repair the incidental equipment. There are problems such as having to.

【0003】また、図6はU型ラジアントチューブの構
造を示す断面図である。この図に示すように、U字形を
なすラジアントチューブは第1直管部1、第2直管部2
と第1曲管部5並びにこれらを接合するための溶接接合
部8より構成され、このU型ラジアントチューブにおい
ても、前述W型ラジアントチューブと同様に両端部分が
炉壁9の炉壁外面部に堅固に固定されているために、燃
焼バーナ10側の高温部と排気ガス側11の低温部との
排ガスの流れ方向に温度勾配により、熱応力による熱応
力破損が生ずる。
FIG. 6 is a sectional view showing the structure of a U-shaped radiant tube. As shown in this figure, the U-shaped radiant tube has a first straight pipe portion 1 and a second straight pipe portion 2
And a first bent pipe portion 5 and a welded joint portion 8 for joining them together. In this U-shaped radiant tube, both end portions are the outer wall portion of the furnace wall 9 as in the W-shaped radiant tube. Since it is firmly fixed, thermal stress damage due to thermal stress occurs due to the temperature gradient in the exhaust gas flow direction between the high temperature portion on the combustion burner 10 side and the low temperature portion on the exhaust gas side 11.

【0004】[0004]

【発明が解決しようとする課題】上述したようなW型ラ
ジアントチューブ及びU型ラジアントチューブにおいて
の変形、亀裂の発生対策としては材質を高クリープ強度
材に変更したり、バーナの改良によるチューブ長手方向
の温度分布の均一化及び局部過熱の防止並びに支持構造
の改良が行われいる。特に材質変更として、Ni−Cr
系の耐熱合金の単体使用がされているが、このNi−C
r系の耐熱合金の単体の場合は、例え材質の変更による
高クリープ強度を高めたとしても、燃焼バーナ側の高温
部と排気ガス側の低温度との温度差がある限り第1直管
部と第4直管部で熱膨張長さに差を生じ、この温度分布
に起因する熱応力に対しては効果が期待できない等の問
題がある。
As measures against the occurrence of deformation and cracks in the above W-shaped radiant tube and U-shaped radiant tube, the material is changed to a high creep strength material or the burner is improved in the longitudinal direction of the tube. The temperature distribution of the steel has been made uniform, local overheating has been prevented, and the support structure has been improved. Especially as a material change, Ni-Cr
This type of Ni-C
In the case of a single r-type heat-resistant alloy, even if the high creep strength is improved by changing the material, as long as there is a temperature difference between the high temperature part on the combustion burner side and the low temperature on the exhaust gas side, the first straight pipe part And the fourth straight pipe portion has a difference in thermal expansion length, and there is a problem that an effect cannot be expected with respect to thermal stress due to this temperature distribution.

【0005】これらの問題を解消するべき、発明者らは
鋭意開発を進めた結果、ラジアントチューブを構成する
耐熱合金における線膨張率の異なる2種以上の合金を使
用し、しかも線膨張率がラジアントチューブの燃焼バー
ナから順次大きくなるような配設をすることにより、燃
焼バーナ側から排気ガス側との温度差が生ずるにもかか
わらずラジアントチューブの線膨張率の差を小さくして
熱歪を小さくして、温度分布に起因する熱歪を低減し、
ラジアントチューブの変形や亀裂の発生を防止しラジア
ントチューブの寿命延長及び付帯設備の補修を少なくし
た鋼板熱処理炉のラジアントチューブを提供することを
目的としている。
As a result of intensive development by the inventors to solve these problems, two or more kinds of heat-resistant alloys constituting the radiant tube having different linear expansion coefficients are used, and the linear expansion coefficient is radiant. By arranging the tubes so that they gradually increase from the combustion burner, the difference in the linear expansion coefficient of the radiant tube is reduced and the thermal strain is reduced despite the temperature difference from the combustion burner side to the exhaust gas side. To reduce the thermal strain caused by the temperature distribution,
It is an object of the present invention to provide a radiant tube for a steel plate heat treatment furnace, which prevents deformation and cracking of the radiant tube, extends the life of the radiant tube, and reduces repair of incidental equipment.

【0006】[0006]

【課題を解決するための手段】上記目的とするための手
段としては、次の通りである。 (1)冷間圧延後の鋼板の熱処理炉の間接加熱に用いる
ラジアントチューブを構成する耐熱合金において、線膨
張率の異なる2種以上の合金を使用することを特徴とす
るラジアントチューブ。 (2)(1)記載の耐熱合金の線膨張率がラジアントチ
ューブの燃焼バーナから順次、大きくなるように配設し
たことを特徴とするラジアントチューブ。 (3)(1)および(2)記載の隣接するラジアントチ
ューブの耐熱合金の線膨張率の差を1〜2×10-6とし
たことを特徴とするラジアントチューブ。
The means for achieving the above object are as follows. (1) A radiant tube characterized by using two or more kinds of alloys having different linear expansion coefficients in a heat resistant alloy constituting a radiant tube used for indirect heating of a heat treatment furnace for a steel sheet after cold rolling. (2) A radiant tube, wherein the heat-resistant alloy according to (1) is arranged so that the linear expansion coefficient of the heat-resistant alloy increases in order from the combustion burner of the radiant tube. (3) A radiant tube characterized in that the difference in linear expansion coefficient between the heat-resistant alloys of the adjacent radiant tubes described in (1) and (2) is 1 to 2 × 10 −6 .

【0007】[0007]

【作用】以下、本発明について図面に従って詳細に説明
する。図1はW型ラジアントチューブの燃焼排ガス温度
と本発明に係るラジアントチューブの耐熱合金の常温で
の線膨張率との関係を示す図である。この図1に示すよ
うに、鋼板熱処理炉のラジアントチューブは燃焼バーナ
側の排ガス温度が高く、一方、排気ガス出側の温度は燃
焼バーナ側の排ガス温度より約200℃低下する。従っ
て、燃焼バーナ側と排気ガス出側とに温度差が生じ、第
1直管部と第4直管部でのラジアントチューブの熱膨張
長さに差を生じ、そのために熱応力が発生してラジアン
トチューブの変形や亀裂の原因となっている。また、図
2はU型ラジアントチューブの燃焼排ガス温度と本発明
に係るラジアントチューブの耐熱合金の常温での線膨張
率との関係を示す図である。U型ラジアントチューブの
場合も図1と同様に燃焼バーナ側の排ガス温度が高く、
かつ出側温度とは約130〜150℃の差が生じる。従
って、第1直管部と第2直管部とで熱膨張長さに差を生
じ、やはり、熱応力が発生してラジアントチューブの変
形や亀裂の原因となっていることが判明した。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing the relationship between the combustion exhaust gas temperature of a W-type radiant tube and the linear expansion coefficient of the heat-resistant alloy of the radiant tube according to the present invention at room temperature. As shown in FIG. 1, in the radiant tube of the steel sheet heat treatment furnace, the exhaust gas temperature on the combustion burner side is high, while the temperature on the exhaust gas outlet side is about 200 ° C. lower than the exhaust gas temperature on the combustion burner side. Therefore, a temperature difference occurs between the combustion burner side and the exhaust gas outlet side, causing a difference in the thermal expansion length of the radiant tube between the first straight pipe portion and the fourth straight pipe portion, which causes thermal stress. This causes deformation and cracks in the radiant tube. FIG. 2 is a diagram showing the relationship between the combustion exhaust gas temperature of the U-shaped radiant tube and the linear expansion coefficient of the heat-resistant alloy of the radiant tube according to the present invention at room temperature. Also in the case of the U-shaped radiant tube, the exhaust gas temperature on the combustion burner side is high as in FIG.
In addition, there is a difference of about 130 to 150 ° C. from the outlet temperature. Therefore, it was found that the first straight pipe portion and the second straight pipe portion have different thermal expansion lengths, and thermal stress is also generated, which causes deformation and cracks of the radiant tube.

【0008】このようなことから、本発明においてはラ
ジアントチューブを構成する耐熱合金について線膨張率
の異なる2種以上の合金を使用することによって温度差
による線膨張率の差を小さくしようとするものである。
そのために、表1に示す化学成分組成を持つ耐熱合金を
用いた。その各耐熱合金の物理的性質である融点及び比
重を表2に示す。また、これらの各耐熱合金の温度70
0℃〜1000℃における熱膨張係数及び熱伝導率の値
を表3に示す。これらの耐熱合金から成るラジアントチ
ューブを燃焼バーナから順次、線膨張率が大きくなるよ
うに各々組合わせることによる。例えば、燃焼バーナか
ら排気ガス側に順次、耐熱合金A,B,C及びDの順に
組合わせることによって、線膨張率の差を小さく設定さ
せるものである。ここで特に隣接するラジアントチュー
ブの耐熱合金の線膨張率の差を1〜2×10-6になるよ
うな耐熱合金を組合わせる必要がある。
Therefore, in the present invention, it is intended to reduce the difference in linear expansion coefficient due to temperature difference by using two or more kinds of heat-resistant alloys constituting the radiant tube, which alloys have different linear expansion coefficients. Is.
Therefore, a heat-resistant alloy having the chemical composition shown in Table 1 was used. Table 2 shows the melting point and the specific gravity which are the physical properties of each heat resistant alloy. In addition, the temperature of each of these heat-resistant alloys is 70
Table 3 shows the values of the thermal expansion coefficient and the thermal conductivity at 0 ° C to 1000 ° C. Radiant tubes made of these heat-resistant alloys are sequentially combined from the combustion burner so that the linear expansion coefficient increases. For example, by combining the heat-resistant alloys A, B, C and D in this order from the combustion burner to the exhaust gas side, the difference in linear expansion coefficient can be set small. Here, it is particularly necessary to combine heat-resistant alloys such that the difference in linear expansion coefficient between the heat-resistant alloys of adjacent radiant tubes is 1 to 2 × 10 −6 .

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】図3は本発明に係るW型ラジアントチュー
ブの第1直管部と第4直管部の耐熱合金の熱膨張長さの
計算値と従来の単一材質のラジアントチューブの耐熱合
金の熱膨張長さの計算値とを示す図である。この図3に
示すように、第1直管部と第4直管部の耐熱合金の熱膨
張長さは計算によっても、本発明品は従来品に比較して
差の小さいことが判る。
FIG. 3 shows the calculated values of the thermal expansion lengths of the heat-resistant alloys of the first straight pipe portion and the fourth straight pipe portion of the W type radiant tube according to the present invention and the conventional heat-resistant alloy of the single material radiant tube. It is a figure which shows the calculated value of thermal expansion length. As shown in FIG. 3, the thermal expansion lengths of the heat-resistant alloys of the first straight pipe portion and the fourth straight pipe portion are also calculated, and it can be seen that the product of the present invention has a smaller difference than the conventional product.

【0013】[0013]

【実施例】図1に示すW型ラジアントチューブを用い
て、燃焼による高温度に当たる第1直管部には常温にお
ける線膨張率16±1×10-6なる耐熱合金Aを用い、
また、第2直管部には線膨張率17±1×10-6なる耐
熱合金Bを、第3直管部には同じく線膨張率17±1×
10-6なる耐熱合金Cを、更に第4直管部には線膨張率
18±1×10-6なる耐熱合金Dをそれぞれ用いた。ま
た、第1曲管部にも同様に、隣接する耐熱合金A、第2
曲管部に耐熱合金B及び第3曲管部に耐熱合金Dを、ま
た、各溶接接合部の材質についても隣接する直管と同じ
耐熱合金を用いた。このように燃焼バーナから排気ガス
側に順次組合わせた本発明のラジアントチューブの効果
を確認するために次の試験を行った。燃焼量15×10
4 kcal/hr、径150mm、肉厚9mmの本バー
ナを用い、チューブ平均の最高温度1000℃とした状
態で燃焼を行った。その結果を図4に示す。図4は本発
明に係るW型ラジアントチューブの第1直管部と第4直
管部の耐熱合金の燃焼試験時の応力実測値と従来の単一
材料のラジアントチューブの耐熱合金応力実測値を示す
図である。この図4に示すように、本発明品は従来品に
比べて、第1直管部及び第4直管部共に熱応力の値が小
さくなっていることを示している。従って、本発明に係
るラジアントチューブにおいては変形や亀裂が少なく、
因って、ラジアントチューブの寿命延長や付帯設備の補
修を少なくすることが可能となった。
EXAMPLE Using the W type radiant tube shown in FIG. 1, a heat-resistant alloy A having a linear expansion coefficient of 16 ± 1 × 10 −6 at room temperature was used for the first straight pipe part exposed to high temperature due to combustion.
Further, a heat-resistant alloy B having a linear expansion coefficient of 17 ± 1 × 10 −6 was used for the second straight pipe portion, and a linear expansion coefficient of 17 ± 1 × was similarly used for the third straight pipe portion.
10-6 becomes heat resistant alloy C, further in the fourth straight pipe section using a linear expansion coefficient 18 ± 1 × 10 -6 comprising heat resistant alloy D, respectively. In addition, the heat-resistant alloy A, second
The heat-resistant alloy B was used for the curved pipe portion, the heat-resistant alloy D was used for the third curved pipe portion, and the same heat-resistant alloy as that of the adjacent straight pipe was used for the material of each welded joint. The following test was conducted in order to confirm the effect of the radiant tube of the present invention sequentially combined from the combustion burner to the exhaust gas side in this way. Burning amount 15 × 10
Combustion was carried out using a main burner having a diameter of 150 mm and a wall thickness of 9 mm at 4 kcal / hr and a tube average maximum temperature of 1000 ° C. FIG. 4 shows the results. FIG. 4 shows the stress measurement values of the first straight pipe portion and the fourth straight pipe portion of the W-shaped radiant tube according to the present invention during the combustion test and the heat-resistant alloy stress measurement value of the conventional single-material radiant tube. FIG. As shown in FIG. 4, the product of the present invention has smaller thermal stress values in both the first straight pipe portion and the fourth straight pipe portion than the conventional product. Therefore, the radiant tube according to the present invention has less deformation and cracks,
As a result, it has become possible to extend the life of the radiant tube and reduce the repair of incidental equipment.

【0014】[0014]

【発明の効果】以上述べたように、本発明による線膨張
率の異なる2種以上の耐熱合金を使用することにより、
燃焼バーナ側と排気ガス側とのラジアントチューブの線
膨張率の差を小さくし、ラジアントチューブの熱応力に
よる歪み発生を防止することによって、ラジアントチュ
ーブの寿命延長及び付帯設備の補修を少なくすることが
出来る極めて優れた効果を奏するものである。
As described above, by using two or more kinds of heat resistant alloys having different linear expansion coefficients according to the present invention,
By reducing the difference in the linear expansion coefficient of the radiant tube between the combustion burner side and the exhaust gas side and preventing distortion due to thermal stress in the radiant tube, it is possible to extend the life of the radiant tube and reduce the repair of incidental equipment. It has an extremely excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】W型ラジアントチューブの燃焼排ガス温度と本
発明に係るラジアントチューブの耐熱合金の線膨張率と
の関係を示す図、
FIG. 1 is a diagram showing a relationship between a combustion exhaust gas temperature of a W-shaped radiant tube and a linear expansion coefficient of a heat-resistant alloy of the radiant tube according to the present invention,

【図2】U型ラジアントチューブの燃焼排ガス温度と本
発明に係るラジアントチューブの耐熱合金の線膨張率と
の関係を示す図、
FIG. 2 is a graph showing the relationship between the combustion exhaust gas temperature of a U-shaped radiant tube and the linear expansion coefficient of the heat-resistant alloy of the radiant tube according to the present invention.

【図3】本発明に係るW型ラジアントチューブの第1直
管部と第4直管部の耐熱合金の熱膨張長さの計算値と従
来の単一材質のラジアントチューブの耐熱合金の熱膨張
長さの計算値とを示す図、
FIG. 3 shows calculated values of thermal expansion lengths of the heat-resistant alloys of the first straight pipe portion and the fourth straight pipe portion of the W-shaped radiant tube according to the present invention and the thermal expansion of the heat-resistant alloy of the conventional single-material radiant tube. Figure showing the calculated length and

【図4】本発明に係るW型ラジアントチューブの第1直
管部と第4直管部の耐熱合金の燃焼試験時の応力実測値
と従来の単一材料のラジアントチューブの耐熱合金応力
実測値とを示す図、
FIG. 4 is a stress measurement value of a heat-resistant alloy of a first straight pipe portion and a fourth straight pipe portion of a W-shaped radiant tube according to the present invention during a combustion test and a heat-resistant alloy stress measurement value of a conventional single-material radiant tube. And a diagram showing

【図5】W型ラジアントチューブの構造を示す断面図、FIG. 5 is a cross-sectional view showing the structure of a W-shaped radiant tube,

【図6】U型ラジアントチューブの構造を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing the structure of a U-shaped radiant tube.

【符号の説明】[Explanation of symbols]

1 第1直管部 2 第2直管部 3 第3直管部 4 第4直管部 5 第1曲管部 6 第2曲管部 7 第3曲管部 8 溶接接合部 9 炉壁 10 燃焼バーナ 11 排気ガス側 1 1st straight pipe part 2 2nd straight pipe part 3 3rd straight pipe part 4 4th straight pipe part 5 1st curved pipe part 6 2nd curved pipe part 7 3rd curved pipe part 8 Weld joint 9 furnace wall 10 Combustion burner 11 Exhaust gas side

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷間圧延後の鋼板の熱処理炉の間接加熱
に用いるラジアントチューブを構成する耐熱合金におい
て、線膨張率の異なる2種以上の合金を使用することを
特徴とするラジアントチューブ。
1. A radiant tube characterized by using two or more kinds of alloys having different linear expansion coefficients in a heat-resistant alloy constituting a radiant tube used for indirect heating of a heat treatment furnace for a steel sheet after cold rolling.
【請求項2】 請求項1記載の耐熱合金の線膨張率がラ
ジアントチューブの燃焼バーナから順次、大きくなるよ
うに配設したことを特徴とするラジアントチューブ。
2. A radiant tube characterized in that the heat-resistant alloy according to claim 1 is arranged such that the linear expansion coefficient thereof increases in order from the combustion burner of the radiant tube.
【請求項3】 請求項1および2記載の隣接するラジア
ントチューブの耐熱合金の線膨張率の差を1〜2×10
-6としたことを特徴とするラジアントチューブ。
3. The difference in linear expansion coefficient between the heat-resistant alloys of the adjacent radiant tubes according to claim 1 or 2 is 1 to 2 × 10.
Radiant tube characterized by -6 .
JP2674995A 1995-02-15 1995-02-15 Radiant tube Pending JPH08219421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2674995A JPH08219421A (en) 1995-02-15 1995-02-15 Radiant tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2674995A JPH08219421A (en) 1995-02-15 1995-02-15 Radiant tube

Publications (1)

Publication Number Publication Date
JPH08219421A true JPH08219421A (en) 1996-08-30

Family

ID=12201949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2674995A Pending JPH08219421A (en) 1995-02-15 1995-02-15 Radiant tube

Country Status (1)

Country Link
JP (1) JPH08219421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886876A (en) * 2010-06-30 2010-11-17 无锡华精新型材料有限公司 Multi-elbow radiant tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886876A (en) * 2010-06-30 2010-11-17 无锡华精新型材料有限公司 Multi-elbow radiant tube

Similar Documents

Publication Publication Date Title
JP6909806B2 (en) Tubes and methods for making tubes
TW200821503A (en) Boiler water wall panel
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP3170720B2 (en) Dissimilar material welding method
JPH08219421A (en) Radiant tube
JPH01111192A (en) Heat exchanger
JPS5847634B2 (en) Rokan Oshishiyousuruhouhou Oyobi Sonotamenoshijikouzotai
JP3218831B2 (en) Radiant tube
JP2003232502A (en) Steam superheater
JP6908018B2 (en) In-core support structure for W-type radiant tube
JPH09303713A (en) In-furnace support structure of regenerative alternating combustion type radiant tube
JP3106875B2 (en) Radiant heating tube
JP3323416B2 (en) Radiant tube of heat treatment furnace
JP2001004101A (en) Unit member for water-cooled panel segment and manufacture of water-cooled panel segment with protective coating
JPH07280477A (en) Radiant tube
JPH0749190A (en) Manufacture of heat exchanger
JP6624148B2 (en) Radiant tube and heat treatment furnace
JPH0820817A (en) Radiation heating tube
JPH07228941A (en) Heat resistant cast alloy
JPH10281402A (en) Metal attachment to heating tube and heat exchanger
JPS61253319A (en) Structure for attaching radiant tube
JPH0894006A (en) Radiant tube
JPH10103624A (en) Radiant tube of heating furnace
JPH04302945A (en) Heating heat exchanger
JPH0335924Y2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031111