JPH0821755B2 - Semiconductor laser manufacturing method - Google Patents

Semiconductor laser manufacturing method

Info

Publication number
JPH0821755B2
JPH0821755B2 JP61238492A JP23849286A JPH0821755B2 JP H0821755 B2 JPH0821755 B2 JP H0821755B2 JP 61238492 A JP61238492 A JP 61238492A JP 23849286 A JP23849286 A JP 23849286A JP H0821755 B2 JPH0821755 B2 JP H0821755B2
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
semiconductor laser
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61238492A
Other languages
Japanese (ja)
Other versions
JPS6393180A (en
Inventor
芳文 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61238492A priority Critical patent/JPH0821755B2/en
Publication of JPS6393180A publication Critical patent/JPS6393180A/en
Publication of JPH0821755B2 publication Critical patent/JPH0821755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ、特にAlGaAs系半導体レーザの
製造方法に関わる。
The present invention relates to a method for manufacturing a semiconductor laser, particularly an AlGaAs semiconductor laser.

〔発明の概要〕[Outline of Invention]

本発明は、p型の半導体基体上にp型の第1の半導体
層を形成後、第1の半導体層上に下地層および電流狭窄
兼光吸収層を順次形成する第1のエピタキシャル成長工
程と、電流狭窄兼光吸収層を第1のエッチング工程によ
り下地層の一部を残して欠除部を形成する工程と、第2
のエピタキシャル成長工程とを有し、第2のエピタキシ
ャル成長工程を行う前に欠除部に残された下地層を除去
し、第1の半導体層を露出させる工程を含むようにし
て、その発振が縦多モード、横基本モードであって非点
収差が小さく、またしきい値電流Ithの低い半導体レー
ザを製造しようとするものである。
The present invention provides a first epitaxial growth step in which a p-type first semiconductor layer is formed on a p-type semiconductor substrate, and then a base layer and a current confinement and light absorption layer are sequentially formed on the first semiconductor layer, and A step of forming a notch in the confinement and light absorption layer by a first etching step, leaving a part of the underlying layer;
And a step of exposing the first semiconductor layer by removing the underlying layer left in the cutout portion before performing the second epitaxial growth step. It is intended to manufacture a semiconductor laser which is in the transverse fundamental mode and has a small astigmatism and a low threshold current Ith.

〔従来の技術〕[Conventional technology]

コンパクトディスク(CD)、ビデオディスク(VD)等
の光源としての半導体レーザとしては、AlGaAs系化合物
半導体レーザが広く用いられている。この種のCDあるい
はVD用の半導体レーザにおいては、発振モードホップに
よる雑音をおさえるために縦多モードで横基本モードの
発振が得られる半導体レーザが必要とされ、さらに非点
収差が小さくしきい値電流Ithが低いことが望まれる。
As a semiconductor laser as a light source for a compact disc (CD), a video disc (VD), etc., an AlGaAs compound semiconductor laser is widely used. In this type of semiconductor laser for CD or VD, a semiconductor laser that can obtain oscillation in the transverse fundamental mode in the longitudinal multimode is required to suppress noise due to oscillation mode hopping, and astigmatism is small and the threshold value is small. It is desirable that the current Ith is low.

半導体レーザの構成としては、その導波機構として大
別すると利得ガイド型と屈折率ガイド型とがとられる。
利得ガイド型レーザにおいては、その発振モードが縦多
モードで横基本モードが得られやすいが、反面非点収差
が比較的大であり、またIthが比較的大きいという問題
点がある。一方、屈折率ガイド型半導体レーザは非点収
差が小さくIthが小さいという利点を有するものの、縦
多モードが得にくいという問題点がある。
The structure of the semiconductor laser can be roughly classified into a gain guide type and a refractive index guide type as its waveguide mechanism.
In the gain-guided laser, the oscillation mode is the longitudinal multimode and the transverse fundamental mode is easily obtained, but on the other hand, there are problems that the astigmatism is relatively large and the Ith is relatively large. On the other hand, although the refractive index guide type semiconductor laser has an advantage that astigmatism is small and Ith is small, it has a problem that it is difficult to obtain longitudinal multimode.

通常、化合物半導体例えばAlGaAs系化合物半導体にお
いては、単結晶GaAs基板上にAlGaAs系半導体層をエピタ
キシャル成長させて目的とする半導体レーザを構成する
ものであるが、この半導体レーザの使用態様、回路設計
の都合上、その半導体基体(いわゆるサブストレイト)
側がアノード側すなわちp型基板であることが望まれる
場合がある。このようにp型GaAs基体上に半導体レーザ
を構成する場合において利得ガイド型構成をとるべくそ
の発振領域にn型クラッド層側で電流集中を行わしめる
ための電流狭窄層として、少数キャリアの電子に対する
遮蔽効果を有する半導体層を設ける場合、電子の拡散距
離はホールのそれより大であることからその遮蔽層を十
分大なる厚さに形成する必要がある。又、半導体層を特
に分子線エピタキシー法(MBE法)、あるいは有機金属
気相成長法(MOCVD法)等によってp型層側に電流狭窄
部を持ったダブルヘテロ構造を作成する場合、段差のあ
る基本上の厚みの分布が液相成長法と異なるなどの制約
からこの種のp型基体の利得ガイド型レーザの製造にや
や難点があり、n型基体による半導体レーザと同等の機
能のp型の半導体基体による半導体レーザが構成しにく
いなどの問題点がある。
Usually, in a compound semiconductor, for example, an AlGaAs-based compound semiconductor, an AlGaAs-based semiconductor layer is epitaxially grown on a single crystal GaAs substrate to form a target semiconductor laser. However, the usage mode of this semiconductor laser and the circuit design are convenient. Above, the semiconductor substrate (so-called substrate)
It may be desired that the side be the anode side, ie the p-type substrate. As described above, when a semiconductor laser is formed on a p-type GaAs substrate, as a current confinement layer for concentrating current on the n-type cladding layer side in the oscillation region so as to form a gain guide type structure, a minority carrier electron When a semiconductor layer having a shielding effect is provided, since the diffusion distance of electrons is larger than that of holes, it is necessary to form the shielding layer with a sufficiently large thickness. In addition, when a double hetero structure having a current constriction on the p-type layer side is formed in the semiconductor layer by a molecular beam epitaxy method (MBE method), a metal organic chemical vapor deposition method (MOCVD method), or the like, there is a step. There are some difficulties in manufacturing this type of p-type gain-guided laser due to restrictions such as the fundamental thickness distribution being different from the liquid phase growth method. There is a problem that it is difficult to construct a semiconductor laser with a semiconductor substrate.

因みに、第2図に示すp型基体によるAlGaAs系半導体
レーザが提案されている(エクステンデット アブスト
ラクツ オブ ザ17ス コンファランス オン ソリッ
ド ステイト デバイス アンド マテリアルズ(Exte
nded Abstracts of the 17th Coference on Solid Stat
e Device and Materials)Tokyo 1985 pp 63−66参
照)。
Incidentally, an AlGaAs semiconductor laser with a p-type substrate shown in FIG. 2 has been proposed (extended abstracts of the 17th conference on solid state device and materials (exte
nded Abstracts of the 17th Coference on Solid Stat
e Device and Materials) Tokyo 1985 pp 63-66).

これは第2図にその拡大断面図を示すように、p型の
GaAs半導体基体、すなわちサブストレイト(1)上にそ
れぞれ例えば厚さ1μmのp型のGaAsバッファ相(2)
とp型のAl0.43Ga057Asのバッファ層(3)と、これと
は異なる導電型の電流ブロッキング層(4)とを順次成
長させ、その電流ブロッキング層(4)の中央の一部を
エッチング除去して再びこの除去部を含んで電流ブロッ
キング層(4)上にp型の厚さ1μmのAl0.43Ga0.57As
よりなるクラッド層(5)と厚さ0.08μmのアンドープ
のAl0.07Ga0.93Asよりなる活性層(6)と、厚さ1.3mm
のn型Al0.43Ga0.57Asよりなるクラッド層(7)と、同
様にn型のGaAsコンタクト層(8)とを順次成長させて
なり、コンタクト(8)とサブストレイト(1)の他の
裏面に対向電極(9)及び(10)が配置された構成を有
する。
As shown in the enlarged sectional view of FIG.
For example, a p-type GaAs buffer phase (2) having a thickness of, for example, 1 μm is formed on the GaAs semiconductor substrate, that is, the substrate (1).
And a p-type Al 0.43 Ga 057 As buffer layer (3) and a current blocking layer (4) of a conductivity type different from this are sequentially grown, and a part of the center of the current blocking layer (4) is etched. After removing and including the removed portion again, p-type Al 0.43 Ga 0.57 As having a thickness of 1 μm is formed on the current blocking layer (4).
Clad layer (5) and an active layer (6) made of undoped Al 0.07 Ga 0.93 As with a thickness of 0.08 μm and a thickness of 1.3 mm
The n-type Al 0.43 Ga 0.57 As clad layer (7) and the n-type GaAs contact layer (8) are sequentially grown, and the contact (8) and the other back surface of the substrate (1) are formed. The counter electrodes (9) and (10) are arranged in the counter.

この構成による半導体レーザは、p型GaAsサブストレ
イト(1)すなわちp型基体による半導体構造を有する
ものであるが、この場合活性層(6)を挟んでそれぞれ
十分な厚さを有し活性層(6)に比しかなり大きいバン
ドギャップを有するクラッド層(5)及び(7)が配置
されていることによって活性層(6)に対する光の閉じ
込めが強力に行われていてほぼ純粋な屈折率ガイド型機
能を有しているために、非点収差及びIthの低下が図ら
れるものの、縦多モード発信が得られない。
The semiconductor laser having this structure has a semiconductor structure of a p-type GaAs substrate (1), that is, a p-type substrate. In this case, the active layer (6) has a sufficient thickness, and each of the active layers ( Since the cladding layers (5) and (7) having a band gap considerably larger than that of 6) are arranged, the light is strongly confined in the active layer (6) and a substantially pure refractive index guide type is provided. Since it has a function, astigmatism and Ith can be reduced, but longitudinal multimode transmission cannot be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、p型基体(サブストレイト)による半導体
レーザ構成を有し、縦多モードで横基本モードの非点収
差が小さくIthが低い半導体レーザを製造できる半導体
レーザの製造方法を提供するものである。
The present invention provides a method for manufacturing a semiconductor laser having a semiconductor laser structure using a p-type substrate (substrate) and capable of manufacturing a semiconductor laser having a small multi-longitudinal fundamental mode astigmatism and a small Ith. is there.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体レーザの製造方法は、p型の半導
体基体(11)上にp型の第1の半導体層(12)を形成
後、第1の半導体層(12)上に下地層(22)および電流
狭窄兼光吸収層(13)を順次形成する第1のエピタキシ
ャル成長工程と、電流狭窄兼光吸収層(13)を第1のエ
ッチング工程により下地層(22)の一部を残して欠除部
(13a)を形成する工程と、第2のエピタキシャル成長
工程とを有し、第2のエピタキシャル成長工程を行う前
に欠除部(13a)に残された下地層(22)を除去し、第
1の半導体層(12)を露出させる工程を含むことを特徴
とする。
In the method for manufacturing a semiconductor laser according to the present invention, after forming a p-type first semiconductor layer (12) on a p-type semiconductor substrate (11), an underlayer (22) is formed on the first semiconductor layer (12). ) And a current confinement and light absorption layer (13) are sequentially formed, and a current confinement and light absorption layer (13) is removed by the first etching process leaving a part of the underlayer (22). The step of forming (13a) and the second epitaxial growth step are performed, and before the second epitaxial growth step is performed, the underlying layer (22) left in the cutout portion (13a) is removed to remove the first layer. It is characterized by including a step of exposing the semiconductor layer (12).

〔作用〕[Action]

上述の製造方法において、第2のエピタキシャル成長
工程によって形成される活性層(15)は電流狭窄兼光吸
収層(13)の欠除部(13a)による凹部(23)に沿って
屈曲し、この活性層(15)の相対向する屈曲部(15A)
及び(15B)間にストライプ状の光発振領域が形成され
たp型基板による半導体レーザが製造される。この発振
は、基本的には電源狭窄兼光吸収層(13)による電流遮
断による電流通路の狭窄によって、活性層(15)の中央
部の屈曲部(15A)及び(15B)間に、電流の集中、した
がって、注入キャリア密度が大なる部分、つまり、利得
が大なる部分を形成した利得導波機能によるものであっ
て、これがため縦多モード、横基本モードの発振がなさ
れる。同時に、屈曲部(15A)及び(15B)の存在によっ
て横方向に屈折率ガイド型の光の閉じ込めがなされる。
この屈折率型導波機能によって非点収差及びIthの低減
化の効果も生じる。
In the manufacturing method described above, the active layer (15) formed by the second epitaxial growth step is bent along the recess (23) formed by the cutout portion (13a) of the current constriction and light absorption layer (13), and this active layer (15) is formed. Opposite bends (15A) of (15)
And (15B), a semiconductor laser with a p-type substrate in which a stripe-shaped optical oscillation region is formed is manufactured. This oscillation is basically caused by the concentration of current between the bends (15A) and (15B) at the center of the active layer (15) due to the constriction of the current path due to the current blocking by the power constriction and light absorption layer (13). Therefore, this is due to the gain-guiding function that forms the portion where the injected carrier density is large, that is, the portion where the gain is large, which causes oscillation in the longitudinal multimode and the transverse fundamental mode. At the same time, the existence of the bent portions (15A) and (15B) confine the light of the refractive index guide type in the lateral direction.
This refractive index type waveguide function also produces an effect of reducing astigmatism and Ith.

また、この製造方法では、下地層(22)を設け、上記
凹部(23)の形成において、下地層(22)の一部の厚さ
を残すように欠除部(13a)を形成し、第2のエピタキ
シャル成長工程の前にこの欠除部(13a)に残された下
地層(22)を除去することにより、凹部(23)内の第1
の半導体層(12)上において自然酸化膜の有する等によ
る第2のエピタキシャル成長層との界面の結晶性の低下
が回避される。
Further, in this manufacturing method, the base layer (22) is provided, and in the formation of the recess (23), the notch (13a) is formed so as to leave a part of the thickness of the base layer (22). By removing the underlying layer (22) left in the cutout portion (13a) before the second epitaxial growth step, the first portion in the recess (23) is removed.
It is possible to avoid deterioration of crystallinity at the interface with the second epitaxial growth layer due to the presence of a natural oxide film on the semiconductor layer (12).

〔実施例〕〔Example〕

先ず、本発明の製造方法によって得られる半導体レー
ザの一例を説明する。本例は、第1図にその拡大断面図
を示すように、p型の半導体基体(11)上に少なくとも
p型の第1のクラッド層(12)と、電流狭窄兼光吸収層
(13)と、p型のAlxGa1-xAsよりなりxが0.14<x<0.
47厚さdが0<d0.3μmのガイド層(14)と、AlyGa
1-yAsよりなるyが0.14y0.15の活性層(15)と、
n型の第2のクラッド層(16)とが順次エピタキシャル
成長された構成を有する。
First, an example of a semiconductor laser obtained by the manufacturing method of the present invention will be described. In this example, as shown in the enlarged sectional view of FIG. 1, at least a p-type first clad layer (12), a current constriction and light absorption layer (13) are provided on a p-type semiconductor substrate (11). , P-type Al x Ga 1-x As, x is 0.14 <x <0.
47 A guide layer (14) having a thickness d of 0 <d0.3 μm and Al y Ga
An active layer (15) with y of 0.14 y 0.15 consisting of 1-y As,
The n-type second cladding layer (16) and the n-type second cladding layer (16) are sequentially epitaxially grown.

そして、特に電流狭窄兼光吸収層(13)には、活性層
(15)の発振領域となる中央部に対応する部分に例えば
ストライプ状の欠除部(13a)が、第1図において紙面
と直交する方向に延在して設けられて、少なくともガイ
ド層(14)と活性層(15)と第2のクラッド層(16)の
各接合面が欠除部(13a)の内面に沿って屈曲して欠除
部(13a)の相対向する面すなわち段部に対応して第1
図の紙面と直交する方向に互いに平行に延びる対の屈曲
部(15A)及び(15B)が活性層(15)に形成されるよう
になされる。
In particular, in the current confinement and light absorption layer (13), for example, a stripe-shaped cutout portion (13a) is formed at a portion corresponding to the central portion which becomes the oscillation region of the active layer (15) and is orthogonal to the paper surface in FIG. The guide layer (14), the active layer (15) and the second clad layer (16) are bent along the inner surface of the cutout portion (13a). Corresponding to the facing surfaces of the cutout portion (13a), that is, the stepped portion
A pair of bent portions (15A) and (15B) extending parallel to each other in a direction orthogonal to the plane of the drawing is formed in the active layer (15).

またガイド層(14)は、そのバンドギャップが活性層
(15)に比しては、稍々大であるが、第1及び第2クラ
ッド層(12)及び(16)に比しては小に選定され、両ク
ラッド層(12)及び(16)はこの関係を保持するように
Alzga1-zAsよりなるzが0.4z0.47に選定されて、
活性層(15)に比し、十分大なるバンドギャップを有す
る層とされる。また、電流狭窄兼光吸収層(13)は、そ
のバンドギャップが活性層(15)及びガイド層(14)の
それより小さく屈折率が大きい例えばGaAsよりなり、そ
の厚さDabは例えば1μm以上に選定される。
The band gap of the guide layer (14) is slightly larger than that of the active layer (15), but smaller than that of the first and second cladding layers (12) and (16). Selected so that both cladding layers (12) and (16) maintain this relationship.
Z consisting of Al z ga 1-z As was selected as 0.4z 0.47,
The layer has a band gap sufficiently larger than that of the active layer (15). The current confinement and light absorption layer (13) is made of, for example, GaAs having a band gap smaller than those of the active layer (15) and the guide layer (14) and a large refractive index, and its thickness Dab is selected to be, for example, 1 μm or more. To be done.

(17)は第2のクラッド層上に設けられたコンタクト
層すなわちn型のキャップ層で、(18)はこれの上に形
成されたSiO2等の絶縁層で、その中央に穿設された電極
窓(18a)を通じて一方の電極(19)がオーミックに被
着される。また、(20)は半導体基体(11)の裏面に設
けられた他方の電極を示す。
(17) is a contact layer provided on the second cladding layer, that is, an n-type cap layer, and (18) is an insulating layer such as SiO 2 formed on the contact layer, which is formed in the center of the contact layer. One electrode (19) is ohmicly deposited through the electrode window (18a). Further, (20) indicates the other electrode provided on the back surface of the semiconductor substrate (11).

上述の構成においてその対向電極(19)およびら(2
0)間に順方向電圧を印加することによって活性層(1
5)の屈曲部(15A)及び(15B)間に光発振領域が形成
される。この発振は、基本的には電流狭窄兼光吸収層
(13)による電流遮断による電流通路の狭窄によって、
活性層(15)の中央部の屈曲部(15A)及び(15B)間
に、電流の集中、したがって注入キャリア密度が大なる
部分、つまり、利得が大なる部分を形成した利得導機能
によるものであって、これがため縦多モード、横基本モ
ードの発振がなされる。しかしながら、同時に屈曲部
(15A)及び(15B)の存在によって横方向に屈折率ガイ
ド型の光の閉じ込めがなされる。また、この場合その両
外側にはクラッド層(12)に比しては、バンドギャップ
が小さくて光及びキャリアの閉じ込めが弱いガイド層
(14)が存在していることによって完全な屈折率ガイド
型機能とはならないものの、この両側においては、活性
層(15)からの光が電流狭窄兼光吸収層(13)によって
吸収されることによって、この電流狭窄兼光吸収層(1
3)と対向する部分と対向しない部分とでは、実効的屈
折率の差が生じ、弱い屈折率型導波機能が生じる。した
がって非点収差及びIthの低減化の効果も生じることに
なる。
In the above configuration, the counter electrodes (19) and (2
The active layer (1
An optical oscillation region is formed between the bent portions (15A) and (15B) of 5). This oscillation is basically due to the constriction of the current path due to the current confinement due to the current confinement and light absorption layer (13).
Due to the concentration of current, and hence the portion where the injected carrier density is large, that is, the portion where the gain is large, is formed between the bent portions (15A) and (15B) at the center of the active layer (15) by the gain guiding function. Because of this, oscillation in multi-mode and transverse fundamental mode is performed. However, at the same time, the presence of the bent portions (15A) and (15B) confine the light of the refractive index guide type in the lateral direction. Further, in this case, a guide layer (14) having a smaller bandgap and weaker light and carrier confinement than that of the cladding layer (12) is present on both outer sides of the cladding layer (12). Although not functioning, on both sides of this, the light from the active layer (15) is absorbed by the current constriction and light absorption layer (13), so that the current confinement and light absorption layer (1
There is a difference in effective refractive index between the part facing 3) and the part not facing, and a weak index type waveguide function occurs. Therefore, astigmatism and Ith can be reduced.

次に、本発明による半導体レーザの製造方法の一例を
詳細に説明する。この場合、まずp型のGaAs半導体基体
(11)を用意し、その一主面上にこれと同導電型のp型
のGaAsの半導体層よりなるバッファ層(21)とこれの上
にp型の前述したAlzGa1-zAsの例えば1μmないしはそ
れ以上の厚さの第1のクラッド層(12)を設け、これの
上に必要に応じて例えば厚さ0.5μm程度以下のp型のG
aAsよりなる下地半導体層(22)を介してこれの上に電
流狭窄兼光吸収層(13)すなわち厚さDab1μmのn
型の高不純物濃度のGaAs半導体層を順次連続的にMOCVD
法あるいはMBE法によってエピタキシーする第1のエピ
タキシャル作業を行う。
Next, an example of a method for manufacturing a semiconductor laser according to the present invention will be described in detail. In this case, first, a p-type GaAs semiconductor substrate (11) is prepared, a buffer layer (21) made of a p-type GaAs semiconductor layer having the same conductivity type as that of the p-type GaAs semiconductor substrate, and a p-type The above-mentioned Al z Ga 1-z As is provided with a first cladding layer (12) having a thickness of, for example, 1 μm or more, and a p-type layer having a thickness of, for example, about 0.5 μm or less is formed on the first cladding layer (12). G
A current confinement and light absorption layer (13), that is, n having a thickness Dab of 1 μm, is formed on the underlying semiconductor layer (22) made of aAs.
Type MOCVD of high impurity concentration GaAs semiconductor layers
The first epitaxial work is performed by epitaxy by the MBE method or the MBE method.

次に、電流狭窄兼光吸収層(13)から下地半導体層
(22)の一部の厚さに至る深さに例えば幅2μm〜10μ
mのストライプ状の溝を形成して欠除部(13a)を第1
図における紙面と直交する方向に延在させるように、フ
ォトリソグラフィ技術による化学的エッチングによって
形成する。この場合、溝の深さは、下地層(22)の一部
の厚さをわずかに残し置いた深さに選定してもよい。
Next, for example, a width of 2 μm to 10 μ is reached from the current confinement and light absorption layer (13) to a part of the thickness of the base semiconductor layer (22).
First, the groove (3a) is formed to form the notch (13a).
It is formed by chemical etching using a photolithography technique so as to extend in a direction orthogonal to the plane of the drawing. In this case, the depth of the groove may be selected so that a part of the thickness of the underlayer (22) is left.

その後、第2のエピタキシャル成長作業を行うもので
あるが、その成長作業に先立って成長路中で欠除部(13
a)を通じてその底面に残余させた下地半導体層(22)
を例えばAsCl3やHClを送り込んだ気相エッチングで除去
して半導体層(22)に欠除部(13a)に連なる窓を形成
することによって凹部(23)を形成し、その後この凹部
(23)内すなわち欠除部(13a)とこれの下の下地導体
層(22)の窓を通じて露呈した第1のクラッド層(12)
上を含んで層(13)上に跨って全面的にガイド層(1
4)、活性層(15)、第2のクラッド層(16)、キャッ
プ層(17)を連続的にMOCVD法あるいはMBE法の一連の第
2のエピタキシャル作業を行う。その後、キャップ層
(17)上に絶縁層(18)を形成し電極窓(18a)の穿設
を行うなどして電極(19)を被着し半導体基体(11)の
裏面に電極(20)を形成する。
After that, the second epitaxial growth work is performed. Prior to the second growth work, the removal part (13
Base semiconductor layer (22) left on the bottom surface through a)
Is removed by, for example, vapor phase etching in which AsCl 3 or HCl is fed to form a recess (23) in the semiconductor layer (22) so as to connect to the recess (13a), and then the recess (23) is formed. The first clad layer (12) exposed through the window of the inner or cutout portion (13a) and the underlying conductor layer (22) therebelow
The guide layer (1
4), the active layer (15), the second cladding layer (16), and the cap layer (17) are successively subjected to a second epitaxial work of MOCVD method or MBE method. After that, an insulating layer (18) is formed on the cap layer (17), an electrode window (18a) is formed, and an electrode (19) is deposited on the back surface of the semiconductor substrate (11). To form.

このようにすれば電流狭窄兼光吸収層(13)の欠如部
(13a)による凹部(23)に沿って活性層(15)が屈曲
し相対向する屈曲部(15A)及び(15B)間にストライプ
状の発振領域が形成されたp型基板による半導体レーザ
が構成される。
In this way, the active layer (15) is bent along the recess (23) formed by the lacking portion (13a) of the current constriction and light absorption layer (13), and stripes are formed between the bent portions (15A) and (15B) facing each other. A semiconductor laser is formed by a p-type substrate in which a circular oscillation region is formed.

この場合、凹部(23)は、その断面をV字状ないしは
U字状、好ましくはU字状とする。
In this case, the recess (23) has a V-shaped or U-shaped cross section, preferably U-shaped.

また、この凹部(23)の形成工程の存在によって、第
1のエピタキシャル作業と第2のエピタキシャル作業の
2つに分割された作業を行うことになるが、上述したよ
うに下地半導体層(22)を設け、凹部(23)の形成にお
いて、その一部の厚さを残しておいて第2のエピタキシ
ャル作業においてこれをエッチング除去するようにする
ときは、第1及び第2の両エピタキシャル作業による特
に凹部(23)内の第1のクラッド層(12)上において自
然酸化膜の介存等によるガイド層(14)との界面の結晶
性の低下等の招来を回避できる。
Further, due to the existence of the step of forming the concave portion (23), the work divided into the first epitaxial work and the second epitaxial work is performed, but as described above, the underlying semiconductor layer (22) In the formation of the concave portion (23), a part of the thickness of the concave portion (23) is left to be removed by etching in the second epitaxial operation. It is possible to prevent the crystallinity of the interface with the guide layer (14) from being lowered due to the presence of a natural oxide film on the first cladding layer (12) in the recess (23).

尚、下地半導体層(22)はn型であってもよい。 The base semiconductor layer (22) may be n-type.

〔発明の効果〕〔The invention's effect〕

上述の本発明によれば、p型基板を有する半導体レー
ザ構成をとり、界面の結晶性もよく、利得ガイド型機能
を有して縦多モード、横基本モードの発振が行われ、ま
た屈折率ガイド機能によって非点収差が小さくIthの小
さい目的とする半導体レーザを製造することができる。
従って、CDあるいはVD等の光源として用いて好適な半導
体レーザを得ることができるものである。
According to the present invention described above, a semiconductor laser structure having a p-type substrate is adopted, the crystallinity of the interface is good, the multi-mode longitudinal and transverse fundamental modes are oscillated with the gain guide type function, and the refractive index is increased. With the guide function, it is possible to manufacture a target semiconductor laser with a small astigmatism and a small Ith.
Therefore, it is possible to obtain a suitable semiconductor laser by using it as a light source for CD or VD.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る半導体レーザの一例の略線的拡大
断面図、第2図は従来の半導体レーザの略線的拡大断面
図である。 (11)は半導体基体、(12)は第1のクラッド層、(1
3)は電流狭窄兼光収集層、(14)はガイド層、(15)
は活性層、(16)は第2のクラッド層、(19)及び(2
0)は電極である。
FIG. 1 is an enlarged schematic sectional view of an example of a semiconductor laser according to the present invention, and FIG. 2 is an enlarged schematic sectional view of a conventional semiconductor laser. (11) is a semiconductor substrate, (12) is the first cladding layer, (1
3) is the current constriction and light collection layer, (14) is the guide layer, and (15)
Is the active layer, (16) is the second cladding layer, and (19) and (2
0) is an electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】p型の半導体基体上にp型の第1の半導体
層を形成後、 上記第1の半導体層上に下地層および電流狭窄兼光吸収
層を順次形成する第1のエピタキシャル成長工程と、 上記電流狭窄兼光吸収層を第1のエッチング工程により
上記下地層の一部を残して欠除部を形成する工程と、 第2のエピタキシャル成長工程とを有し、 上記第2のエピタキシャル成長工程を行う前に、上記欠
除部に残された上記下地層を除去し、上記第1の半導体
層を露出させる工程を含む ことを特徴とする半導体レーザの製造方法。
1. A first epitaxial growth step of forming a p-type first semiconductor layer on a p-type semiconductor substrate and then sequentially forming a base layer and a current constriction / light absorption layer on the first semiconductor layer. And a second epitaxial growth step, in which the current confinement and light absorption layer is subjected to a first etching step to form a cutout portion while leaving a part of the underlayer, and the second epitaxial growth step is performed. A method of manufacturing a semiconductor laser, comprising a step of removing the underlying layer left in the cutout portion and exposing the first semiconductor layer.
JP61238492A 1986-10-07 1986-10-07 Semiconductor laser manufacturing method Expired - Fee Related JPH0821755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61238492A JPH0821755B2 (en) 1986-10-07 1986-10-07 Semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61238492A JPH0821755B2 (en) 1986-10-07 1986-10-07 Semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPS6393180A JPS6393180A (en) 1988-04-23
JPH0821755B2 true JPH0821755B2 (en) 1996-03-04

Family

ID=17031050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61238492A Expired - Fee Related JPH0821755B2 (en) 1986-10-07 1986-10-07 Semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JPH0821755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685332B2 (en) * 1990-05-14 1997-12-03 松下電子工業株式会社 Semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192380A (en) * 1984-03-13 1985-09-30 Mitsubishi Electric Corp Semiconductor laser device
JPS61121382A (en) * 1984-11-16 1986-06-09 Mitsubishi Electric Corp Semiconductor laser device

Also Published As

Publication number Publication date
JPS6393180A (en) 1988-04-23

Similar Documents

Publication Publication Date Title
US5757835A (en) Semiconductor laser device
US5661743A (en) Semiconductor laser
JPH05243669A (en) Semiconductor laser element
JPH0656906B2 (en) Semiconductor laser device
JPH11112081A (en) Semiconductor laser and manufacture thereof
US5144633A (en) Semiconductor laser and manufacturing method thereof
JP3710329B2 (en) Semiconductor laser device and manufacturing method thereof
JP2003046197A (en) Semiconductor laser and its manufacturing method
US5173913A (en) Semiconductor laser
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JPH08236857A (en) Long wavelength semiconductor laser and its manufacture
US6671301B1 (en) Semiconductor device and method for producing the same
JPH0821755B2 (en) Semiconductor laser manufacturing method
JPH05211372A (en) Manufacture of semiconductor laser
US7050472B2 (en) Semiconductor laser device and method for manufacturing the same
US6647043B2 (en) Semiconductor laser device capable of preventing degradation of characteristics
US6717186B2 (en) Semiconductor laser device
JP2712970B2 (en) Semiconductor laser and manufacturing method thereof
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP3410959B2 (en) Semiconductor laser device and method of manufacturing the same
JPH1154834A (en) Semiconductor laser element
JP3194616B2 (en) Semiconductor laser device
JP2988552B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0671122B2 (en) Semiconductor laser device
JP2538258B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees