JPH0821822A - Leakage magnetic flux flaw detecting method and device - Google Patents

Leakage magnetic flux flaw detecting method and device

Info

Publication number
JPH0821822A
JPH0821822A JP6157598A JP15759894A JPH0821822A JP H0821822 A JPH0821822 A JP H0821822A JP 6157598 A JP6157598 A JP 6157598A JP 15759894 A JP15759894 A JP 15759894A JP H0821822 A JPH0821822 A JP H0821822A
Authority
JP
Japan
Prior art keywords
magnetic flux
yoke
inspected
steel pipe
exciting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6157598A
Other languages
Japanese (ja)
Inventor
Shinichi Fukuda
田 真 一 福
Shigetoshi Tsuruoka
岡 繁 利 鶴
Teruaki Fujii
井 昭 明 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYST HIGHTECH KK
Nippon Steel Corp
Original Assignee
SYST HIGHTECH KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYST HIGHTECH KK, Nippon Steel Corp filed Critical SYST HIGHTECH KK
Priority to JP6157598A priority Critical patent/JPH0821822A/en
Publication of JPH0821822A publication Critical patent/JPH0821822A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve fine flaw detection accuracy and reduce an undetected flaw region on an inspected material end section. CONSTITUTION:Through holes 4a, 4b which a steel pipe 5 pass through are provided on opposite sides 3a, 3b of a U-shaped magnetic yoke, and an exciting coil 1 is fitted on a bottom side 3c. A ring-like holder 16 fitted with a circularly distributed magnetism-sensitive element 7 is fixed between the opposite sides 3a, 3b of the yoke coincidentally with the centers of the through holes 4a, 4b. The steel pipe 5 is inserted into the through holes 4a, 4b, the exciting current is fed to the exciting coil 1, and the leakage magnetic flux from the flaw 8 of the steel pipe 5 is detected by the magnetism-sensitive element 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼管や棒鋼等の表面及
び表面近傍に存在する割れ傷やピット状傷等を漏洩磁束
によって探傷する方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting cracks, pit-like scratches and the like existing on the surface of steel pipes and steel bars and in the vicinity of the surface by leaking magnetic flux.

【0002】[0002]

【従来技術】鋼管等の傷探傷方法として、例えば日本非
破壊検査協会発行(平成2年9月1日)の「渦流探傷試
験III(1990)」,121頁には、超音波探傷(UT),渦流
探傷(ET),漏洩磁粉磁束(MLFT),磁粉探傷
(MT)等の種々の非破壊検査法が記載されており、予
測される傷に応じて一種類もしくは複数種類の方法が組
合せ適用することが提案されている。
2. Description of the Related Art As a flaw detection method for steel pipes, for example, ultrasonic flaw detection (UT) is described in "Eddy current flaw detection test III (1990)", p. 121, issued by Japan Nondestructive Inspection Association (September 1, 1990). , Various non-destructive inspection methods such as eddy current flaw detection (ET), leaked magnetic particle magnetic flux (MLFT), magnetic particle flaw detection (MT), etc. are described, and one or more kinds of methods are combined and applied depending on the predicted damage. It is suggested to do so.

【0003】このような非破壊検査法として、例えば日
本工業規格の「JIS G 0568-1982 鋼の渦流探傷試験方
法」及び「JIS G 0583-1978 鋼管の渦流探傷検査方法」
には、貫通形コイルに周波数0.5〜500KHZ程度の交流電
流を流し、自己誘導又は相互誘導により被検査材を励磁
し、例えば1.0mmφのドリル孔を基準として検査する方
法が記載されている。しかし、近年は数百μm程度の微
小表面傷が問題となってきており、1.0mmφ程度のドリ
ル孔を基準とする検査では微小表面傷を検出できない。
As such non-destructive inspection method, for example, "JIS G 0568-1982 steel eddy current flaw detection test method" and "JIS G 0583-1978 steel tube eddy current flaw detection test method" of Japanese Industrial Standards.
Describes a method in which an AC current having a frequency of about 0.5 to 500 KHZ is passed through the through-type coil to excite the material to be inspected by self-induction or mutual induction, and the inspection is performed with a drill hole of, for example, 1.0 mmφ as a reference. However, in recent years, microscopic surface scratches of about several hundred μm have become a problem, and microscopic surface scratches cannot be detected by inspection based on a drill hole of about 1.0 mmφ.

【0004】微小表面傷の検出法として、例えば日本非
破壊検査協会発行の「非破壊検査」第30巻、第7号、468
〜477頁には、漏洩磁束探傷法が記載されている。図6
は、従来の漏洩磁束探傷装置の側面図を示している。こ
の装置は、被検査材5の軸方向に2つの励磁コイル1,
1を設け、励磁コイル1,1によって矢印方向の磁束2
を発生させ、傷8による漏洩磁束9を感磁性素子7によ
って検知するものである。
As a method for detecting microscopic surface flaws, for example, "Nondestructive Inspection", Vol. 30, No. 7, 468, published by the Japan Nondestructive Inspection Association.
Pp. 477 describes the magnetic flux leakage flaw detection method. Figure 6
[Fig. 4] is a side view of a conventional leakage magnetic flux flaw detector. This device includes two exciting coils 1 in the axial direction of the material 5 to be inspected.
1 is provided, and the magnetic flux 2 in the arrow direction is generated by the exciting coils 1 and 1.
And the leakage magnetic flux 9 due to the scratch 8 is detected by the magnetic sensitive element 7.

【0005】[0005]

【発明が解決しようとする課題】しかし、この探傷法に
よる検出限界は、例えば日本鉄鋼協会発行(平成2年11
月30日)の「鉄鋼製品の漏洩磁束探傷法」、83頁に記載
されているように0.15mm(SN比≧3)程度であるた
め、数百μm程度の微小表面傷を検出できない。また、
この探傷法は、感磁性素子7を挟んで2つの励磁コイル
1,1を被検査材5の軸方向で並べて設置しているた
め、浮遊磁界が多く、励磁コイル1,1周りの被検査材
の漏洩磁束が多く、この結果、磁化効率及びSN比が低
く微小傷を確実に検出できない。また、被検査材端部に
おいて磁束2が乱れるため、被検査材端部における未探
傷領域が200〜500mm発生するという問題がある。
However, the detection limit of this flaw detection method is, for example, issued by the Japan Iron and Steel Institute (November 1990).
As described in “Leakage magnetic flux flaw detection method for steel products” on page 30 of March 30), it is about 0.15 mm (SN ratio ≧ 3), so minute surface flaws of about several hundred μm cannot be detected. Also,
In this flaw detection method, since two exciting coils 1 and 1 are arranged side by side in the axial direction of the inspected material 5 with the magnetic sensitive element 7 interposed therebetween, a stray magnetic field is large and the inspected material around the exciting coils 1 and 1 is large. There is a large amount of magnetic flux leakage, and as a result, the magnetization efficiency and the SN ratio are low, and minute scratches cannot be reliably detected. Further, since the magnetic flux 2 is disturbed at the end portion of the inspected material, there is a problem that an undetected region at the end portion of the inspected material is 200 to 500 mm.

【0006】一方、浮遊磁界や磁束の乱れを小さくする
ために、励磁コイル1,1と感磁性素子7を近づける
と、励磁コイル1の発熱による温度ドリフトの影響によ
って、特に感磁性素子7として半導体素子例えばホ−ル
ICを使用した場合には、検出感度が低下し、微小表面
傷を検出できない。
On the other hand, when the exciting coils 1 and 1 and the magnetic sensitive element 7 are brought close to each other in order to reduce the disturbance of the stray magnetic field and the magnetic flux, the influence of the temperature drift due to the heat generation of the exciting coil 1 makes the semiconductor as the magnetic sensitive element 7 particularly. When an element such as a Hall IC is used, the detection sensitivity is lowered, and it is impossible to detect minute surface scratches.

【0007】本発明は、漏洩磁束による探傷において、
被検査材の表面及び表面近傍に存在する微小傷を確実に
検出するとともに、被検査材端部における未探傷領域を
著しく少なくすることを目的とする。
The present invention, in flaw detection by leakage magnetic flux,
An object of the present invention is to reliably detect minute scratches existing on the surface of a material to be inspected and in the vicinity of the surface and to significantly reduce an undetected flaw region at an end portion of the material to be inspected.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本発
明の漏洩磁束探傷方法は、断面が略U字状のヨークの対
向辺に設けた貫通孔に被検査材を挿入し、前記ヨークの
底辺に嵌着した励磁コイルにより発生した磁束を該ヨー
クを介して被検査材に与え、該被検査材の傷からの漏洩
磁束を前記対向辺の間に設けた感磁性素子により検出す
ることを特徴とする。
According to the magnetic flux leakage flaw detection method of the present invention for solving the above-mentioned problems, a material to be inspected is inserted into a through hole provided at an opposite side of a yoke having a substantially U-shaped cross section, and the yoke is cut. A magnetic flux generated by an exciting coil fitted to the bottom side is applied to the material to be inspected through the yoke, and a magnetic flux leaking from a scratch on the material to be inspected is detected by a magnetic sensitive element provided between the opposing sides. Characterize.

【0009】また、本発明の漏洩磁束探傷装置は、断面
が略U字状のヨーク,該ヨ−クの対向辺に設けた被検査
材の貫通孔,前記ヨークの底辺が貫通する励磁コイル、
および、前記対向辺の間に設置され被検外材の漏洩磁束
を検知する感磁性素子を備えることを特徴とする。
The leakage magnetic flux flaw detector of the present invention has a yoke having a substantially U-shaped cross section, a through hole for a material to be inspected provided on an opposite side of the yoke, an exciting coil through which a bottom side of the yoke penetrates,
And a magnetic sensitive element that is installed between the opposed sides to detect a leakage magnetic flux of the external material to be inspected.

【0010】[0010]

【作用】探傷する被検査材を貫通孔に挿入し、励磁コイ
ルに励磁電流を供給すると、励磁コイルによって発生し
た磁束は、ヨークの対向辺を通って貫通孔に集中する。
すなわち、励磁コイルにより底辺に発生した磁束は対向
辺の一辺に流れて、主に貫通孔のエッジから被検査材に
侵入した後、対向辺のもう1つの辺の貫通孔のエッジに
流れて底辺に戻る。対向辺間で被検査材に傷があれば、
その部分の漏洩磁束が大きく、これが感磁性素子によっ
て検出される。
When a material to be inspected for flaw detection is inserted into the through hole and an exciting current is supplied to the exciting coil, the magnetic flux generated by the exciting coil passes through the opposite side of the yoke and concentrates in the through hole.
That is, the magnetic flux generated on the bottom side by the exciting coil flows to one side of the opposite side, mainly enters the material to be inspected from the edge of the through hole, and then flows to the edge of the through hole on the other side of the opposite side to reach the bottom side. Return to. If there is a scratch on the material to be inspected between the opposite sides,
The leakage magnetic flux in that portion is large, and this is detected by the magnetic sensitive element.

【0011】励磁コイルによって発生した磁束は、ヨー
クの対向辺を通って貫通孔に集中するため、磁束が被検
査材に集束する。感磁性素子はヨ−クの対向辺の間にあ
ってこれらが励磁コイルの漏洩磁束を遮蔽する。この結
果、浮遊磁界や磁束の乱れが著しく少なくなり、磁化効
率及びSN比が向上するため、微小傷を確実に検出する
ことができ、また被検査材端部における未探傷領域を著
しく少くすることができる。また、磁束を被検査材に集
束させることができるため、低電流励磁化及び励磁部の
小型化が可能となる。さらには、励磁コイルと感磁性素
子を離して設置しても浮遊磁界や磁束の乱れが少なく、
また離して設置することで、励磁コイルの発熱による温
度ドリフトの影響を著しく小さくできる。以下、本発明
の実施例を図面により詳細に説明する。
The magnetic flux generated by the exciting coil passes through the opposite sides of the yoke and concentrates in the through hole, so that the magnetic flux is focused on the material to be inspected. The magnetic sensitive element is located between the opposite sides of the yoke, and these shield the leakage magnetic flux of the exciting coil. As a result, the disturbance of the stray magnetic field and magnetic flux is remarkably reduced, and the magnetization efficiency and SN ratio are improved, so that minute scratches can be reliably detected, and the undetected region at the end of the inspected material is significantly reduced. You can Further, since the magnetic flux can be focused on the material to be inspected, low current excitation magnetization and miniaturization of the excitation unit are possible. Furthermore, even if the exciting coil and the magnetic sensitive element are installed separately, there is little disturbance of the stray magnetic field and magnetic flux,
Also, by installing them separately, the influence of temperature drift due to heat generation of the exciting coil can be significantly reduced. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0012】[0012]

【実施例】【Example】

−第1実施例− 図1に本発明の第1実施例を示す。図1にはU字形ヨ−
ク3の縦断面を示し、図2にA−A’線断面を示す。ヨ
ーク3は、断面が略U字状であり、ヨーク3の対向辺3
a,3bには、被検査材である鋼管5が通過するための
貫通孔4a,4bが開けられており、底辺3cには励磁
コイルが巻回されている。換言すると、励磁コイルの中
心開口を底辺3cが貫通している。ヨーク3の対向辺3
aと3bの間には、筒状あるいはリング状のホルダー1
6が装着されている。このホルダ−16は、複数個の感
磁性素子7を、リング状の配列(図2)で内蔵してい
る。貫通孔4a,4bの中心,ホルダ−16の中心およ
び感磁性素子7の配列円の中心は、同一直線上にあり、
基準状態では鋼管5の中心軸が該直線と合致する。
-First Embodiment- Fig. 1 shows a first embodiment of the present invention. Figure 1 shows a U-shaped yo
3 shows a vertical cross section, and FIG. 2 shows a cross section taken along the line AA '. The yoke 3 has a substantially U-shaped cross section, and the opposing side 3 of the yoke 3
Through holes 4a and 4b for passing the steel pipe 5 as a material to be inspected are formed in a and 3b, and an exciting coil is wound around the bottom side 3c. In other words, the base 3c penetrates the central opening of the exciting coil. Opposite side 3 of the yoke 3
A cylindrical or ring-shaped holder 1 is provided between a and 3b.
6 is mounted. The holder 16 contains a plurality of magnetic sensitive elements 7 in a ring-shaped array (FIG. 2). The centers of the through holes 4a and 4b, the center of the holder 16 and the center of the array circle of the magnetic sensitive elements 7 are on the same straight line,
In the standard state, the central axis of the steel pipe 5 matches the straight line.

【0013】直流又は交流の励磁電源(図示せず)より
励磁電流を励磁コイル1に供給すると、励磁コイル1に
よって底辺3cに発生した磁束2は、ヨーク3の対向辺
3aを通って貫通孔4aに集中し、貫通孔4aのエッジ
から空間を通って鋼管5に侵入し、そして鋼管5を通っ
て、更に空間を通って、対向辺3bの貫通孔4bのエッ
ジに達し、対向辺3bを通って励磁コイル1の中心の底
辺3cに戻る。励磁コイル1の励磁電流値は、鋼管5の
磁束密度が飽和となるように設定する。これにより鋼管
5の外周面周りに漏洩磁束を生ずるが、矢印6の方向へ
搬送中の鋼管5に傷が無い場合には、漏洩磁束分布は略
均一であり、感磁性素子7は格別に大きな磁束を検知し
ない。ところが対向辺3a,3b間において鋼管5に傷
8があると、そこでの漏洩磁束が極端に大きくなる。す
なわち磁束の集中を生ずる。以下においてはこの磁束の
集中を漏洩磁束9と称す。漏洩磁束9は感磁性素子7に
よって検出される。
When an exciting current is supplied to the exciting coil 1 from a DC or AC exciting power source (not shown), the magnetic flux 2 generated on the bottom side 3c by the exciting coil 1 passes through the facing side 3a of the yoke 3 and the through hole 4a. And penetrates into the steel pipe 5 through the space from the edge of the through hole 4a, and through the steel pipe 5 and further through the space to reach the edge of the through hole 4b of the opposite side 3b and through the opposite side 3b. To return to the bottom 3c of the center of the exciting coil 1. The exciting current value of the exciting coil 1 is set so that the magnetic flux density of the steel pipe 5 becomes saturated. As a result, a leakage magnetic flux is generated around the outer peripheral surface of the steel pipe 5, but when the steel pipe 5 being conveyed in the direction of the arrow 6 is not damaged, the leakage magnetic flux distribution is substantially uniform, and the magnetic sensing element 7 is extremely large. Does not detect magnetic flux. However, if the steel pipe 5 has a flaw 8 between the opposing sides 3a and 3b, the leakage magnetic flux there becomes extremely large. That is, the magnetic flux is concentrated. In the following, this concentration of magnetic flux is referred to as leakage magnetic flux 9. The leakage magnetic flux 9 is detected by the magnetic sensitive element 7.

【0014】感磁性素子7が発生する漏洩磁束9検出信
号は、一般の電気信号から見ると微弱であるため、増幅
器10により増幅し、増幅した信号の中からノイズ信号
をフィルター11により除去し、更にノイズ信号を除去
した信号の中から不要な信号を波形整形器12により除
去した後、記録計13Aで記録する。また、波形整形し
た信号の振動成分(上,下ピ−ク前後)を比較器14に
より抽出し、振動成分を判定器15で傷によるものであ
るか判定し、傷と判定すると記録計13Bで記録する。
図示しない同期信号発生器が、鋼管5の所定短距離の移
動につき1パルスの速度同期パルスを発生し、これが記
録計13Aおよび13Bに与えられ、これらの記録計1
3A,13Bは速度同期パルスをカウントして、鋼管5
の長手方向の位置を算出し、該位置対応で記録を行な
う。なお、図2に示すように、この実施例では8個の感
磁性素子7を同一円周上に等ピッチで配列しているの
で、上述の記録は、それぞれの感磁性素子対応(鋼管5
の外周の7分割の各分割領域対応)で行なう。
Since the detection signal of the leakage magnetic flux 9 generated by the magnetic sensitive element 7 is weak when viewed from a general electric signal, it is amplified by the amplifier 10, and the noise signal is removed by the filter 11 from the amplified signal, Further, after removing an unnecessary signal from the signal from which the noise signal has been removed by the waveform shaper 12, the signal is recorded by the recorder 13A. Further, the vibration component (before and after the upper and lower peaks) of the waveform-shaped signal is extracted by the comparator 14, and the vibration component is judged by the judging device 15 as to whether it is caused by a scratch. Record.
A synchronizing signal generator (not shown) generates a velocity synchronizing pulse of one pulse for each predetermined short distance movement of the steel pipe 5, which is supplied to the recorders 13A and 13B.
3A and 13B count the speed synchronization pulse and the steel pipe 5
The position in the longitudinal direction of is calculated, and recording is performed in correspondence with the position. Note that, as shown in FIG. 2, in this embodiment, eight magnetic sensitive elements 7 are arranged at equal pitches on the same circumference, so the above-described recording corresponds to each magnetic sensitive element (steel pipe 5).
(Corresponding to each of the seven divided areas on the outer circumference).

【0015】励磁コイル1によって発生した磁束2は、
ヨークの対向辺3aを通って貫通孔4a,4bに集中す
るため、磁束2を鋼管5に集束させることができる。こ
の結果、浮遊磁界や磁束の乱れが著しく少なくなり、磁
化効率及びSN比(ノイズ信号レベルに対する傷信号レ
ベルの比)が向上するため、微小傷を確実に検出するこ
とができ、また、図1に示すように鋼管5を右方に移送
する場合には、鋼管5の先端が対向辺3aの厚み範囲内
にある状態から、鋼管5の後端が対向辺3bの厚み範囲
内にある間の探傷が可能であり、鋼管5の先,後端部に
おける探傷不可領域が極く短い。すなわち、端部におけ
る未探傷領域が著しく少なくなる。また、磁束2を鋼管
5に集中させることができるため、励磁電流の低励磁化
及び励磁部の小型化が可能となる。さらには、励磁コイ
ル1と感磁性素子7を離して設置しても浮遊磁界や磁束
2の乱れが少なく、また離して設置することで、励磁コ
イル1の発熱による温度ドリフトの影響を著しく小さく
できる。次に、この実施例に沿った具体的な数値例につ
いて説明する。
The magnetic flux 2 generated by the exciting coil 1 is
The magnetic flux 2 can be focused on the steel pipe 5 because it is concentrated on the through holes 4a and 4b through the opposing sides 3a of the yoke. As a result, the disturbance of the stray magnetic field and the magnetic flux is significantly reduced, and the magnetization efficiency and the SN ratio (ratio of the scratch signal level to the noise signal level) are improved, so that minute scratches can be reliably detected, and FIG. When the steel pipe 5 is transferred to the right as shown in FIG. 2, while the front end of the steel pipe 5 is in the thickness range of the facing side 3a, the rear end of the steel pipe 5 is in the thickness range of the facing side 3b. Flaw detection is possible, and the non-flaw detection area at the front and rear ends of the steel pipe 5 is extremely short. That is, the undetected region at the end is significantly reduced. Further, since the magnetic flux 2 can be concentrated on the steel pipe 5, it becomes possible to lower the exciting current of the exciting current and downsize the exciting portion. Further, even if the exciting coil 1 and the magnetic sensitive element 7 are installed separately, the stray magnetic field and the magnetic flux 2 are less disturbed, and by installing them separately, the influence of temperature drift due to heat generation of the exciting coil 1 can be significantly reduced. . Next, a specific numerical example according to this embodiment will be described.

【0016】外径89.1mmφ、肉厚2.8mm、長さ100mの炭
素鋼の電縫管をストレッチレジューサー(絞り圧延機)
により熱間圧延し、外径21.7mmφ、肉厚2.3mmに仕上げ
た後、長さ8m単位で切断した。目視検査により検出され
た各種表面傷(自然傷)を含む鋼管(測定対象材)、及
び、健全な鋼管に0.1mm深さのノッチ及び2.0mmφのドリ
ルで0.5mm深さの穴を管端より10mmピッチで加工したも
の(比較材)を、被検査材として用いた。
Stretch reducer (drawing and rolling machine) of carbon steel ERW pipe with outer diameter 89.1 mmφ, wall thickness 2.8 mm and length 100 m
After being hot-rolled by, the outer diameter was 21.7 mmφ and the wall thickness was 2.3 mm, and then cut in units of 8 m in length. Steel pipe (measurement target material) including various surface scratches (natural scratches) detected by visual inspection, and a sound steel pipe with a 0.1 mm deep notch and a 2.0 mmφ drill with a 0.5 mm deep hole from the pipe end. What was processed at a pitch of 10 mm (comparative material) was used as the material to be inspected.

【0017】励磁コイル1は、2.0mmφの銅線を600ター
ン巻きとし、この励磁コイル1に2Aの直流電流を流し
た。図1に示すヨーク厚さtは20mm、貫通孔4a,4b
の径dは32mmφ、ヨーク間隔pは30mm、ヨーク高さhは
200mm、ヨークの幅Zは90mmとした。感磁性素子7とし
ては、管周方向幅wは3.5mm、管軸方向長さLは0.6mmの
SMDセンサー(SONY Magnet Diode、ソニー(株)の
商標)を用い、センサー間隔rを1.0mm、リフトオフ
(鋼管5とSMDセンサー間距離)を2.0mmとし、ホル
ダー16に取り付けた。鋼管5を安定搬送するためにピ
ンチロール(図示せず)をヨーク3a,3bの前後の位
置に設置し、搬送速度を120m/分で探傷し、探傷信号を
記録計13Aに記録し、傷検出情報を記録計13Bに記
録した。
The exciting coil 1 was made by winding a 2.0 mmφ copper wire for 600 turns, and a direct current of 2 A was passed through the exciting coil 1. The yoke thickness t shown in FIG. 1 is 20 mm, the through holes 4a and 4b.
Has a diameter d of 32 mm, a yoke spacing p of 30 mm, and a yoke height h of
The width Z of the yoke is 200 mm and the width Z of the yoke is 90 mm. As the magnetic sensitive element 7, an SMD sensor (SONY Magnet Diode, a trademark of Sony Corporation) having a tube circumferential width w of 3.5 mm and a tube axial length L of 0.6 mm is used, and a sensor interval r is 1.0 mm, The lift-off (distance between the steel pipe 5 and the SMD sensor) was set to 2.0 mm, and the holder 16 was attached. In order to stably convey the steel pipe 5, pinch rolls (not shown) are installed in front of and behind the yokes 3a and 3b, flaw detection is performed at a conveyance speed of 120 m / min, and flaw detection signals are recorded in the recorder 13A to detect flaws. Information was recorded on recorder 13B.

【0018】自然傷の検出能はSN比で評価し、更に0.
1mm深さのノッチからの信号レベルを判定器15の基準
値(傷判定用のしきい値)とした。管端部未探傷領域の
確認は、管端部に加工した穴径2.0mmφ、深さ0.5mmのド
リル穴により行った。なお、従来法(比較例)として、
2.0mmφの銅線を600ターン巻きし、図6に示すコイル長
さCLが80mm、内径Dが40mmφの励磁コイル1を図6に
示すように、感磁性素子7を挟んで間隔Pを30mmにして
設置し、2Aの直流電流を流した。本発明と同様に探傷
後、傷部分を切断試験して自然傷の深さを測定した。
The detectability of natural scratches was evaluated by the SN ratio, and further, it was 0.
The signal level from the notch having a depth of 1 mm was used as the reference value (threshold judgment threshold value) of the judging device 15. Confirmation of the undetected flaw region at the pipe end was performed using a drill hole having a hole diameter of 2.0 mmφ and a depth of 0.5 mm formed at the pipe end. As a conventional method (comparative example),
A 600 mm winding of a 2.0 mmφ copper wire is wound, and an exciting coil 1 having a coil length CL of 80 mm and an inner diameter D of 40 mmφ shown in FIG. It was set up and a direct current of 2A was passed. After the flaw detection in the same manner as in the present invention, the cut portion was subjected to a cutting test to measure the depth of the natural flaw.

【0019】図3は、本発明法及び従来法による深さ0.
10mm以上の各種自然傷の検出特性を示している。図3に
おいて、従来法(破線)では深さが0.10〜0.15mmの傷の
SN比が3以下であるのに対して、本発明法(一点鎖線
法)ではSN比が3以上で検出可能であった。この結
果、従来法では検出困難であった0.10〜0.15mmの傷を、
本発明法では検出できた。
FIG. 3 shows a depth of 0.
The detection characteristics of various natural scratches of 10 mm or more are shown. In FIG. 3, the SN ratio of a scratch having a depth of 0.10 to 0.15 mm is 3 or less in the conventional method (broken line), whereas the SN ratio of the present invention method (dashed-dot method) is 3 or more and can be detected. there were. As a result, scratches of 0.10 to 0.15 mm, which were difficult to detect with the conventional method,
It could be detected by the method of the present invention.

【0020】また、管端から種々の距離に加工したドリ
ル穴により、管端部における欠陥検出限界を調査した。
その結果、従来法では管端より100mmの位置のドリル穴
が検出限界であったのに対して、本発明法では管端より
20mmの位置のドリル穴を確実に検出でき、従来のコイル
法(図6)に比べて未探傷領域が著しく少なくなること
が明らかになった。また、本発明法は従来法に比べて磁
束を被検査材に集中させることで、励磁力が約3倍にな
るため、小型で高性能な探傷装置にすることができる。
Further, the defect detection limit at the pipe end was investigated by using drill holes formed at various distances from the pipe end.
As a result, in the conventional method, the drill hole at a position of 100 mm from the pipe end was the detection limit, whereas in the method of the present invention,
It was revealed that the drill hole at the position of 20 mm could be detected with certainty, and the undetected area was significantly reduced compared to the conventional coil method (Fig. 6). Further, according to the method of the present invention, the exciting force is approximately tripled by concentrating the magnetic flux on the material to be inspected as compared with the conventional method, so that a small-sized and high-performance flaw detector can be obtained.

【0021】−第2実施例− 図4及び図5に、本発明の第2実施例を示す。この第2
実施例では、図1及び図2に示した第1実施例に、リン
グ状の補助ヨ−ク17aおよび17bを加えたものであ
る。これらの補助ヨ−ク17a,17bが対向辺3a,
3bの間の空間に突出し、補助ヨ−ク17a,17b間
に感磁性素子7があるので、傷8から出る漏洩磁束は鋼
管5の管軸と直交する成分が強くなり、感磁性素子7の
傷検出信号レベルが高くなる。また、対向辺3a,3b
の貫通孔4a,4b間の浮遊磁界や磁束の乱れが更に低
減するので、磁化効率及びSN比が向上し、被検査材端
部における未探傷領域が更に小さくなる。
Second Embodiment FIGS. 4 and 5 show a second embodiment of the present invention. This second
In the embodiment, ring-shaped auxiliary yokes 17a and 17b are added to the first embodiment shown in FIGS. These auxiliary yokes 17a and 17b are opposite sides 3a,
Since the magnetic sensitive element 7 projects between the auxiliary yokes 17a and 17b and protrudes into the space between 3b, the leakage magnetic flux from the scratch 8 has a strong component perpendicular to the tube axis of the steel pipe 5, and the magnetic sensitive element 7 The scratch detection signal level becomes high. Also, the opposite sides 3a, 3b
Since the stray magnetic field between the through holes 4a and 4b and the disturbance of the magnetic flux are further reduced, the magnetization efficiency and the SN ratio are improved, and the undetected region at the end of the inspected material is further reduced.

【0022】なお、上述の第1実施例および第2実施例
では、感磁性素子7として半導体素子の一つである感磁
性ダイオードを用いたが、ホール素子、サーチコイル等
を用いてもよい。また、略U字状のヨーク3を正立させ
て設置したが、倒立させて設置するあるいは寝かせて設
置するなど設置方向は任意である。
In the first and second embodiments described above, a magnetic sensitive diode, which is one of the semiconductor elements, is used as the magnetic sensitive element 7, but a Hall element, a search coil or the like may be used. Further, the substantially U-shaped yoke 3 is installed upright, but it may be installed upside down or laid down so that the installation direction is arbitrary.

【0023】[0023]

【発明の効果】本発明によれば、励磁コイル1より発生
した磁束を、略U字型のヨーク3を介して被検査材5に
集中させることができるため、浮遊磁界や磁束の乱れが
著しく少なくなる。また励磁コイル1と感磁性素子7を
離して設置できるため、励磁コイル1の発熱による感磁
性素子7の温度ドリフトの影響を著しく小さくできる。
その結果、磁化効率及びSN比が向上し、また被検査材
端部における未探傷領域が著しく少なくなるため、微小
傷を確実に検出することができる。また、磁束を被検査
材に集中させることができるため、装置を小型化でき
る。
According to the present invention, since the magnetic flux generated from the exciting coil 1 can be concentrated on the material 5 to be inspected through the substantially U-shaped yoke 3, the stray magnetic field and the magnetic flux are significantly disturbed. Less. Further, since the exciting coil 1 and the magnetic sensitive element 7 can be installed separately from each other, the influence of the temperature drift of the magnetic sensitive element 7 due to the heat generation of the exciting coil 1 can be significantly reduced.
As a result, the magnetization efficiency and the S / N ratio are improved, and the undetected region at the end of the material to be inspected is significantly reduced, so that minute scratches can be reliably detected. Further, since the magnetic flux can be concentrated on the material to be inspected, the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例を示し、検出端部は縦断
面を示す。
FIG. 1 shows a first embodiment of the present invention, in which a detection end portion shows a vertical section.

【図2】 図1のA−A’線断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.

【図3】 第1実施例による本発明の探傷結果と従来法
(図6)による探傷結果を示すグラフである。
FIG. 3 is a graph showing the flaw detection result of the present invention according to the first embodiment and the flaw detection result of the conventional method (FIG. 6).

【図4】 本発明の第2実施例を示し、検出端部は縦断
面を示す。
FIG. 4 shows a second embodiment of the present invention, in which the detection end shows a vertical section.

【図5】 図4のA−A’線断面図である。5 is a cross-sectional view taken along the line A-A ′ of FIG.

【図6】 従来の1つの漏洩磁束探傷装置を示す側面図
であり、検出端部は断面を示す。
FIG. 6 is a side view showing one conventional leakage magnetic flux flaw detector, and a detection end shows a cross section.

【符号の説明】[Explanation of symbols]

1:励磁コイル 2:磁束 3:ヨーク 3a:ヨークの対
向辺 3b:ヨークの対向辺 3c:ヨークの
底辺 4a:ヨークの貫通孔 4b:ヨークの
貫通孔 5:鋼管(被検査材) 6:搬送方向 7:感磁性素子 8:傷 9:漏洩磁束 10:増幅器 11:フィルタ 12:波形整形
器 13A,13B:記録計 14:比較器 15:判定器 16:ホルダー 17a:補助ヨーク 17b:補助ヨー
ク:
1: Excitation coil 2: Magnetic flux 3: Yoke 3a: Opposite side of yoke 3b: Opposite side of yoke 3c: Bottom side of yoke 4a: Through hole of yoke 4b: Through hole of yoke 5: Steel pipe (inspected material) 6: Transport Direction 7: Magnetosensitive element 8: Scratch 9: Leakage magnetic flux 10: Amplifier 11: Filter 12: Waveform shaper 13A, 13B: Recorder 14: Comparator 15: Judgment device 16: Holder 17a: Auxiliary yoke 17b: Auxiliary yoke:

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤 井 昭 明 山口県徳山市大字徳山5635番地の6 シス テムハイテック株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Fujii Akira 5 Tokuyama, Tokuyama City, Yamaguchi Prefecture 6 System High Tech Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 断面が略U字状のヨークの対向辺に設け
た貫通孔に被検査材を挿入し、前記ヨークの底辺に嵌着
した励磁コイルにより発生した磁束を該ヨークを介して
被検査材に与え、該被検査材の傷からの漏洩磁束を前記
対向辺の間に設けた感磁性素子により検出することを特
徴とする漏洩磁束探傷方法。
1. A material to be inspected is inserted into a through hole provided on an opposing side of a yoke having a substantially U-shaped cross section, and a magnetic flux generated by an exciting coil fitted on the bottom side of the yoke is covered via the yoke. A leakage magnetic flux flaw detection method, which comprises applying a magnetic flux to an inspection material and detecting a leakage magnetic flux from a flaw of the inspection material by a magnetic sensitive element provided between the facing sides.
【請求項2】 断面が略U字状のヨーク,該ヨ−クの対
向辺に設けた被検査材の貫通孔,前記ヨークの底辺が貫
通する励磁コイル、および、前記対向辺の間に設置され
被検外材の漏洩磁束を検知する感磁性素子を備えること
を特徴とする漏洩磁束探傷装置。
2. A yoke having a substantially U-shaped cross section, a through hole of a material to be inspected provided on an opposite side of the yoke, an exciting coil penetrated by a bottom side of the yoke, and the yoke are provided between the opposite sides. A leak magnetic flux flaw detector comprising a magnetic sensitive element for detecting a leak magnetic flux of an external material to be inspected.
JP6157598A 1994-07-08 1994-07-08 Leakage magnetic flux flaw detecting method and device Withdrawn JPH0821822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6157598A JPH0821822A (en) 1994-07-08 1994-07-08 Leakage magnetic flux flaw detecting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6157598A JPH0821822A (en) 1994-07-08 1994-07-08 Leakage magnetic flux flaw detecting method and device

Publications (1)

Publication Number Publication Date
JPH0821822A true JPH0821822A (en) 1996-01-23

Family

ID=15653218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6157598A Withdrawn JPH0821822A (en) 1994-07-08 1994-07-08 Leakage magnetic flux flaw detecting method and device

Country Status (1)

Country Link
JP (1) JPH0821822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121127B1 (en) * 2018-12-18 2020-06-09 현대엘리베이터주식회사 Diagnosing System for Wire Rope of Elevator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121127B1 (en) * 2018-12-18 2020-06-09 현대엘리베이터주식회사 Diagnosing System for Wire Rope of Elevator

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
JP4829883B2 (en) Method and apparatus for non-destructive inspection of tubes
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
JPS63133054A (en) Flux leakage probe used for nondestructive inspection
WO2012111500A1 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
KR20110087477A (en) Apparatus and method for detecting the wall thinning of pipeline using pulse magnetic field
JPH0821822A (en) Leakage magnetic flux flaw detecting method and device
JPH06265526A (en) Leakage flux flaw detecting apparatus
JPH0711508B2 (en) Leakage magnetic flux flaw detection method
JPH08145952A (en) Magnetic leakage flux testing method
JPH08136508A (en) Sensitivity correction method in leakage flux flaw detection
JP2915014B2 (en) Remote field type eddy current probe
JP2959395B2 (en) Metal residue detection method in metal tube
JPS61147158A (en) Defect detecting device for strip
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
JPH04296648A (en) Method and device for magnetic crack detection
JPH0439031B2 (en)
JPH10170481A (en) Eddy current flaw detector
JPS6248191B2 (en)
JPS5824210Y2 (en) Electromagnetic flaw detection equipment
JPH06347447A (en) Eddy current flaw detection method and its device
JPH06249836A (en) Insertion eddy current flaw detecting method for double pipe
JPH0843358A (en) Eddy-current flaw detecting method for steel pipe
CN106442741B (en) A kind of electromagnet ultrasonic changer for roller surface automatic detection

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002