JPH08219230A - Vibration isolator - Google Patents

Vibration isolator

Info

Publication number
JPH08219230A
JPH08219230A JP4790495A JP4790495A JPH08219230A JP H08219230 A JPH08219230 A JP H08219230A JP 4790495 A JP4790495 A JP 4790495A JP 4790495 A JP4790495 A JP 4790495A JP H08219230 A JPH08219230 A JP H08219230A
Authority
JP
Japan
Prior art keywords
vibration
displacement
actuator
weight
vibration isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4790495A
Other languages
Japanese (ja)
Inventor
Atsushi Shimamoto
篤 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elionix Kk
Original Assignee
Elionix Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elionix Kk filed Critical Elionix Kk
Priority to JP4790495A priority Critical patent/JPH08219230A/en
Publication of JPH08219230A publication Critical patent/JPH08219230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE: To decrease the resonant frequency of the vibration isolating surface of a vibration isolator by measuring relative displacement of a weight to the vibration isolating surface against vibration of a floor surface, transmitting this relative displacement to an actuator in the form of a specific transfer function, and making feed-back control of the displacement by means of the actuator. CONSTITUTION: To provide connection between a vibration isolating surface 2 and a floor surface 1 by means of an actuator 6 using a piezo-electric element, and also a weight 3 is mounted on the vibration isolating surface 2 via a spring 4 serving as a damping mechanism. Then the relative displacement of a weight 3 to the vibration isolating surface 2 against the vibration of the floor surface 1 is measured, and this relative displacement is transmitted to an actuator 6 in the form of a specific transfer function, and the displacement of the vibration isolating surface 2 is feed-back controlled by means of the actuator 6. Thereby, the resonant frequency of the vibration isolating surface 2 can be reduced so as to provide a vibration isolator of high vibration isolating performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は除振装置、さらに詳しく
は例えば走査プローブ顕微鏡や超微小硬度計などの精密
測定機器に使用される除振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-vibration device, and more particularly to an anti-vibration device used in precision measuring instruments such as a scanning probe microscope and a micro hardness meter.

【0002】[0002]

【従来の技術】例えば走査プローブ顕微鏡(SPM)や
ナノインデンテーション試験機などの精密測定機器は、
近年ナノメートル以下の分解能を持つ機器が実用化され
ているが、これらの機器の性能を充分に発揮させるため
には、充分な除振対策が施される必要がある。すなわち
一般の実験室では、比較的良好な条件化においてもμm
オーダーの床振動が存在するため、この振動を測定に影
響を与えないサブナノメートル程度に押さえる必要があ
り、このため100dB程度の減衰率を持つ除振装置が
必要になる。この種の除振装置で100dB程度の減衰
率を確保する方法としては、除振装置の共振周波数と測
定機器の共振周波数とに差異を設け、共振周波数の差異
によって除振性能を得ることとしており、構造上より容
易な方法として、除振面の共振周波数を出来るだけ低く
し、測定機器の共振周波数を出来るだけ高くする方法を
取っている。
2. Description of the Related Art Precision measuring instruments such as a scanning probe microscope (SPM) and a nanoindentation tester are
In recent years, devices having a resolution of nanometers or less have been put into practical use, but in order to sufficiently bring out the performance of these devices, it is necessary to take sufficient anti-vibration measures. That is, in a general laboratory, μm even under relatively good conditions.
Since floor vibration of the order exists, it is necessary to suppress this vibration to sub-nanometers that do not affect the measurement. Therefore, a vibration isolation device having a damping rate of about 100 dB is required. As a method of ensuring an attenuation rate of about 100 dB with this type of vibration isolator, a difference is set between the resonance frequency of the vibration isolator and the resonance frequency of the measuring device, and vibration isolation performance is obtained by the difference in the resonance frequency. As a structurally simpler method, the resonance frequency of the vibration isolation surface is made as low as possible and the resonance frequency of the measuring device is made as high as possible.

【0003】然しながら従来のパッシブ型の除振装置、
すなわち質量,ばね,ダンパ等で振動を受けるだけの除
振装置では、除振面の共振周波数を低く設計してもせい
ぜい1Hz程度が限界となる。図4は、従来のパッシブ
型の除振装置を模試的に表した図であり、1は除振装置
が置かれている床面、2は測定機器を乗せる除振面、3
は質量mの定盤、4は定数kのばね、5は減衰係数cの
ダンパである。
However, a conventional passive type vibration isolation device,
That is, in a vibration isolator that only receives vibrations due to mass, springs, dampers, etc., even if the resonance frequency of the vibration isolation surface is designed to be low, the limit is about 1 Hz at most. FIG. 4 is a diagram schematically showing a conventional passive type vibration isolation device. 1 is a floor surface on which the vibration isolation device is placed, 2 is a vibration isolation surface on which a measuring instrument is placed, 3
Is a surface plate with a mass m, 4 is a spring with a constant k, and 5 is a damper with a damping coefficient c.

【0004】図4に示す除振装置において床面に振動P
が作用した場合の除振面の変位をx1 ,床面の変位をx
2 とすると、この除振装置の運動方程式は、下記数式
(1)で表すことができる。
In the vibration isolator shown in FIG. 4, vibration P is generated on the floor surface.
X 1 is the displacement of the vibration isolation surface and x is the displacement of the floor when
If the value is 2 , the equation of motion of this vibration isolation device can be expressed by the following mathematical expression (1).

【数1】 この数式をラプラス変換し、x2 に対するx1 の伝達関
数を求めると、下記数式(2)となる。
[Equation 1] When the transfer function of x 1 with respect to x 2 is obtained by Laplace transforming this expression, the following expression (2) is obtained.

【数2】 但し、sは複素周波数、X1 ,X2 はそれぞれx1 ,x
2 のラプラス変換を示す。そして、振動角周波数ωの応
答特性は、s=jωとおくことにより得られ、下記数式
(3),数式(4)で表すことができる。
[Equation 2] However, s is a complex frequency, and X 1 and X 2 are x 1 and x, respectively.
A Laplace transform of 2 is shown. Then, the response characteristic of the vibration angular frequency ω is obtained by setting s = jω, and can be expressed by the following formulas (3) and (4).

【数3】 図5の曲線10は図4に示す従来の除振装置の除振面の
振動周波数応答特性を示す。
(Equation 3) A curve 10 in FIG. 5 shows the vibration frequency response characteristic of the vibration isolation surface of the conventional vibration isolation device shown in FIG.

【0005】また、測定機器の共振周波数を高くするこ
とにも限界がある。例えば原子間力顕微鏡(AFM)で
は、その機能上、ばね定数は数N/m程度の小さな値に
する必要があり、共振周波数を数kHz以上出来るだけ
高く設計する必要がある。このために、その質量を極め
て小さくする必要から成膜プロセスを用いて制作した厚
さ数μm,幅数十μm,長さ数百μm程度の微小なカン
チレバーを使用する等の方法を取ることができる。然し
ながら測定機器のうちには、SPMのようにプローブの
共振周波数を高くし難いものがあり、またナノインデン
テーション試験器では、試験重量が小さくなるほど試験
器の共振周波数が低下してしまい、数十nm程度の薄膜
の評価の場合には、その共振周波数は荷重負荷機構の共
振周波数と同等になってしまう。従ってこれらの測定機
器では、従来の除振装置を使用しても充分な性能を得る
ことができない。
There is also a limit to increasing the resonance frequency of the measuring device. For example, in an atomic force microscope (AFM), the spring constant needs to be as small as several N / m in view of its function, and the resonance frequency needs to be designed to be as high as several kHz or higher. For this reason, it is necessary to make the mass extremely small. Therefore, a method of using a minute cantilever having a thickness of several μm, a width of several tens of μm, and a length of several hundreds of μm produced by a film forming process can be adopted. it can. However, some measuring instruments, such as SPM, have difficulty in increasing the resonance frequency of the probe, and in the nano-indentation tester, the resonance frequency of the tester decreases as the test weight decreases, resulting in tens of degrees. In the case of evaluating a thin film having a thickness of about nm, its resonance frequency becomes equal to the resonance frequency of the load mechanism. Therefore, with these measuring instruments, sufficient performance cannot be obtained even if the conventional vibration isolator is used.

【0006】[0006]

【発明が解決しようとする課題】上記のように従来のパ
ッシブ型の除振装置では、共振周波数を低く設定するこ
とに限界があり、充分な除振性能が得られないという問
題点があった。
As described above, in the conventional passive type vibration isolation device, there is a limit in setting the resonance frequency to a low level, and there is a problem that sufficient vibration isolation performance cannot be obtained. .

【0007】本発明はかかる問題点を解決するためにな
されたものであり、簡単な構成で除振面の共振周波数を
低くでき、サブナノメートルオーダーの除振性能が得ら
れるアクティブ型の除振装置を提供することを目的とし
ている。
The present invention has been made to solve the above problems, and is an active type vibration isolator capable of lowering the resonance frequency of the vibration isolating surface with a simple structure and obtaining vibration isolation performance on the order of sub-nanometers. Is intended to provide.

【0008】[0008]

【課題を解決するための手段】本発明に係わる除振装置
は、除振面と床面との間をアクチュエータで接続すると
共に、除振面に緩衝機構を介して重錘を取り付け、床面
振動に対しては重錘と除振面との相対変位を計測し、こ
の相対変位を所定の伝達関数を持たせてアクチュエータ
に伝達し、該アクチュエータを駆動して除振面の変位を
フィードバック制御する構成を特徴とする。
A vibration isolator according to the present invention has a vibration isolation surface and a floor surface connected by an actuator, and a weight is attached to the vibration isolation surface via a cushioning mechanism. For vibration, the relative displacement between the weight and the vibration isolation surface is measured, this relative displacement is transmitted to the actuator with a predetermined transfer function, and the actuator is driven to feedback control the displacement of the vibration isolation surface. It is characterized by the configuration.

【0009】[0009]

【実施例】以下、本発明の原理を説明する。図1は本発
明の除振装置の動作原理を説明するための模式図であ
り、図において、1は床面、2は除振面、3は質量mの
重錘、4は定数kのばね、5は減衰係数cのダンパ、6
はフィードバック制御用のアクチュエータである。図1
に模式的に示す除振装置において、床面に振動Pが作用
した場合の床面1の変位をx2 ,重錘3の変位をx0
除振面2の変位をx1 とすると、除振面2に対する重錘
の変位量はx0 −x1 となり、除振面2の変位x1 を補
正するアクチュエータ6でフィードバックする変位量は
1 −x2 となり、伝達関数をAすると、x1 −x2
A(x0 −x1 )・・・数式(5)の関係になる。
EXAMPLES The principle of the present invention will be described below. FIG. 1 is a schematic diagram for explaining the operation principle of the vibration isolator of the present invention. In the figure, 1 is a floor surface, 2 is a vibration isolation surface, 3 is a weight having a mass of m, and 4 is a spring having a constant k. 5 is a damper having a damping coefficient c, 6
Is an actuator for feedback control. FIG.
In the vibration isolator schematically shown in FIG. 2 , the displacement of the floor surface 1 when the vibration P acts on the floor surface is x 2 , the displacement of the weight 3 is x 0 ,
When the displacement of the vibration isolation surface 2 is x 1 , the displacement amount of the weight with respect to the vibration isolation surface 2 is x 0 −x 1 , and the displacement amount fed back by the actuator 6 for correcting the displacement x 1 of the vibration isolation surface 2 is x. 1 −x 2 and the transfer function is A, x 1 −x 2 =
A (x 0 −x 1 ) ... Equation (5).

【0010】また、重錘3と除振面2との間の運動方程
式は上述の数式(1)と同様な下記数式(6)で表すこ
とができる。
The equation of motion between the weight 3 and the vibration isolation surface 2 can be expressed by the following equation (6) similar to the above equation (1).

【数4】 そして、数式(5),数式(6)の両辺をラプラス変換
して下記数式(7),(8)を得る。
[Equation 4] Then, both sides of the equations (5) and (6) are Laplace transformed to obtain the following equations (7) and (8).

【数5】 なお、大文字の記号はラプラス変換されたものを表す。
次に数式(7),数式(8)を連立させてX0 を消去
し、除振面の変位X1 を床面の変位X2 で表すと、下記
数式(9)となり、振動周波数の応答特性は、s=jω
とおくことにより、下記数式(10),数式(11)と
なる。
(Equation 5) The capital letters represent the Laplace-transformed ones.
Next, the equations (7) and (8) are combined to eliminate X 0 , and when the displacement X 1 of the vibration isolation surface is represented by the displacement X 2 of the floor surface, the following equation (9) is obtained, and the vibration frequency response The characteristic is s = jω
Then, the following mathematical expressions (10) and (11) are obtained.

【数6】 (Equation 6)

【0011】この数式(11)と上述の数式(4)とを
比較すれば明らかなように、本発明の除振装置は共振周
波数を1/√(1+A)と低くでき、従来の装置の共振
周波数付近は極めて小さな減衰率となり、除振性能の高
い除振装置が得られる。図5の曲線11は、上述の数式
(11)を ζ=c/m=2, A=9 とした場合の
本発明の除振装置の振動周波数応答特性を示す。
As is clear from the comparison between this equation (11) and the above equation (4), the vibration isolation device of the present invention can reduce the resonance frequency to 1 / √ (1 + A), and the resonance of the conventional device. The damping ratio is extremely small near the frequency, and a vibration isolation device with high vibration isolation performance can be obtained. A curve 11 in FIG. 5 shows a vibration frequency response characteristic of the vibration isolator of the present invention in the case where ζ = c / m = 2 and A = 9 in Expression (11) described above.

【0012】図2は、本発明の除振装置の構成の一実施
例を示す図であり、図1と同一符号は同一又は相当部分
を示し、16は圧電素子を用いたアクチュエータ、17
は除振面2と重錘3の相対変位を計測する変位計であ
る。使用するアクチュエータ6はフィードバック制御が
迅速に行える圧電素子を用いたアクチュエータ16を使
用するのが望ましく、また、変位計17には、サブナノ
メートルのオーダーで変位を計測できるものであれば、
どのようなものでも良いが、例えば被測定面に照射した
光の反射光量が被測定面の変位によって変化する現象を
利用する光ファイバを用いた反射光電方式の変位計を使
用することができる。また、本願出願人らが1993年
度精密工学会秋季大会学,術講演会,講演論文集(第3
分冊)あるいは特願平6−23096号「微小変位測定
装置」で開示した照射用光源に交流変調電力を給電して
所定期間で光度変化させ、受光した反射光を電気信号に
変換して交流増幅することで増幅時のドリフトを低減さ
せる手段を備えた変位計を使用しても良い。
FIG. 2 is a diagram showing an embodiment of the structure of the vibration isolator of the present invention. The same reference numerals as those in FIG. 1 denote the same or corresponding parts, 16 is an actuator using a piezoelectric element, and 17 is an actuator.
Is a displacement meter that measures the relative displacement between the vibration isolation surface 2 and the weight 3. As the actuator 6 to be used, it is desirable to use an actuator 16 using a piezoelectric element capable of quick feedback control. Further, if the displacement gauge 17 is capable of measuring displacement on the order of sub-nanometers,
Any type may be used, but for example, a reflection photoelectric type displacement meter using an optical fiber that utilizes a phenomenon in which the amount of light reflected on the surface to be measured changes depending on the displacement of the surface to be measured can be used. In addition, applicants of the present application, the 1993 Autumn Meeting of Precision Engineering, Annual Meeting, Technical Lecture, Proceedings (3rd
Separate volume) or Japanese Patent Application No. 6-23096 "Micro displacement measuring device", AC modulation power is supplied to the irradiation light source to change the luminous intensity in a predetermined period, and the received reflected light is converted into an electric signal for AC amplification. By doing so, a displacement gauge provided with a means for reducing the drift at the time of amplification may be used.

【0013】なお、アクテイブ型の除振装置の先行技術
としては、図3に示すような装置が精密防振ハンドブッ
クに開示されているが、この装置は定盤にリニアモータ
等のアクチュエータを介して補助質量を装着し、定盤の
振動その他の変数を検出してこれをアクチュエータにフ
ィードバックすることで除振を行う装置であり、原理的
には床振動による加振力と等しい力を、補助質量の加速
度によって得ようとするものであり、変位を制御する本
発明の除振装置とは本質的に異なる。
As a prior art of an active type vibration isolation device, a device as shown in FIG. 3 is disclosed in the precision vibration isolation handbook, but this device is mounted on a surface plate via an actuator such as a linear motor. This is a device that mounts an auxiliary mass, detects vibration of the surface plate and other variables, and feeds this back to the actuator to perform vibration isolation.In principle, a force equal to the vibration force due to floor vibration is applied to the auxiliary mass. The vibration isolation device of the present invention, which controls the displacement, is essentially different from the vibration isolation device of the present invention.

【0014】[0014]

【発明の効果】以上説明したように本発明の除振装置
は、重錘と除振面の相対変位をサブナノメートルオーダ
ーで計測し、所定の伝達関数を持たせて除振面の変位を
アクチュエータでフィードバック制御することにより、
除振面の共振周波数を低くでき、除振性能の高い装置が
得られるという効果がある。
As described above, the vibration isolator of the present invention measures the relative displacement between the weight and the vibration isolation surface on the order of sub-nanometers, and imparts a predetermined transfer function to the displacement of the vibration isolation surface as an actuator. By feedback control with
There is an effect that the resonance frequency of the vibration isolation surface can be lowered and a device having high vibration isolation performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の動作原理を説明するための図で
ある。
FIG. 1 is a diagram for explaining the operation principle of the device of the present invention.

【図2】本発明の一実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

【図3】アクティブ型の除振装置の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of an active type vibration isolation device.

【図4】従来の除振装置の動作原理を説明するための図
である。
FIG. 4 is a diagram for explaining the operation principle of a conventional vibration isolation device.

【図5】除振面の振動周波数応答特性を示す図である。FIG. 5 is a diagram showing a vibration frequency response characteristic of a vibration isolation surface.

【符号の説明】[Explanation of symbols]

1 床面 2 除振面 3 重錘 4 ばね 5 ダンパ 6 アクチュエータ 16 圧電素子を用いたアクチュエータ 17 変位計 1 Floor Surface 2 Vibration Isolation Surface 3 Weight 4 Spring 5 Damper 6 Actuator 16 Actuator Using Piezoelectric Element 17 Displacement Meter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 除振面と床面との間をアクチュエータで
接続すると共に、除振面に緩衝機構を介して重錘を取り
付け、床面振動に対しては重錘と除振面との相対変位を
計測し、この相対変位を所定の伝達関数を持たせてアク
チュエータに伝達し、該アクチュエータで除振面の変位
をフィードバック制御する構成を特徴とする除振装置。
1. A vibration isolating surface and a floor surface are connected by an actuator, and a weight is attached to the vibration isolating surface via a cushioning mechanism to prevent vibration of the floor surface between the weight and the vibration isolating surface. An anti-vibration device characterized by measuring relative displacement, transmitting the relative displacement to an actuator with a predetermined transfer function, and performing feedback control of the displacement of the anti-vibration surface by the actuator.
【請求項2】 上記アクチュエータの駆動源は圧電素子
を用いることを特徴とする請求項第1項記載の除振装
置。
2. The vibration isolator according to claim 1, wherein a piezoelectric element is used as a drive source of the actuator.
【請求項3】 上記重錘と除振面との相対変位を計測す
る手段には、被測定面に照射した光の反射光量が被測定
面の変位によって変化する現象を利用する光ファイバを
用いた反射光電方式の変位計を使用することを特徴とす
る請求項第1項記載の除振装置。
3. The means for measuring the relative displacement between the weight and the vibration isolation surface uses an optical fiber that utilizes the phenomenon that the amount of light reflected on the surface to be measured changes with the displacement of the surface to be measured. The anti-vibration device according to claim 1, characterized in that a reflection photoelectric displacement meter is used.
【請求項4】 上記変位計には、照射用光源に交流変調
電力を給電して所定期間で光度変化させ、受光した反射
光を電気信号に変換して交流増幅することで増幅時のド
リフトを低減させる手段を備えた変位計を使用すること
を特徴とする請求項第3項記載の除振装置。
4. The displacement gauge is supplied with AC modulation power to an irradiation light source to change the luminous intensity in a predetermined period, and the received reflected light is converted into an electric signal and AC-amplified so that drift during amplification is prevented. 4. The vibration isolator according to claim 3, wherein a displacement gauge provided with a means for reducing the vibration is used.
JP4790495A 1995-02-14 1995-02-14 Vibration isolator Pending JPH08219230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4790495A JPH08219230A (en) 1995-02-14 1995-02-14 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4790495A JPH08219230A (en) 1995-02-14 1995-02-14 Vibration isolator

Publications (1)

Publication Number Publication Date
JPH08219230A true JPH08219230A (en) 1996-08-27

Family

ID=12788383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4790495A Pending JPH08219230A (en) 1995-02-14 1995-02-14 Vibration isolator

Country Status (1)

Country Link
JP (1) JPH08219230A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097292A1 (en) * 1998-07-14 2001-05-09 Newport Corporation Active isolation module
WO2005024266A1 (en) * 2003-09-05 2005-03-17 Koninklijke Philips Electronics N.V. Actuator arrangement for active vibration isolation comprising an inertial reference mass
JP2007135925A (en) * 2005-11-18 2007-06-07 Hiroshima Univ Foreign substance detecting method and apparatus
CN100465473C (en) * 2003-09-05 2009-03-04 皇家飞利浦电子股份有限公司 Actuator arrangement for active vibration isolation comprising an inertial reference mass
JP2010085373A (en) * 2008-10-02 2010-04-15 Takenaka Komuten Co Ltd Device, method, and program for detecting frequency of vibrations and antivibration apparatus
JP2017517874A (en) * 2014-04-02 2017-06-29 メトリックス・リミテッドMetryx Limited Semiconductor wafer weight measuring apparatus and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097292A1 (en) * 1998-07-14 2001-05-09 Newport Corporation Active isolation module
EP1097292A4 (en) * 1998-07-14 2004-08-25 Newport Corp Active isolation module
WO2005024266A1 (en) * 2003-09-05 2005-03-17 Koninklijke Philips Electronics N.V. Actuator arrangement for active vibration isolation comprising an inertial reference mass
CN100465473C (en) * 2003-09-05 2009-03-04 皇家飞利浦电子股份有限公司 Actuator arrangement for active vibration isolation comprising an inertial reference mass
US8091694B2 (en) 2003-09-05 2012-01-10 Koninklijke Philips Electronics N.V. Actuator arrangement for active vibration isolation comprising an inertial reference mass
US8915340B2 (en) 2003-09-05 2014-12-23 Koninklijke Philips N.V. Actuator arrangement for active vibration isolation comprising an inertial reference mass
JP2007135925A (en) * 2005-11-18 2007-06-07 Hiroshima Univ Foreign substance detecting method and apparatus
JP2010085373A (en) * 2008-10-02 2010-04-15 Takenaka Komuten Co Ltd Device, method, and program for detecting frequency of vibrations and antivibration apparatus
JP2017517874A (en) * 2014-04-02 2017-06-29 メトリックス・リミテッドMetryx Limited Semiconductor wafer weight measuring apparatus and method

Similar Documents

Publication Publication Date Title
Gao et al. A new piezodriven precision micropositioning stage utilizing flexure hinges
RU2605816C2 (en) Positioning system and method
Hosaka et al. Damping characteristics of beam-shaped micro-oscillators
Pohl Some design criteria in scanning tunneling microscopy
KR100878078B1 (en) High bandwidth recoiless microactuator
US7278298B2 (en) Scanner for probe microscopy
CN101506639A (en) Adaptive control of materials testing machine with tuning of initial control parameters
JP4413505B2 (en) Equipment for damping elevator car vibrations
Mahmoodi et al. On the nonlinear-flexural response of piezoelectrically driven microcantilever sensors
JPH08219230A (en) Vibration isolator
Ding et al. An active geophone with an adjustable electromagnetic negative stiffness for low-frequency vibration measurement
US20080011083A1 (en) Resonance Method for Determining the Spring Constant of Scanning Probe Microscope Cantilevers using MEMS Actuators
KR100501893B1 (en) Non-contact scanning apparatus using frequency response separation scheme and scanning method thereof
Schitter et al. Design and modeling of a high-speed scanner for atomic force microscopy
Harley Advances in piezoresistive probes for atomic force microscopy
Bergamin et al. Servopositioning with picometer resolution
El-Rifai et al. Creep in piezoelectric scanners of atomic force microscopes
US6269698B1 (en) Vibrating beam force sensor
Beker et al. Seismic attenuation technology for the Advanced Virgo gravitational wave detector
JPH09184536A (en) Vibration damping device
US20070137954A1 (en) Inertial actuator
Lan et al. Active vibration isolation for a long range scanning tunneling microscope
Chetwynd et al. Metrological x-ray interferometry in the micrometre region
JP2005114492A (en) Active control pulse thrust measuring apparatus
Ding Mechanical properties of silicon films and capacitive microsensors

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615