JPH08217982A - Resin composition, production of resin composite material having fine metallic particle dispersed therein and optical recording device - Google Patents
Resin composition, production of resin composite material having fine metallic particle dispersed therein and optical recording deviceInfo
- Publication number
- JPH08217982A JPH08217982A JP7021995A JP2199595A JPH08217982A JP H08217982 A JPH08217982 A JP H08217982A JP 7021995 A JP7021995 A JP 7021995A JP 2199595 A JP2199595 A JP 2199595A JP H08217982 A JPH08217982 A JP H08217982A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fine particles
- metal
- optical recording
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は樹脂組成物、この樹脂組
成物から金属微粒子分散樹脂複合材料を製造する方法、
および微粒子分散樹脂複合材料を構成要素とする光記録
装置に関する。FIELD OF THE INVENTION The present invention relates to a resin composition, a method for producing a metal fine particle dispersed resin composite material from the resin composition,
And an optical recording device having a fine particle dispersed resin composite material as a constituent element.
【0002】[0002]
【従来の技術】最近、ガラスなどに金属や半導体の超微
粒子を分散させた複合材料が、三次の非線形光学材料な
どとして注目されている。なかでも、ポリマー中に微粒
子を分散させた複合材料は薄膜などへの成形性などが良
好なため、近年とみにその重要性が増している。こうし
たポリマー系の複合材料は例えば特開平5−22400
6号公報などに開示されており、これらの多くはゾル−
ゲル法により調製されている。しかし、ゾル−ゲル法で
は調製の際に多量の溶媒が必要となるばかりでなく、使
用できるポリマーの分子構造的な制約が大きく、さらに
分散媒(ポリマー)に対する微粒子の含有率をそれほど
高くすることができない。また、ゾル−ゲル法以外の方
法では、複合材料の調製条件が非常に特殊であったり、
調製された複合材料の成形が困難であることが多い。2. Description of the Related Art Recently, a composite material in which ultrafine particles of metal or semiconductor are dispersed in glass or the like has attracted attention as a third-order nonlinear optical material. Among them, a composite material in which fine particles are dispersed in a polymer has a good moldability for a thin film and the like, and therefore its importance has increased in recent years. Such a polymer-based composite material is disclosed, for example, in JP-A-5-22400.
No. 6, for example, many of these are sol-
It is prepared by the gel method. However, in the sol-gel method, not only a large amount of solvent is required for the preparation, but also the restrictions on the molecular structure of the polymer that can be used are large, and the content ratio of fine particles to the dispersion medium (polymer) should be made so high. I can't. Further, in methods other than the sol-gel method, the preparation conditions of the composite material are very special,
Molding of the prepared composite materials is often difficult.
【0003】このような問題点を解決する金属超微粒子
分散複合材料の調製方法として、特開平1−11346
4号公報には、エポキシ樹脂などの液状モノマーに貴金
属の可溶性塩を溶解させた後、これを重合して固化さ
せ、次いでこの樹脂硬化物を貴金属微粒子が発生する温
度(コロイド形成温度)以上に加熱処理し、金属微粒子
分散樹脂複合材料を得る方法が開示されている。しかし
ながら、この方法では金属微粒子を生成させるために比
較的高温での熱処理を必要としたり、ガラス転移温度が
高すぎる樹脂には適用できないなどの欠点があった。さ
らに、樹脂を硬化させた後に金属微粒子を発生させるた
め、金属塩から金属微粒子への変換率が低く結果的に金
属微粒子の含有率を高めにくいうえ、金属微粒子の粒径
分布などの調整が難しく、かつ1つの金属微粒子分散樹
脂複合材料中に粒径分布、粒形、凝集状態などの異なる
部位を作り込むことは困難であった。As a method for preparing a composite material of ultrafine metal particles, which solves the above problems, Japanese Patent Laid-Open No. 11346/1989 has been proposed.
No. 4 discloses that a soluble salt of a noble metal is dissolved in a liquid monomer such as an epoxy resin and then this is polymerized to be solidified, and then this resin cured product is heated to a temperature (colloid formation temperature) or higher at which noble metal fine particles are generated. A method of obtaining a resin composite material in which fine metal particles are dispersed by heat treatment is disclosed. However, this method has drawbacks in that it requires heat treatment at a relatively high temperature in order to generate fine metal particles, and cannot be applied to a resin having a too high glass transition temperature. Further, since the metal fine particles are generated after the resin is cured, the conversion rate of the metal salt to the metal fine particles is low, and as a result, it is difficult to increase the content ratio of the metal fine particles, and it is difficult to adjust the particle size distribution of the metal fine particles. In addition, it is difficult to form different parts such as particle size distribution, particle shape, and agglomeration state in one metal fine particle dispersed resin composite material.
【0004】[0004]
【発明が解決しようとする課題】上述したように従来の
金属微粒子分散樹脂複合材料は、調製の際に大量の溶媒
や、高温の熱処理を必要とするうえ、微粒子の含有率を
高めることが難しく、成膜性などの成形性にも問題があ
った。また、これらの問題が解決できたとしても、金属
微粒子の粒径分布などを任意に調整することはできなか
った。As described above, the conventional metal fine particle-dispersed resin composite material requires a large amount of solvent and high temperature heat treatment at the time of preparation, and it is difficult to increase the content rate of fine particles. Also, there was a problem in formability such as film forming property. Even if these problems could be solved, the particle size distribution of the metal fine particles could not be adjusted arbitrarily.
【0005】本発明はこのような問題を解決して、耐熱
性、電気的特性などに優れた金属微粒子分散樹脂複合材
料の原料として、その微粒子の含有率を高めることや微
粒子の粒径分布などを調整することの可能な樹脂組成
物、この樹脂組成物から金属微粒子分散樹脂複合材料を
製造する方法、およびこのような微粒子分散樹脂複合材
料を用いた光記録装置を提供することを目的とする。The present invention solves these problems and improves the content of fine particles and the particle size distribution of the fine particles as a raw material of a metal fine particle dispersed resin composite material having excellent heat resistance and electrical characteristics. It is an object of the present invention to provide a resin composition capable of adjusting the composition, a method for producing a metal fine particle-dispersed resin composite material from the resin composition, and an optical recording device using such a fine particle-dispersed resin composite material. .
【0006】[0006]
【課題を解決するための手段と作用】本発明の樹脂組成
物は、(a)硬化性樹脂または重合性樹脂、(b)金属
の無機塩または有機塩、および(c)(b)成分の還元
剤を含有することを特徴とするものである。The resin composition of the present invention comprises (a) a curable resin or a polymerizable resin, (b) an inorganic or organic salt of a metal, and (c) a component (b). It is characterized by containing a reducing agent.
【0007】本発明の金属微粒子分散樹脂複合材料の製
造方法は、上記樹脂組成物を、金属微粒子の形成温度及
び樹脂の硬化または重合開始温度のいずれよりも高い温
度温度下で処理することを特徴とするものである。本発
明においては、この処理時に、樹脂組成物に対し所定の
粒径を有する金属微粒子の表面プラズモン吸収波長に対
応する波長の光を照射してもよい。The method for producing a metal fine particle-dispersed resin composite material of the present invention is characterized in that the resin composition is treated at a temperature higher than the temperature for forming the metal fine particles and the curing or polymerization initiation temperature of the resin. It is what In the present invention, during this treatment, the resin composition may be irradiated with light having a wavelength corresponding to the surface plasmon absorption wavelength of the metal fine particles having a predetermined particle diameter.
【0008】本発明の光記録媒体は、樹脂系分散媒中に
導体微粒子を含有する微粒子分散樹脂複合材料からなる
光記録媒体と、この光記録媒体に光を照射するための光
源と、光検知手段とを具備したことを特徴とするもので
ある。この光記録媒体では、光源からの光照射によって
光記録媒体中の導体微粒子の分散状態が変化して書き込
みが行なわれる。The optical recording medium of the present invention is an optical recording medium made of a fine particle-dispersed resin composite material containing conductive fine particles in a resin-based dispersion medium, a light source for irradiating the optical recording medium with light, and light detection. Means and means are provided. In this optical recording medium, writing is performed by changing the dispersion state of the conductive fine particles in the optical recording medium by irradiation of light from a light source.
【0009】以下、本発明をさらに詳細に説明する。本
発明の樹脂組成物において、(a)成分である硬化性樹
脂または重合性樹脂としては、液状の状態から加熱や光
による重合反応あるいは架橋反応などによって粘度の上
昇および硬化を起こし、二次元構造または三次元網目構
造の樹脂重合物、樹脂硬化物を生成するものであれば特
に限定されない。具体的には、不飽和ポリエステル樹
脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラ
ミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂も
しくはポリイミド樹脂など、または塩化ビニル樹脂、ア
クリル樹脂、ポリウレタン樹脂、スチレン樹脂もしくは
ポリカーボネート樹脂などの熱可塑性樹脂にイソシアネ
ートなどの架橋剤を添加したものが挙げられる。The present invention will be described in more detail below. In the resin composition of the present invention, the curable resin or the polymerizable resin which is the component (a) has a two-dimensional structure which causes a rise in viscosity and curing from a liquid state due to a polymerization reaction or a crosslinking reaction by heating or light. Alternatively, it is not particularly limited as long as it produces a resin polymer or a resin cured product having a three-dimensional network structure. Specifically, unsaturated polyester resin, epoxy resin, phenol resin, urea resin, melamine resin, diallyl phthalate resin, silicone resin or polyimide resin, vinyl chloride resin, acrylic resin, polyurethane resin, styrene resin or polycarbonate resin, etc. One obtained by adding a crosslinking agent such as isocyanate to the above thermoplastic resin.
【0010】ただし、分散媒としての樹脂の耐熱性や機
械的強度を考慮すると、三次元網目構造の樹脂硬化物を
生成する硬化性樹脂を用いることが好ましい。さらに硬
化性樹脂のうちでもエポキシ樹脂は特に好ましく、この
ようなエポキシ樹脂としては分子中にエポキシ基を少な
くとも1個有するものであれば特に限定されない。ここ
で、エポキシ基としては例えば下記構造式で示すものが
挙げられる。However, considering the heat resistance and mechanical strength of the resin as the dispersion medium, it is preferable to use a curable resin which produces a resin cured product having a three-dimensional network structure. Further, of the curable resins, an epoxy resin is particularly preferable, and such an epoxy resin is not particularly limited as long as it has at least one epoxy group in the molecule. Here, examples of the epoxy group include those represented by the following structural formula.
【0011】[0011]
【化1】 Embedded image
【0012】また、エポキシ樹脂は分子中に不飽和二重
結合を有するアクリル変性エポキシ樹脂でもよい。ここ
で、不飽和二重結合としては例えば下記構造式で示すも
のが挙げられる。The epoxy resin may be an acrylic modified epoxy resin having an unsaturated double bond in the molecule. Here, examples of the unsaturated double bond include those represented by the following structural formulas.
【0013】[0013]
【化2】 Embedded image
【0014】なお、上記の構造式において、炭素原子に
結合している水素原子が、塩素、フッ素のようなハロゲ
ン原子、炭素数1〜6のアルキル基、フェニル基などで
置換されていてもよい。In the above structural formula, the hydrogen atom bonded to the carbon atom may be substituted with a halogen atom such as chlorine or fluorine, an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like. .
【0015】このようなアクリル変性エポキシ樹脂は、
目的に応じて分子設計して任意の方法で合成することが
できる。ただし、通常のエポキシ樹脂にアクリル酸、メ
タクリル酸、ケイ皮酸、マレイン酸などを反応させて合
成する方法が容易である。この方法で使用するエポキシ
樹脂としては、例えば、ビスフェノールA型エポキシ樹
脂、ビスフェノールF型エポキシ樹脂;フェノールノボ
ラック型エポキシ樹脂;脂環式エポキシ樹脂;トリグリ
シジルイソシアネート、ヒダントインエポキシのような
含窒素エポキシ樹脂;水添ビスフェノールA型エポキシ
樹脂、プロピレングリコール−ジグリシジルエーテル、
ペンタエリスリトールポリグリシジルエーテルなどの脂
肪族系エポキシ樹脂;芳香族、脂肪族または脂環式のカ
ルボン酸とエピクロルヒドリンとの反応によって得られ
るエポキシ樹脂;スピロ環含有エポキシ樹脂;o−アリ
ルフェノールノボラック化合物とエピクロルヒドリンと
の反応生成物であるグリシジルエーテル型エポキシ樹
脂;ビスフェノールAのそれぞれの水酸基のオルソ位に
アリル基を有するジアリルビスフェノール化合物とエピ
クロルヒドリンとの反応生成物であるグリシジルエーテ
ル型エポキシ樹脂などが挙げられる。エポキシ樹脂とし
ては、これらからなる群より選択される少なくとも1種
が使用される。Such an acrylic modified epoxy resin is
The molecule can be designed according to the purpose and synthesized by any method. However, a method of synthesizing by reacting an ordinary epoxy resin with acrylic acid, methacrylic acid, cinnamic acid, maleic acid or the like is easy. Examples of the epoxy resin used in this method include bisphenol A type epoxy resin, bisphenol F type epoxy resin; phenol novolac type epoxy resin; alicyclic epoxy resin; triglycidyl isocyanate, nitrogen-containing epoxy resin such as hydantoin epoxy; Hydrogenated bisphenol A type epoxy resin, propylene glycol-diglycidyl ether,
Aliphatic epoxy resin such as pentaerythritol polyglycidyl ether; Epoxy resin obtained by reaction of aromatic, aliphatic or alicyclic carboxylic acid with epichlorohydrin; Spiro ring-containing epoxy resin; o-allylphenol novolac compound and epichlorohydrin And a glycidyl ether type epoxy resin which is a reaction product of bisphenol A; a glycidyl ether type epoxy resin which is a reaction product of a diallyl bisphenol compound having an allyl group at the ortho position of each hydroxyl group of bisphenol A and epichlorohydrin. As the epoxy resin, at least one selected from the group consisting of these is used.
【0016】本発明の樹脂組成物において、(b)成分
の金属塩としては、塩化金、臭化金、塩化銀、臭化銀、
ヨウ化銀、塩化パラジウムなどのハロゲン化物や塩化白
金酸、塩化金酸ナトリウム、硝酸銀などの無機金属塩、
または白金アセチルアセトナート、パラジウムアセチル
アセトナートなどのアセチルアセトナートや貴金属有機
アンモニウム塩などの有機金属塩が用いられる。In the resin composition of the present invention, the metal salt of component (b) includes gold chloride, gold bromide, silver chloride, silver bromide,
Halides such as silver iodide and palladium chloride, and inorganic metal salts such as chloroplatinic acid, sodium chloroaurate and silver nitrate,
Alternatively, an acetylacetonate such as platinum acetylacetonate or palladium acetylacetonate or an organic metal salt such as a noble metal organic ammonium salt is used.
【0017】本発明の樹脂組成物において、(c)成分
の還元剤としては、ベンジルアルコール、デキストリン
などのアルコール類、ホルマリン、ベンズアルデヒド、
テレフタルアルデヒドなどのアルデヒド類、水素化ホウ
素ナトリウム、水素化リチウムアルミニウム、水素ガ
ス、リン、ヒドラジン、タンニン、ピロガロールなどが
用いられる。In the resin composition of the present invention, as the reducing agent of the component (c), alcohols such as benzyl alcohol and dextrin, formalin, benzaldehyde,
Aldehydes such as terephthalaldehyde, sodium borohydride, lithium aluminum hydride, hydrogen gas, phosphorus, hydrazine, tannin, and pyrogallol are used.
【0018】本発明の樹脂組成物から金属微粒子分散樹
脂複合材料を得るためには、液状のエポキシ樹脂モノマ
ーなどの硬化性樹脂または重合性樹脂に、微粒子の前駆
体物質である金属塩およびこの金属塩と反応して金属微
粒子を析出させる還元剤を混合し、必要に応じてこれに
所定の硬化または重合触媒を添加した後、金属微粒子の
形成温度及び樹脂の硬化または重合開始温度のいずれよ
りも高い温度で加熱処理することによって、樹脂を硬化
または重合させるとともに金属塩を還元して樹脂中に所
望の微粒子を析出させる方法が用いられ得る。この方法
では、金属塩の添加量に応じて硬化物または重合物中の
微粒子の含有量が、樹脂の硬化または重合速度に応じて
微粒子の粒径や凝集状態が変化する。また樹脂が光硬化
性や光重合性である場合は、樹脂を硬化または重合させ
るための光照射を上述したような加熱処理と適宜併用す
ればよい。In order to obtain a metal fine particle dispersed resin composite material from the resin composition of the present invention, a curable resin or a polymerizable resin such as a liquid epoxy resin monomer is added to a metal salt which is a precursor substance of fine particles and this metal. After mixing with a reducing agent that reacts with a salt to precipitate fine metal particles, and if necessary a predetermined curing or polymerization catalyst is added thereto, the temperature is higher than the temperature for forming the fine metal particles and the curing or polymerization initiation temperature of the resin. A method of curing or polymerizing the resin and reducing the metal salt to deposit desired fine particles in the resin by heat treatment at a high temperature can be used. In this method, the content of the fine particles in the cured product or the polymer changes depending on the addition amount of the metal salt, and the particle size or the aggregation state of the fine particles changes depending on the curing or polymerization rate of the resin. When the resin is photocurable or photopolymerizable, light irradiation for curing or polymerizing the resin may be appropriately used in combination with the heat treatment as described above.
【0019】ここで、微粒子の粒径や凝集状態は、微粒
子が析出する周囲の場の粘度に影響を受ける。一般的に
は、周囲の粘度が大きいと粒径が小さくなるとともに凝
集しにくくなる傾向があり、反対に周囲の粘度が小さい
と粒径が大きくなるとともに凝集しやすくなる傾向があ
る。したがって、樹脂を十分に硬化または重合させて粘
度を大きくした後に粒子を析出させれば、粒径が小さ
く、しかもあまり凝集していない分散性の良好な複合材
料が得られると考えられる。ただし、樹脂の粘度が大き
すぎると、金属塩が反応して微粒子にまで成長する過程
が妨げられ、結果として金属塩の添加量と比較して析出
する微粒子の量が少なくなるため効率が悪い。そこで、
反応初期には樹脂の粘度が小さく金属塩の反応が速やか
に進行するが、反応後期には樹脂の粘度が大きくなって
粒子の粒径が必要以上に粗大化したり凝集したりしない
ような条件が理想的である。Here, the particle size and the state of aggregation of the fine particles are affected by the viscosity of the surrounding field where the fine particles are deposited. In general, when the viscosity of the surroundings is large, the particle size is small and the particles tend to be difficult to aggregate. On the contrary, when the viscosity of the surroundings is small, the particle size is large and the particles are likely to be aggregated. Therefore, it is considered that if the resin is sufficiently cured or polymerized to increase the viscosity and then the particles are precipitated, a composite material having a small particle size and good dispersibility, which is not much aggregated, can be obtained. However, if the viscosity of the resin is too high, the process in which the metal salt reacts and grows into fine particles is hindered, and as a result, the amount of fine particles to be deposited is smaller than the addition amount of the metal salt, resulting in poor efficiency. Therefore,
In the initial stage of the reaction, the viscosity of the resin is small and the reaction of the metal salt proceeds rapidly, but in the latter stage of the reaction, the viscosity of the resin is so high that the particle size of the particles does not become coarser than necessary or aggregated. Ideal.
【0020】本発明では、比較的穏和な温度条件で金属
微粒子が形成され得る金属塩と還元剤との反応を利用し
ているので、金属微粒子の形成と並行して樹脂が非常に
粘度の小さいモノマーの状態から、非常に粘度の大きな
樹脂硬化物あるいは樹脂重合物へと連続的に変化する。
そこで、金属塩の反応速度と樹脂の硬化速度あるいは重
合速度とを適宜設定すれば、金属塩の反応の進行に合わ
せて、周囲の樹脂の粘度を上述したような理想的な状態
に制御できる。具体的には、金属塩の反応性が高い場合
には硬化性樹脂として硬化速度の大きいものを選択し、
逆に金属塩の反応性が低い場合には硬化性樹脂として硬
化速度の小さいものを選択するというように、金属塩と
硬化性樹脂または重合性樹脂との組み合わせによって粒
子の分散状態を制御できる。なおここで、硬化性樹脂の
硬化速度は、例えば硬化性樹脂の硬化剤成分に応じて容
易に調整され得る。In the present invention, since the reaction between the metal salt capable of forming the metal fine particles under a relatively mild temperature condition and the reducing agent is utilized, the resin has a very low viscosity in parallel with the formation of the metal fine particles. It continuously changes from a monomer state to a resin cured product or resin polymerized product having a very high viscosity.
Therefore, by appropriately setting the reaction rate of the metal salt and the curing rate or the polymerization rate of the resin, the viscosity of the surrounding resin can be controlled to the ideal state as described above in accordance with the progress of the reaction of the metal salt. Specifically, if the reactivity of the metal salt is high, select a curable resin with a high curing rate,
On the contrary, when the reactivity of the metal salt is low, a curable resin having a low curing rate is selected, so that the dispersed state of the particles can be controlled by the combination of the metal salt and the curable resin or the polymerizable resin. Here, the curing rate of the curable resin can be easily adjusted, for example, according to the curing agent component of the curable resin.
【0021】さらに本発明においては、金属微粒子の形
成温度が樹脂の硬化または重合開始温度よりも高温側に
あり、かつその温度差が100℃以内、より好ましくは
20℃以内であることが望まれる。これは、樹脂の硬化
または重合開始温度が金属微粒子の形成温度よりも高い
と、樹脂の硬化または重合前に微粒子の析出が開始され
るため、樹脂の粘度が小さい間に微粒子の粒径が大きく
なりすぎ、その分散性が低下するおそれがあるからであ
り、加熱処理時の昇温速度が遅いほどこの傾向は顕著と
なる。一方金属微粒子の形成温度があまりに高すぎる
と、加熱処理時の昇温中に樹脂の硬化あるいは重合が進
行しすぎるので、析出する微粒子の量が少なく効率が悪
い。ただしここでの金属微粒子の形成温度および樹脂の
硬化または重合開始温度とは、その温度下で金属塩の還
元反応あるいは樹脂の硬化または重合反応の反応率が3
週間以内、好ましくは1週間以内に50%に達する温度
と規定される。Further, in the present invention, it is desired that the formation temperature of the fine metal particles is higher than the curing or polymerization initiation temperature of the resin, and the temperature difference is within 100 ° C, more preferably within 20 ° C. . This is because when the curing or polymerization initiation temperature of the resin is higher than the formation temperature of the metal fine particles, the precipitation of fine particles is started before the curing or polymerization of the resin, and therefore the particle size of the fine particles is large while the viscosity of the resin is small. This is because there is a risk that the dispersibility will decrease and the dispersibility will decrease, and this tendency becomes more pronounced as the temperature rising rate during the heat treatment becomes slower. On the other hand, if the forming temperature of the metal fine particles is too high, curing or polymerization of the resin will proceed too much during the temperature rise during the heat treatment, and the amount of fine particles to be precipitated will be small, resulting in poor efficiency. However, the forming temperature of the metal fine particles and the curing or polymerization initiation temperature of the resin here mean that the reaction rate of the reduction reaction of the metal salt or the curing or polymerization reaction of the resin is 3 at that temperature.
It is defined as the temperature which reaches 50% within a week, preferably within a week.
【0022】また、上述した反応過程で生じる微粒子
は、粒径が十分小さいと表面プラズモン吸収を示し、主
に紫外部から可視部の特定の波長の光を吸収して熱とし
て周囲に放出する性質を有する。このとき、ある材質の
微粒子の表面プラズモン吸収波長は主に微粒子の粒径に
依存し、特定の粒径を有する微粒子の最大吸収波長はほ
ぼ一義的に決まる。そこで、樹脂を硬化または重合させ
る過程において、所望の粒径に対応する波長のレーザー
光などを照射すると、析出する微粒子が所望の粒径にな
った時点で表面プラズモン吸収を起こし、吸収した光を
熱として周囲に放出する。この結果、所望の粒径に達し
た微粒子の周辺の樹脂だけが加熱されて硬化または重合
が加速され、微粒子がその粒径以上に成長したり凝集し
たりすることが抑えられる。すなわち、個々の微粒子が
所望の粒径に達するまでは速やかに成長し、照射光の波
長に対応した粒径で成長が止まるため、所望の粒径に揃
い、凝集がなく、しかも金属塩から微粒子への変換率の
高い良好な微粒子分散樹脂複合材料を調製することがで
き、非常に有効かつ有用である。またこの際に、照射す
るレーザー光軸を絞り込むことによって、非常に微細な
領域の粒径分布、粒形、凝集状態を自由に変化させるこ
とが可能となり、特に非線形光学素子やホログラム記録
媒体を形成する際に非常に有効である。なおこの場合、
レーザー光などの照射前は、樹脂組成物の温度が金属微
粒子の形成温度以上樹脂の硬化または重合開始温度未満
であっても、レーザー光などの照射後に上述したような
金属微粒子の表面プラズモン吸収による発熱で、樹脂組
成物が樹脂の硬化または重合開始温度以上となれば、金
属微粒子分散樹脂複合材料を得ることが可能となる。Further, the fine particles generated in the above reaction process exhibit surface plasmon absorption when the particle size is sufficiently small, and absorb the light of a specific wavelength in the visible region mainly from the ultraviolet and release it as heat to the surroundings. Have. At this time, the surface plasmon absorption wavelength of fine particles of a certain material mainly depends on the particle diameter of the fine particles, and the maximum absorption wavelength of fine particles having a specific particle diameter is almost uniquely determined. Therefore, in the process of curing or polymerizing the resin, when a laser beam having a wavelength corresponding to a desired particle size is irradiated, surface plasmon absorption occurs at the time when the precipitated fine particles reach the desired particle size, and the absorbed light is absorbed. It is released to the environment as heat. As a result, only the resin around the fine particles having a desired particle size is heated to accelerate curing or polymerization, and it is possible to prevent the fine particles from growing or aggregating beyond the particle size. That is, individual particles grow rapidly until they reach a desired particle size, and stop growing at a particle size corresponding to the wavelength of irradiation light, so that the particles have a desired particle size, no agglomeration, and metal particles It is possible to prepare a fine particle-dispersed resin composite material having a high conversion rate to, and it is very effective and useful. At this time, it is possible to freely change the particle size distribution, particle shape, and aggregation state in a very fine region by narrowing down the laser optical axis for irradiation, especially for forming a nonlinear optical element or hologram recording medium. It is very effective when doing. In this case,
Before irradiation with laser light or the like, even if the temperature of the resin composition is equal to or higher than the formation temperature of the metal fine particles and lower than the curing or polymerization initiation temperature of the resin, the surface plasmon absorption of the metal fine particles as described above after irradiation with laser light or the like When the temperature of the resin composition rises above the curing or polymerization initiation temperature of the resin due to heat generation, it becomes possible to obtain a metal fine particle-dispersed resin composite material.
【0023】次に、本発明の樹脂組成物などから調製さ
れる微粒子分散樹脂複合材料について樹脂組成物が特に
硬化性樹脂を成分とする場合を例にとり説明すると、本
発明が対象とするこのような微粒子分散樹脂複合材料は
微粒子が樹脂硬化物からなる分散媒中に分散されてなる
ものである。なおここで分散媒中に分散される微粒子を
は、上述したような本発明の樹脂組成物を用いて調製し
た場合は金属微粒子となるが、一般には導体であれば金
属、合金、化合物など特に限定されず、これらの混合物
または複合体でもかまわない。またこの導体微粒子はい
かなる形状であってもよく、その分散形態についても特
に限定されないが、粒径が1〜100nmの範囲である
ことが好ましい。この理由は、粒径が1nm未満の導体
微粒子は製造が困難であり、一方粒径が100nmを超
えると単位重量あたりの表面積の増大効果などのサイズ
効果や量子効果などの超微粒子特有の性質の発現が小さ
くなるためである。さらに導体微粒子は、粒径が1〜2
0nmで、かつ粒径が十分に揃っていることがより好ま
しい。Next, the fine particle-dispersed resin composite material prepared from the resin composition of the present invention will be described by taking the case where the resin composition contains a curable resin as an example. The fine particle-dispersed resin composite material is obtained by dispersing fine particles in a dispersion medium made of a cured resin. The fine particles dispersed in the dispersion medium here become metal fine particles when prepared using the resin composition of the present invention as described above, but in general, if it is a conductor, metal, alloy, compound, etc. It is not limited and may be a mixture or complex of these. The conductor fine particles may have any shape, and the dispersion form thereof is not particularly limited, but the particle diameter is preferably in the range of 1 to 100 nm. The reason for this is that it is difficult to manufacture conductive fine particles having a particle size of less than 1 nm, whereas when the particle size exceeds 100 nm, the size effect such as the effect of increasing the surface area per unit weight, and the characteristic properties of ultrafine particles such as the quantum effect are observed. This is because the expression becomes small. Further, the conductor fine particles have a particle size of 1 to 2
It is more preferable that the particle diameter is 0 nm and the particle diameters are sufficiently uniform.
【0024】このような複合材料では、上述したような
導体微粒子を樹脂硬化物中に分散させることによって、
樹脂硬化物と微粒子との界面で、電子移動や化学的な結
合形成などの種々の相互作用が働く。この結果、微粒子
が樹脂の架橋剤やフィラー(充填剤)と同等に作用し、
しかも微粒子の粒径が非常に小さく微粒子の単位総体積
あたりの表面積が大きいため、通常のフィラーなどと比
較して上述の働きが飛躍的に大きい。このため得られる
微粒子分散樹脂複合材料は、通常の樹脂硬化物と比較し
て、耐熱性、耐光性、弾性率などが大きく向上し、構造
材料として好適に用いることができる。また、特に三次
の非線形光学材料などの光電子材料として用いる際に
は、微粒子が非線形光学効果などの機能を発現すると同
時に、上述したような特性向上効果により例えばレーザ
ー照射などに対する耐久性を持つようになるため、機能
発現を妨げるような通常の架橋剤やフィラーを別に添加
する必要がない。さらに、従来は特性向上のために充填
剤を加える場合には、予め硬化前の樹脂に充填剤を添加
した後に注型などにより成形する必要があり、樹脂の粘
度が上がって注型などの作業が困難になるという大きな
問題点があったのに対し、本発明の樹脂組成物を用いて
微粒子分散樹脂複合材料を調製する場合は、硬化前の注
型時には充填剤に相当する微粒子が析出していないた
め、上述したような粘度上昇は起こらず、作業性が非常
に優れている。In such a composite material, by dispersing the above-mentioned conductive fine particles in a resin cured product,
At the interface between the resin cured product and the fine particles, various interactions such as electron transfer and chemical bond formation work. As a result, the fine particles act equivalently to the resin crosslinking agent and filler (filler),
Moreover, since the particle size of the fine particles is very small and the surface area of the fine particles per unit total volume is large, the above-mentioned function is remarkably large as compared with ordinary fillers. Therefore, the obtained fine particle-dispersed resin composite material is greatly improved in heat resistance, light resistance, elastic modulus, etc. as compared with ordinary resin cured products, and can be suitably used as a structural material. In particular, when used as an optoelectronic material such as a third-order nonlinear optical material, the fine particles exhibit a function such as a nonlinear optical effect, and at the same time, have a durability against laser irradiation due to the characteristic improving effect as described above. Therefore, it is not necessary to separately add an ordinary crosslinking agent or filler that hinders the expression of functions. Furthermore, conventionally, when a filler is added to improve the properties, it is necessary to add the filler to the resin before curing in advance and then perform molding by casting, etc., and the viscosity of the resin increases and work such as casting However, when preparing a fine particle-dispersed resin composite material using the resin composition of the present invention, fine particles corresponding to the filler are precipitated during casting before curing. Therefore, the above-mentioned increase in viscosity does not occur and workability is very excellent.
【0025】本発明においては、上述したような導体微
粒子の樹脂系分散媒に対する配合量は特に限定されな
い。ただし、三次の非線形光学材料や光記録装置の光記
録媒体などの光電子機能性材料として用いる場合には、
0.1〜60体積%、さらには5〜40体積%に設定す
ることが好ましい。この理由は、導体微粒子の配合量が
少なすぎると、微粒子と樹脂硬化物との相互作用が小さ
いために非線形光学効果などの機能の発現がわずかで、
逆に導体微粒子の配合量が多すぎると、微粒子の分散性
が低下して良好な量子サイズ効果が得られず、ひいては
大きな非線形光学効果などの機能が発揮されないおそれ
があるからである。また、構造材料として用いる場合に
は、0.01〜50重量%、さらには0.1〜20重量
%に設定することが好ましい。この理由は、導体微粒子
の配合量が少なすぎると、微粒子と樹脂硬化物との相互
作用が小さいために弾性率などの特性向上が小さく、反
対に導体微粒子の配合量が多すぎると、微粒子の分散性
が低下して凝集などを起こしやすくなるために、特性の
発現が不均一になったり、特性の向上が小さくなったり
するからである。したがって本発明の樹脂組成物におい
ては、発生する微粒子の配合量が上述の範囲内になるよ
うに、その用途に応じて各成分の配合量が決定されるこ
とが好ましい。In the present invention, the compounding amount of the above-mentioned conductor fine particles with respect to the resin-based dispersion medium is not particularly limited. However, when used as an optoelectronic functional material such as a third-order nonlinear optical material or an optical recording medium of an optical recording device,
It is preferably set to 0.1 to 60% by volume, more preferably 5 to 40% by volume. The reason for this is that if the amount of the conductive fine particles blended is too small, the interaction between the fine particles and the resin cured product is small, so that the expression of functions such as a nonlinear optical effect is small,
On the other hand, if the amount of the conductive fine particles is too large, the dispersibility of the fine particles is lowered, and a good quantum size effect cannot be obtained, and in turn, a function such as a large nonlinear optical effect may not be exhibited. When it is used as a structural material, it is preferably set to 0.01 to 50% by weight, more preferably 0.1 to 20% by weight. The reason for this is that if the amount of the conductive fine particles is too small, the interaction between the fine particles and the resin cured product is small, so that the characteristic improvement such as the elastic modulus is small. On the contrary, if the amount of the conductive fine particles is too large, This is because the dispersibility is reduced and aggregation or the like is likely to occur, resulting in non-uniform expression of properties or a small improvement in properties. Therefore, in the resin composition of the present invention, it is preferable to determine the blending amount of each component according to the application so that the blending amount of the generated fine particles is within the above range.
【0026】具体的には、金属塩の添加量が、上述した
ような樹脂系分散媒に対する微粒子の好ましい配合量の
1〜2等量に設定され、かつ金属塩に対し、還元剤が1
〜20当量、さらには1〜5当量配合されることが望ま
れる。すなわち金属塩の添加量が1〜2当量の範囲外で
あると、樹脂系分散媒に対する微粒子の配合量を複合材
料の用途に応じた好ましい値に制御することが困難とな
る。また還元剤の配合量が少なすぎると、金属塩の還元
が進みにくく微粒子の析出が不十分となるおそれがあ
り、逆に還元剤の配合量が多すぎると、過剰の還元剤が
微粒子分散樹脂複合材料中に残留して、その機械的強度
などが低下する傾向がある。ただし、樹脂の硬化速度あ
るいは重合速度との関係上、金属塩の反応速度を特別に
早めるかあるいは遅める観点から、還元剤の配合量は必
要に応じ1〜5当量の範囲外に設定されても構わない。Specifically, the addition amount of the metal salt is set to 1 to 2 equivalents of the preferable mixing amount of the fine particles with respect to the resin-based dispersion medium as described above, and the reducing agent is 1 to the metal salt.
It is desired to be blended in an amount of -20 equivalents, more preferably 1-5 equivalents. That is, when the addition amount of the metal salt is out of the range of 1 to 2 equivalents, it becomes difficult to control the compounding amount of the fine particles to the resin dispersion medium to a preferable value according to the application of the composite material. If the amount of the reducing agent is too small, the reduction of the metal salt may be difficult to proceed and the precipitation of fine particles may be insufficient. On the contrary, if the amount of the reducing agent is too large, excess reducing agent causes the fine particle dispersion resin to be dispersed. It remains in the composite material and its mechanical strength and the like tend to decrease. However, from the viewpoint of specifically increasing or decreasing the reaction rate of the metal salt in relation to the curing rate or the polymerization rate of the resin, the amount of the reducing agent to be added is set outside the range of 1 to 5 equivalents, if necessary. It doesn't matter.
【0027】次に、上述したような微粒子分散樹脂複合
材料を構成要素とする非線形光学素子の一例を、図1を
参照して説明する。図1において、例えば石英やガラス
などからなる基板1上にクラッド層8が設けられてい
る。このクラッド層8内には、中心部に微粒子分散樹脂
複合材料からなる非線形光学材料2が、その周囲に入射
側の光導波路3、4および出射側の光導波路5、6、7
がそれぞれ形成されており、クラッド層8と各光導波路
とは屈折率が異なっている。また、各光導波路の外側に
は光ファイバー9が設けられている。なお、本発明の非
線形光学素子は、光導波路の部分を全て微粒子分散樹脂
複合材料で形成してもよいし、また必ずしもクラッド層
を設ける必要もない。Next, an example of a non-linear optical element having the above-mentioned fine particle dispersed resin composite material as a constituent element will be described with reference to FIG. In FIG. 1, a clad layer 8 is provided on a substrate 1 made of, for example, quartz or glass. In the clad layer 8, a nonlinear optical material 2 made of a fine particle dispersed resin composite material is provided in the center portion, and around the periphery thereof, the optical waveguides 3 and 4 on the incident side and the optical waveguides 5, 6 and 7 on the outgoing side.
Are formed, and the cladding layer 8 and each optical waveguide have different refractive indexes. An optical fiber 9 is provided outside each optical waveguide. In the non-linear optical element of the present invention, the optical waveguide portion may be entirely formed of the fine particle dispersed resin composite material, and it is not always necessary to provide the clad layer.
【0028】図1の非線形光学素子を動作原理を説明す
る。いま、図示しない変調可能なレーザー光源からのレ
ーザー光を光ファイバー9を通して光導波路3または4
に単独で入射すると、レーザー光は光導波路5または6
からそのまま出射する。一方、レーザー光を光導波路3
および4に同時に入射すると、2つのレーザー光の光軸
が非線形光学材料2中で交差するので、2つのレーザー
光の光軸の交差点で電子的な格子が形成される。このた
め、例えば光導波路3に入射したレーザー光は非線形光
学材料2を通過する際にこの電子的な格子によって回折
し、その回折光が光導波路7から出射する。そこで、光
導波路7の外側の光ファイバー9に光検知器を付設すれ
ば、光導波路7から出射する回折光を検出できる。The principle of operation of the nonlinear optical element shown in FIG. 1 will be described. Now, laser light from a not-shown modulatable laser light source is passed through the optical fiber 9 to the optical waveguide 3 or 4.
When the laser beam is incident on the optical waveguide 5 or 6 alone,
Is emitted as is. On the other hand, the laser light is passed through the optical waveguide 3
When the two laser beams are simultaneously incident on and 4, the optical axes of the two laser beams intersect in the nonlinear optical material 2, so that an electronic lattice is formed at the intersection of the optical axes of the two laser beams. Therefore, for example, the laser light incident on the optical waveguide 3 is diffracted by this electronic grating when passing through the nonlinear optical material 2, and the diffracted light is emitted from the optical waveguide 7. Therefore, if a photodetector is attached to the optical fiber 9 outside the optical waveguide 7, the diffracted light emitted from the optical waveguide 7 can be detected.
【0029】したがって図1に示した非線形光学素子
を、光導波路3に常に光を入射した状態で、光導波路4
への入射光をオンオフさせることにより、光導波路7か
らの出射光のオンオフを制御できる光スイッチング素子
として好ましく適用できる。また、上述したように光導
波路3、4に同時に光が入射されたときに限り、光導波
路7から光が出射され、光導波路3、4のいずれかのみ
に光が入射されても光導波路7からは光は出射されない
ので、光導波路3、4への光の入射を2つの条件とした
and回路としても良好に機能する。さらにこうした非
線形光学素子は、位相共役ミラー、超高速スペクトロス
コピー、実時間ホログラム、暗号変換素子などへの応用
が期待できる。Therefore, the nonlinear optical element shown in FIG. 1 is used in the optical waveguide 4 with the light always entering the optical waveguide 3.
It can be preferably applied as an optical switching element capable of controlling the on / off of the light emitted from the optical waveguide 7 by turning on / off the light incident on the optical waveguide 7. Further, as described above, light is emitted from the optical waveguide 7 only when light is simultaneously incident on the optical waveguides 3 and 4, and even if light is incident on only one of the optical waveguides 3 and 4, the optical waveguide 7 Since no light is emitted from the above, it also functions well as an and circuit in which light is incident on the optical waveguides 3 and 4 under two conditions. Furthermore, such nonlinear optical elements can be expected to be applied to phase conjugate mirrors, ultrafast spectroscopy, real-time holograms, cryptographic conversion elements, and the like.
【0030】また、同様の微粒子分散樹脂複合材料を構
成要素とする本発明に係る光記録装置の一例を、図2を
参照して説明する。図2に示すようにこの光記録装置
は、移動可能なステージ14上に装着された微粒子分散
樹脂複合材料からなる光記録媒体13と、2組のレーザ
ー光源11、12と、光検知手段としての光検出装置1
5とを有している。この光記録装置の動作原理は以下の
通りである。いま、光源11、12から同時にレーザー
光を光記録媒体13に照射すると照射部で干渉が起こ
る。このとき干渉縞の明部では微粒子が表面プラズモン
吸収を起こして熱が発生し、不定形に凝集していた微粒
子が焼結して形状が球形に変形するため、表面プラズモ
ン吸収波長や屈折率などの光学特性が変化する。この結
果、照射部に干渉縞に対応した非可逆的な回折格子が形
成され、これにより書き込みがなされる。この状態で例
えば光源11から、上述したような変化を生じさせない
十分弱い光を入射すると、回折格子が形成されている部
位においては、入射光が回折し、この回折光が光検出装
置15によって検出される。一方、回折格子が形成され
ていない部位においては、光源11からの光は回折しな
いので、回折光は光検出装置15によって検出されな
い。このようにして、書き込まれた記録を読み出すこと
ができる。なお、光記録媒体13への書き込み、読み出
し方法はこれに何ら限定されず、例えば単一の光源から
の光照射で単に照射部の光学特性を同様に変化させ、こ
の光学特性の変化を特定の読み出し光や光検知手段など
を用いて光学的に検知しても構わない。An example of an optical recording apparatus according to the present invention, which has the same fine particle-dispersed resin composite material as a constituent element, will be described with reference to FIG. As shown in FIG. 2, this optical recording apparatus has an optical recording medium 13 made of a fine particle dispersed resin composite material mounted on a movable stage 14, two sets of laser light sources 11 and 12, and a light detecting means. Photodetector 1
5 and 5. The operating principle of this optical recording device is as follows. Now, when the optical recording medium 13 is simultaneously irradiated with laser light from the light sources 11 and 12, interference occurs in the irradiation part. At this time, in the bright part of the interference fringes, the fine particles cause surface plasmon absorption and heat is generated, and the irregularly aggregated fine particles are sintered and deformed into a spherical shape, so that the surface plasmon absorption wavelength, refractive index, etc. The optical characteristics of. As a result, an irreversible diffraction grating corresponding to the interference fringes is formed in the irradiation portion, and writing is performed by this. In this state, for example, when sufficiently weak light that does not cause the above-described change is incident from the light source 11, the incident light is diffracted at the portion where the diffraction grating is formed, and the diffracted light is detected by the photodetector 15. To be done. On the other hand, in the portion where the diffraction grating is not formed, the light from the light source 11 is not diffracted, so the diffracted light is not detected by the photodetector 15. In this way, the written record can be read. The method of writing to and reading from the optical recording medium 13 is not limited to this. For example, light irradiation from a single light source may simply change the optical characteristics of the irradiation section in the same manner to identify the change in the optical characteristics. It may be optically detected using a reading light or a light detection means.
【0031】このように本発明の光記録装置は微粒子の
分散状態の変化を利用して記録するものであり、他の化
学変化などを必要としないため、経時変化などの非常に
少ない安定した記録が可能である。また、記録やその読
み出しの分解能が主に微粒子の粒径に依存するため、粒
径を小さくすることによって非常に高密度の記録が可能
となる。しかも、平面的な二次元の光記録媒体としてだ
けでなく、体積型の三次元的な記録が可能なため、例え
ばホログラム用の記録媒体としても非常に有用である。
なお以上は、樹脂硬化物を分散媒とする微粒子分散樹脂
複合材料およびその応用について示したが、樹脂硬化物
のかわりに樹脂重合物を分散媒とする場合も全く同様で
ある。As described above, the optical recording apparatus of the present invention records by utilizing the change of the dispersion state of fine particles and does not require any other chemical change, so that stable recording with very little change with time is made. Is possible. In addition, since the resolution of recording and reading thereof mainly depends on the particle size of the fine particles, it is possible to record with extremely high density by reducing the particle size. Moreover, not only as a planar two-dimensional optical recording medium, but also as a volume type three-dimensional recording is possible, it is very useful as a recording medium for holograms, for example.
In the above, the fine particle-dispersed resin composite material using the resin cured product as the dispersion medium and its application have been described, but the same applies to the case where the resin polymer is used as the dispersion medium instead of the resin cured product.
【0032】[0032]
【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1 無機金属塩としての塩化金酸ナトリウム二水和物13.
4mg、還元剤としてのテレフタルアルデヒド11.5
mg、アルミニウムアセチルアセトネート6.5mg、
およびトリフェニルシラノール200mgのアセトン溶
液0.5mlを硬化性樹脂としてのエポキシ樹脂(ダイ
セル社製、商品名CEL2021)1gに加え、よく撹
拌混合した。混合後、室温で真空乾燥して溶媒を留去
し、25μmのスペーサーを置いた2枚のガラス板の間
に挟んだ。室温で15時間放置した後、さらに60℃で
15時間加熱し、ピンク色のエポキシ樹脂硬化物を得
た。EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Sodium chloroaurate dihydrate as an inorganic metal salt 13.
4 mg, terephthalaldehyde 11.5 as reducing agent
mg, aluminum acetylacetonate 6.5 mg,
Then, 0.5 ml of an acetone solution containing 200 mg of triphenylsilanol was added to 1 g of an epoxy resin (trade name CEL2021 manufactured by Daicel Co., Ltd.) as a curable resin, and well mixed with stirring. After mixing, the mixture was vacuum dried at room temperature to remove the solvent, and sandwiched between two glass plates having a 25 μm spacer. After leaving it at room temperature for 15 hours, it was further heated at 60 ° C. for 15 hours to obtain a pink epoxy resin cured product.
【0033】X線散乱測定により、このエポキシ樹脂硬
化物中には金属の金が含有されていることが確認され
た。また、可視紫外吸収スペクトル測定の結果、548
nm付近に金の表面プラズモン吸収に起因すると思われ
る吸収が確認された。透過型電子顕微鏡(TEM)観察
によれば、金微粒子の平均粒径は7nmであった。By X-ray scattering measurement, it was confirmed that this epoxy resin cured product contained metallic gold. In addition, as a result of measurement of a visible ultraviolet absorption spectrum,
Absorption that was thought to be due to surface plasmon absorption of gold was confirmed in the vicinity of nm. According to a transmission electron microscope (TEM) observation, the average particle size of the gold fine particles was 7 nm.
【0034】実施例2 塩化金酸ナトリウム二水和物6.4mg、テレフタルア
ルデヒド40.2mg、アルミニウムアセチルアセトネ
ート67mg、およびトリフェニルシラノール0.9m
gのアセトン溶液5mlをエポキシ樹脂(CEL202
1)20gに加え、よく撹拌混合した。混合後、室温で
真空乾燥して溶媒を留去し、厚さ5mmの板状の型に注
型した。室温で15時間放置した後、さらに40℃で2
時間加熱し、青紫色のエポキシ樹脂硬化物を得た。Example 2 Sodium chloroaurate dihydrate 6.4 mg, terephthalaldehyde 40.2 mg, aluminum acetylacetonate 67 mg, and triphenylsilanol 0.9 m
5 ml of acetone solution of epoxy resin (CEL202
1) Added to 20 g and mixed well with stirring. After mixing, vacuum drying was performed at room temperature to remove the solvent, and the mixture was cast into a plate-shaped mold having a thickness of 5 mm. Leave at room temperature for 15 hours, then at 40 ° C for 2 hours.
After heating for an hour, a blue-violet cured epoxy resin product was obtained.
【0035】X線散乱測定より硬化物中に金属の金が含
有されていることが確認された。また可視紫外吸収スペ
クトル測定の結果、573nm付近に金の表面プラズモ
ン吸収に起因すると思われる吸収が確認された。透過型
電子顕微鏡(TEM)観察によれば、金微粒子の平均粒
径は15nmであった。From the X-ray scattering measurement, it was confirmed that the cured product contained metallic gold. In addition, as a result of measurement of visible-ultraviolet absorption spectrum, absorption that was thought to be due to surface plasmon absorption of gold was confirmed at around 573 nm. According to transmission electron microscope (TEM) observation, the average particle size of the gold fine particles was 15 nm.
【0036】この硬化物について、Nd3+YAG第二高
調波励起の色素レーザー(波長560nm)を用いて、
縮退四波混合法により三次の非線形光学定数χ(3) を測
定したところ、χ(3) =1.1×10-10 と良好な値を
示すことがわかった。Using a dye laser (wavelength 560 nm) of Nd 3+ YAG second harmonic excitation, this cured product was used.
When the third-order nonlinear optical constant χ (3) was measured by the degenerate four-wave mixing method, it was found that χ (3) = 1.1 × 10 -10, which is a good value.
【0037】実施例3 塩化パラジウム17mg、テレフタルアルデヒド0.1
2g、アルミニウムアセチルアセトネート0.15g、
およびトリフェニルシラノール0.9gのメタノールと
ジメチルホルムアルデヒド混合溶液をエポキシ樹脂(C
EL2021)20gに加え、よく撹拌混合した。混合
後、真空乾燥して溶媒を除去し、所定の金型に注型し
た。室温で5時間放置した後、80℃で4時間、120
℃で1時間加熱し、黄色のエポキシ樹脂硬化物を得た。Example 3 17 mg of palladium chloride and 0.1 of terephthalaldehyde
2 g, aluminum acetylacetonate 0.15 g,
And 0.9 g of triphenylsilanol in methanol and dimethylformaldehyde were mixed with epoxy resin (C
EL2021) 20 g and well mixed with stirring. After mixing, vacuum drying was performed to remove the solvent, and the mixture was cast in a predetermined mold. Leave at room temperature for 5 hours, then at 80 ℃ for 4 hours, 120
It heated at 1 degreeC for 1 hour, and obtained the yellow epoxy resin hardened | cured material.
【0038】一方、比較のために金属塩を加えずに、上
記と同様の硬化条件によってエポキシ樹脂硬化物を得
た。これらの硬化物について室温で弾性率試験をしたと
ころ、比較例の硬化物の曲げ弾性率は261MPaであ
ったのに対し、本発明の硬化物の曲げ弾性率430MP
aと優れた特性を有していることがわかった。On the other hand, for comparison, an epoxy resin cured product was obtained under the same curing conditions as above, without adding a metal salt. When an elastic modulus test was performed on these cured products at room temperature, the cured product of the comparative example had a flexural modulus of 261 MPa, whereas the cured product of the present invention had a flexural modulus of 430 MP.
It was found to have excellent characteristics as a.
【0039】実施例4 塩化金酸ナトリウム二水和物6.4mg、テレフタルア
ルデヒド40.2mg、アルミニウムアセチルアセトネ
ート67mg、およびトリフェニルシラノール0.9g
のアセトン溶液5mlをエポキシ樹脂(CEL202
1)20gに加え、よく撹拌混合した。混合後、水冷し
ながら、真空乾燥して溶媒を留去し、厚さ5mmの石英
ガラスの窓のついた型に注型した。この型を30℃に保
温し、窓からNd3+YAG第二高調波励起の色素レーザ
ー(波長520nm)を5時間照射した。Example 4 6.4 mg of sodium chloroaurate dihydrate, 40.2 mg of terephthalaldehyde, 67 mg of aluminum acetylacetonate, and 0.9 g of triphenylsilanol.
5 ml of acetone solution of epoxy resin (CEL202
1) Added to 20 g and mixed well with stirring. After mixing, the mixture was water-cooled and vacuum-dried to distill off the solvent, and the mixture was cast into a mold with a 5 mm-thick quartz glass window. This mold was kept warm at 30 ° C., and a dye laser (wavelength: 520 nm) of Nd 3+ YAG second harmonic excitation was irradiated through the window for 5 hours.
【0040】この結果、未照射部は青色であったのに対
して、レーザー照射部は赤紫色に着色した。可視紫外吸
収スペクトルを測定したところ、未照射部は571n
m、照射部は532nm付近に金の表面プラズモン吸収
に起因すると思われる吸収が観察できた。透過型電子顕
微鏡(TEM)観察によれば、金微粒子の平均粒径と粒
径分布は未照射部で約15±10nm、照射部で約7±
5nmであった。このことから、レーザー照射によっ
て、微粒子の粒径を制御でき、粒径分布も狭い良好な微
粒子分散樹脂複合材料が調製できることがわかった。As a result, the non-irradiated portion was blue, while the laser-irradiated portion was colored reddish purple. When the visible-ultraviolet absorption spectrum was measured, the unirradiated part was 571n.
In the irradiated part, absorption considered to be caused by surface plasmon absorption of gold could be observed in the vicinity of 532 nm. According to a transmission electron microscope (TEM) observation, the average particle size and the particle size distribution of the gold particles are about 15 ± 10 nm in the unirradiated part and about 7 ± 10 nm in the irradiated part.
It was 5 nm. From this, it was found that the particle size of the fine particles can be controlled by laser irradiation, and a fine particle-dispersed resin composite material having a narrow particle size distribution can be prepared.
【0041】実施例5 実施例4で調製したエポキシ樹脂組成物を石英基板上に
ドクターブレード法によって厚さ約20μmに塗布し、
これに基板を水冷しながら直径30μmに集束した実施
例4と同様のレーザー光線(波長520nm)を走査し
ながら照射したところ、走査した形状通りに実施例4の
場合と同様の粒径分布が異なった領域が約50μmの幅
で形成されていた。Example 5 The epoxy resin composition prepared in Example 4 was applied on a quartz substrate by a doctor blade method to a thickness of about 20 μm,
This was irradiated with a laser beam (wavelength 520 nm) similar to that of Example 4, which was focused on the substrate with water and having a diameter of 30 μm while scanning, and the same particle size distribution as in Example 4 was obtained according to the scanned shape. The region was formed with a width of about 50 μm.
【0042】実施例6 実施例2で得た金微粒子の分散されたエポキシ樹脂硬化
物を5×5×2mmの切片に成形し、これを非線形光学
材料として用い、周囲に光ファイバーを配置して図1に
示す光スイッチング素子を得た。この光スイッチング素
子について、波長560nmの色素レーザー光を用いて
動作試験を行ったところ、and回路として良好に機能
することが確認された。Example 6 The epoxy resin cured product having the fine gold particles dispersed therein obtained in Example 2 was molded into a piece of 5 × 5 × 2 mm, which was used as a non-linear optical material with optical fibers arranged around it. The optical switching element shown in 1 was obtained. When an operation test was performed on this optical switching element using a dye laser beam having a wavelength of 560 nm, it was confirmed that the optical switching element functions well as an and circuit.
【0043】実施例7 実施例2で得た金微粒子の分散されたエポキシ樹脂硬化
物を図2における光記録媒体13として用い、色素レー
ザー光(波長560nm)の強度を平均パワー3mW、
ピークパワー30kWとしてレーザー光源11、12よ
り同時に入射したところ、照射部に非可逆的な干渉縞が
形成された。次に、レーザー光源11からのみ平均パワ
ー0.3mW、ピークパワー3kWのレーザー光を入射
したところ、干渉縞を形成する前には観測されなかった
出射光が光検出装置15により観測された。このことか
ら、金微粒子の分散されたエポキシ樹脂硬化物を光記録
媒体13とする光記録装置として作用することがわかっ
た。Example 7 The epoxy resin cured product having the gold fine particles dispersed therein obtained in Example 2 was used as the optical recording medium 13 in FIG. 2, and the intensity of the dye laser light (wavelength 560 nm) was 3 mW in average power.
When the laser light sources 11 and 12 simultaneously entered with a peak power of 30 kW, irreversible interference fringes were formed on the irradiation part. Next, when laser light having an average power of 0.3 mW and a peak power of 3 kW was incident only from the laser light source 11, emitted light which was not observed before forming the interference fringes was observed by the photodetector 15. From this, it was found that the cured epoxy resin in which the fine gold particles were dispersed worked as an optical recording device using the optical recording medium 13.
【0044】実施例8 実施例2で得られた金微粒子の分散されたエポキシ樹脂
硬化物に波長560nmの色素レーザーから平均パワー
3mW、ピークパワー30kWのレーザー光を照射した
ところ、照射部位が淡赤色に変色した。変色部の可視吸
収スペクトルを測定したところ、吸収波長が573nm
から551nmへブルーシフトし、かつ金微粒子の凝集
に起因すると思われる長波長側の吸収の裾引きが減少し
た。照射部をTEM観察したところ、照射前には観察さ
れた金微粒子の凝集部位が消失し、かつ各々の微粒子も
その形状が球形に近い揃ったものへと変化しており、レ
ーザー照射によって金微粒子が分散されたエポキシ樹脂
硬化物中の微粒子の分散状態を変化させ、書き込みを行
なうことが可能なことがわかった。Example 8 The epoxy resin cured product having the fine gold particles dispersed therein obtained in Example 2 was irradiated with a laser beam having an average power of 3 mW and a peak power of 30 kW from a dye laser having a wavelength of 560 nm. Discolored. When the visible absorption spectrum of the discolored part was measured, the absorption wavelength was 573 nm.
From 550 nm to 551 nm, and the tailing of absorption on the long wavelength side, which is considered to be caused by aggregation of gold fine particles, was reduced. As a result of TEM observation of the irradiated part, the aggregation sites of the gold fine particles observed before the irradiation disappeared, and the shape of each fine particle also changed to a spherical shape, and the gold fine particles were changed by laser irradiation. It was found that writing can be performed by changing the dispersion state of fine particles in the epoxy resin cured product in which is dispersed.
【0045】[0045]
【発明の効果】以上詳述したように本発明によれば、微
粒子の含有率が高く、かつ微粒子の粒径分布などが制御
された耐熱性、電気的特性などに優れた微粒子分散樹脂
複合材料を得ることが可能となる。また、このような微
粒子分散樹脂複合材料は、光スイッチなどに用いる非線
形光学材料、光記録装置の光記録媒体、色フィルターな
どの光学フィルター、導電性材料、赤外線の受光素子、
検波素子などの各種機能素子、ガス検知器などの化学セ
ンサー、金属配線形成用の厚膜材料、高強度な各種構造
材料として好適に用いることができる。As described above in detail, according to the present invention, a fine particle-dispersed resin composite material having a high content rate of fine particles and having a controlled particle size distribution of fine particles and having excellent heat resistance and electrical characteristics. Can be obtained. Further, such a fine particle dispersed resin composite material is a non-linear optical material used for an optical switch, an optical recording medium of an optical recording device, an optical filter such as a color filter, a conductive material, an infrared light receiving element,
It can be suitably used as various functional elements such as detection elements, chemical sensors such as gas detectors, thick film materials for forming metal wiring, and various structural materials having high strength.
【図1】微粒子分散樹脂複合材料を構成要素とする非線
形光学素子の構成を示す図。FIG. 1 is a diagram showing a configuration of a non-linear optical element including a fine particle dispersed resin composite material as a component.
【図2】本発明に係る光記録媒体の構成を示す図。FIG. 2 is a diagram showing a configuration of an optical recording medium according to the present invention.
1…基板、2…非線形光学材料、3、4、5、6、7…
光導波路、8…クラッド層、9…光ファイバー、11、
12…レーザー光源、13…光記録媒体、14…ステー
ジ、15…光検出装置。1 ... Substrate, 2 ... Non-linear optical material, 3, 4, 5, 6, 7 ...
Optical waveguide, 8 ... Clad layer, 9 ... Optical fiber, 11,
12 ... Laser light source, 13 ... Optical recording medium, 14 ... Stage, 15 ... Photodetector.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G11B 7/00 7416−2H B41M 5/26 W ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G11B 7/00 7416-2H B41M 5/26 W
Claims (5)
(b)金属の無機塩または有機塩、および(c)(b)
成分の還元剤を含有することを特徴とする樹脂組成物。1. (a) a curable resin or a polymerizable resin,
(B) an inorganic or organic salt of a metal, and (c) (b)
A resin composition comprising a reducing agent as a component.
(b)金属の無機塩または有機塩、および(c)(b)
成分の還元剤を含有する樹脂組成物を、金属微粒子の形
成温度及び樹脂の硬化または重合開始温度のいずれより
も高い温度温度下で処理することを特徴とする金属微粒
子分散樹脂複合材料の製造方法。2. (a) a curable resin or a polymerizable resin,
(B) an inorganic or organic salt of a metal, and (c) (b)
A resin composition containing a reducing agent as a component is treated at a temperature higher than the formation temperature of the metal fine particles and the curing or polymerization initiation temperature of the resin. .
る前記金属微粒子の表面プラズモン吸収波長に対応する
波長の光が照射されることを特徴とする請求項2記載の
金属微粒子分散樹脂複合材料の製造方法。3. The resin composition containing dispersed metal fine particles according to claim 2, wherein the resin composition is irradiated with light having a wavelength corresponding to a surface plasmon absorption wavelength of the metal fine particles having a predetermined particle diameter. Material manufacturing method.
微粒子分散樹脂複合材料からなる光記録媒体と、この光
記録媒体に光を照射するための光源と、光検知手段とを
具備したことを特徴とする光記録装置。4. An optical recording medium comprising a fine particle-dispersed resin composite material containing conductor fine particles in a resin-based dispersion medium, a light source for irradiating the optical recording medium with light, and a light detection means. An optical recording device characterized by:
録媒体中の導体微粒子の分散状態が変化して書き込みが
行なわれることを特徴とする請求項4記載の光記録装
置。5. The optical recording apparatus according to claim 4, wherein the light irradiation from the light source changes the dispersed state of the conductive fine particles in the optical recording medium to perform writing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7021995A JPH08217982A (en) | 1995-02-09 | 1995-02-09 | Resin composition, production of resin composite material having fine metallic particle dispersed therein and optical recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7021995A JPH08217982A (en) | 1995-02-09 | 1995-02-09 | Resin composition, production of resin composite material having fine metallic particle dispersed therein and optical recording device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08217982A true JPH08217982A (en) | 1996-08-27 |
Family
ID=12070613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7021995A Pending JPH08217982A (en) | 1995-02-09 | 1995-02-09 | Resin composition, production of resin composite material having fine metallic particle dispersed therein and optical recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08217982A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0819750A1 (en) * | 1996-02-01 | 1998-01-21 | Matsushita Electric Industrial Co., Ltd. | Heat sensitive color developing material and heat sensitive element using the same |
JP2005169775A (en) * | 2003-12-10 | 2005-06-30 | Mitsui Chemicals Inc | Multilayered sheet |
JP2007206704A (en) * | 2007-02-19 | 2007-08-16 | Yasuo Tomita | Volume hologram recording method |
JP2009062538A (en) * | 2007-09-07 | 2009-03-26 | Samsung Electronics Co Ltd | Heat transfer medium and heat transfer method utilizing the same |
JP2009092686A (en) * | 2007-10-03 | 2009-04-30 | Toshiba Corp | Method of manufacturing near-field optical waveguide and near-field optical waveguide |
JP2009256657A (en) * | 2008-03-26 | 2009-11-05 | Univ Of Electro-Communications | Photosensitive composition containing polymer composite containing metal nanoparticle-dithiocarbamate group |
JP2013082943A (en) * | 2008-03-11 | 2013-05-09 | Immunolight Llc | Plasmonic assisted system and method for interior energy-activation from exterior source |
JP2013091728A (en) * | 2011-10-26 | 2013-05-16 | Ishihara Chem Co Ltd | Thermosetting resin composition, carbon fiber-reinforced plastic and production method thereof |
JP2013254940A (en) * | 2012-05-11 | 2013-12-19 | Osaka Prefecture Univ | Photothermal conversion element and method of manufacturing the same, photothermal power generation device, and method of detecting material to be detected |
JP2016530069A (en) * | 2013-05-21 | 2016-09-29 | ネーデルランツ オルガニサティー フォール トゥーゲパスト‐ナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー | Chemical conversion process |
-
1995
- 1995-02-09 JP JP7021995A patent/JPH08217982A/en active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0819750A4 (en) * | 1996-02-01 | 2000-01-12 | Matsushita Electric Ind Co Ltd | Heat sensitive color developing material and heat sensitive element using the same |
EP0819750A1 (en) * | 1996-02-01 | 1998-01-21 | Matsushita Electric Industrial Co., Ltd. | Heat sensitive color developing material and heat sensitive element using the same |
JP4700905B2 (en) * | 2003-12-10 | 2011-06-15 | 三井化学株式会社 | Multilayer board |
JP2005169775A (en) * | 2003-12-10 | 2005-06-30 | Mitsui Chemicals Inc | Multilayered sheet |
JP2007206704A (en) * | 2007-02-19 | 2007-08-16 | Yasuo Tomita | Volume hologram recording method |
US9005406B2 (en) | 2007-04-08 | 2015-04-14 | Immunolight, Llc | Systems and methods for interior energy-activation from an exterior source |
US9682250B2 (en) | 2007-04-08 | 2017-06-20 | Immunolight, Llc | Systems and methods for interior energy-activation from an exterior source |
US10213763B2 (en) | 2007-04-08 | 2019-02-26 | Immunolight, Llc. | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US10201796B2 (en) | 2007-04-08 | 2019-02-12 | Immunolight, Llc. | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US10029117B2 (en) | 2007-04-08 | 2018-07-24 | Immunolight, Llc | Systems and methods for interior energy-activation from an exterior source |
US9630022B2 (en) | 2007-04-08 | 2017-04-25 | Immunolight, Llc. | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US9579523B2 (en) | 2007-04-08 | 2017-02-28 | Immunolight, Llc | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US9498643B2 (en) | 2007-04-08 | 2016-11-22 | Immunolight, Llc | Systems and methods for interior energy-activation from an exterior source |
US9278331B2 (en) | 2007-04-08 | 2016-03-08 | Immunolight, Llc | Systems and methods for interior energy-activation from an exterior source |
US9174190B2 (en) | 2007-04-08 | 2015-11-03 | Immunolight, Llc | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US9004131B2 (en) | 2007-04-08 | 2015-04-14 | Duke University | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US8945687B2 (en) | 2007-09-07 | 2015-02-03 | Samsung Electronics Co., Ltd. | Heat transfer medium and heat transfer method using the same |
JP2009062538A (en) * | 2007-09-07 | 2009-03-26 | Samsung Electronics Co Ltd | Heat transfer medium and heat transfer method utilizing the same |
JP2009092686A (en) * | 2007-10-03 | 2009-04-30 | Toshiba Corp | Method of manufacturing near-field optical waveguide and near-field optical waveguide |
JP4607933B2 (en) * | 2007-10-03 | 2011-01-05 | 株式会社東芝 | Near-field optical waveguide manufacturing method and near-field optical waveguide |
US8927615B2 (en) | 2008-03-11 | 2015-01-06 | Immunolight, Llc | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
CN103120923B (en) * | 2008-03-11 | 2014-10-22 | 免疫之光有限责任公司 | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
US11173467B2 (en) | 2008-03-11 | 2021-11-16 | Immunolight, Llc | Systems and methods for interior energy-activation from an exterior source |
US10363541B2 (en) | 2008-03-11 | 2019-07-30 | Immunolight, Llc. | Systems and methods for interior energy-activation from an exterior source |
CN103120923A (en) * | 2008-03-11 | 2013-05-29 | 免疫之光有限责任公司 | Plasmonic assisted systems and methods for interior energy-activation from an exterior source |
JP2013082943A (en) * | 2008-03-11 | 2013-05-09 | Immunolight Llc | Plasmonic assisted system and method for interior energy-activation from exterior source |
JP2009256657A (en) * | 2008-03-26 | 2009-11-05 | Univ Of Electro-Communications | Photosensitive composition containing polymer composite containing metal nanoparticle-dithiocarbamate group |
JP2013091728A (en) * | 2011-10-26 | 2013-05-16 | Ishihara Chem Co Ltd | Thermosetting resin composition, carbon fiber-reinforced plastic and production method thereof |
JP2013254940A (en) * | 2012-05-11 | 2013-12-19 | Osaka Prefecture Univ | Photothermal conversion element and method of manufacturing the same, photothermal power generation device, and method of detecting material to be detected |
US10046298B2 (en) | 2013-05-21 | 2018-08-14 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Chemical conversion process |
JP2019072721A (en) * | 2013-05-21 | 2019-05-16 | ネーデルランツ オルガニサティー フォール トゥーゲパスト‐ナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー | Chemical conversion process |
JP2016530069A (en) * | 2013-05-21 | 2016-09-29 | ネーデルランツ オルガニサティー フォール トゥーゲパスト‐ナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー | Chemical conversion process |
JP2021183334A (en) * | 2013-05-21 | 2021-12-02 | ネーデルランツ オルガニサティー フォール トゥーゲパスト‐ナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー | Chemical conversion process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1954272B (en) | Hologram recording material and hologram recording medium | |
KR101272964B1 (en) | Optical component comprising an organic-inorganic hybrid material for producing refractive index gradient layers with high lateral resolution and method for its production | |
US8367274B2 (en) | Hologram recording material, and hologram recording medium | |
US8343691B2 (en) | Hologram recording material and hologram recording medium | |
US8349524B2 (en) | Hologram recording material and hologram recording medium | |
JP3737306B2 (en) | Optical product and manufacturing method thereof | |
JP4893433B2 (en) | Volume hologram recording material and volume hologram recording medium | |
Zhao et al. | A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms | |
US7767361B2 (en) | Hologram recording material, process for producing the same and hologram recording medium | |
US20080160421A1 (en) | Hologram recording medium | |
JPH08217982A (en) | Resin composition, production of resin composite material having fine metallic particle dispersed therein and optical recording device | |
US20090097085A1 (en) | Hologram recording medium | |
JP2008058834A (en) | Hologram recording medium | |
JP3724893B2 (en) | Optical three-dimensional molding resin composition | |
JP2003534569A (en) | Data storage medium containing colloidal metal and method of manufacturing the same | |
Kam et al. | 3D printing by stereolithography using thermal initiators | |
JP5286661B2 (en) | Hologram recording material and hologram recording medium | |
JP2004204206A (en) | Photocurable composition and its manufacturing method, as well as cured product | |
JP2004013106A (en) | Optical module | |
JP4084251B2 (en) | Recording medium manufacturing method and manufacturing apparatus | |
JP5286660B2 (en) | Hologram recording material and hologram recording medium | |
JP4816389B2 (en) | Hologram recording material and hologram recording medium | |
JP2008170718A (en) | Method for manufacturing volume hologram recording medium | |
CN115595001A (en) | Photosensitive polymer composition, preparation method thereof and holographic diffraction grating element | |
CN116751322A (en) | Photopolymer material and preparation method and application thereof |