JPH0821714A - Road-surface shape measuring device - Google Patents

Road-surface shape measuring device

Info

Publication number
JPH0821714A
JPH0821714A JP7108479A JP10847995A JPH0821714A JP H0821714 A JPH0821714 A JP H0821714A JP 7108479 A JP7108479 A JP 7108479A JP 10847995 A JP10847995 A JP 10847995A JP H0821714 A JPH0821714 A JP H0821714A
Authority
JP
Japan
Prior art keywords
road surface
distance
surface shape
shape measuring
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7108479A
Other languages
Japanese (ja)
Inventor
Hiromitsu Watanabe
広光 渡辺
Naoyuki Takeuchi
巨幸 竹内
Tetsuya Arimoto
哲也 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP7108479A priority Critical patent/JPH0821714A/en
Priority to GB9525498A priority patent/GB2308256B/en
Priority to US08/572,330 priority patent/US5745225A/en
Priority to SE9504480A priority patent/SE506753C2/en
Priority claimed from GB9525498A external-priority patent/GB2308256B/en
Publication of JPH0821714A publication Critical patent/JPH0821714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a device for measuring road-surface shape, which can be miniaturized and weight of which can be reduced and in which operators can be decreased, in the road-surface shape measuring device being loaded on a car or being installed on the shoulder of a road or the outside of a roadway and measuring the shapes of the irregularities, slope, etc., of a road surface in a noncontact manner. CONSTITUTION:An inclinometer 12 detecting the angle of inclination of a frame 11 fixed onto a measuring car 10 and a rotary driving section 13 generating a rotary motion in an approximately vertical surface 10 while outputting a signal regarding the angle of rotation are mounted. A distance measuring section 14 measuring a distance from a road surface while being turned by the rotary motion from the rotary driving section 13 and a processor obtaining a vertical distance and a horizontal distance from the road-surface shape measuring device to the road surface by using a distance measured value acquired by the distance measuring section 14, the angle of inclination of the frame detected by the inclinometer 12 and the angle of rotation output from the rotary driving section 13 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、車両に搭載さ
れ、または、路肩もしくは車道外に設置され、路面の凹
凸、傾斜等の形状を非接触で測定する路面形状測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface shape measuring device which is mounted on a vehicle or installed on a road shoulder or outside a roadway and which measures the shape of road surface irregularities, slopes and the like in a non-contact manner.

【0002】[0002]

【従来の技術】従来の路面形状測定装置としては、図9
に示したものがある。図において、1はメインフレーム
であり、メインフレーム1は、路面の測定幅に対応した
幅を有し、その両端が車輪5で支持される。メインフレ
ーム1の下側には、走行台車2がメインフレーム1の長
手方向に沿って滑動可能に取り付けられ、さらに走行台
車2に計測部4が固定される。メインフレーム1は、車
両によってメインフレーム1の長手方向と直交する方向
に牽引されて路面を移動しながら、路面形状の測定を行
う。
2. Description of the Related Art A conventional road surface shape measuring device is shown in FIG.
There is one shown in. In the figure, reference numeral 1 is a main frame, and the main frame 1 has a width corresponding to a measured width of a road surface, and both ends thereof are supported by wheels 5. A traveling carriage 2 is slidably attached to the lower side of the main frame 1 along the longitudinal direction of the main frame 1, and a measuring unit 4 is fixed to the traveling carriage 2. The main frame 1 measures the road surface shape while being pulled by the vehicle in a direction orthogonal to the longitudinal direction of the main frame 1 and moving on the road surface.

【0003】路面形状の測定にあたっては、図示しない
モータ等の駆動源によって走行台車2がメインフレーム
1の長手方向に沿って移動(図中矢印方向)し、移動し
ながら計測部4が計測部4と路面との距離を測定する。
図10に、計測部4の測定原理を示す。計測部4は、レ
ーザ発光素子6と投光レンズ7と受光レンズ8、CCD
素子9を備えており、レーザ発光素子6からのレーザ光
は、投光レンズ7を介して路面へ照射され、路面からの
散乱反射波の一部が受光レンズ8で集光されてCCD素
子9へ到達する。路面と計測部4との距離の変化に応じ
て光を受光するCCD素子の位置が変化する。例えば図
において、路面RS1から路面RS2へと路面が変化す
ると、CCD素子9の受光位置が9aから9bへと変化
する。即ち、レーザ光を受光するCCD素子9の位置か
ら、路面との距離が分かり、メインフレーム1の長手方
向に沿って走行台車2が移動する毎にその距離を求める
ことによって路面の凹凸を求めることができる。
When measuring the road surface shape, the traveling vehicle 2 is moved along the longitudinal direction of the main frame 1 (in the direction of the arrow in the figure) by a drive source such as a motor (not shown), and the measuring unit 4 moves while moving. And the distance between the road and the road.
FIG. 10 shows the measurement principle of the measuring unit 4. The measuring unit 4 includes a laser light emitting element 6, a light projecting lens 7, a light receiving lens 8 and a CCD.
The laser light from the laser light emitting element 6 is applied to the road surface through the light projecting lens 7, and a part of the scattered reflected wave from the road surface is condensed by the light receiving lens 8 to provide the CCD element 9 To reach. The position of the CCD element that receives the light changes according to the change in the distance between the road surface and the measurement unit 4. For example, in the figure, when the road surface changes from the road surface RS1 to the road surface RS2, the light receiving position of the CCD element 9 changes from 9a to 9b. That is, the distance to the road surface is known from the position of the CCD element 9 that receives the laser light, and the unevenness of the road surface is obtained by finding the distance each time the traveling carriage 2 moves along the longitudinal direction of the main frame 1. You can

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の路面形状測定装置にあっては、路面形状の測定幅
が例えば3mの場合、この測定幅に対応してメインフレ
ーム1の長さが長くなるという問題がある。従って、走
行台車機構や駆動機構が大がかりとなり、長ストローク
にわたり走行精度を必要とする構成のため、価格も高価
になるだけでなく、重量的に不利になり、計測現場への
移動及び操作に複数人数を必要とするという問題もあ
る。
However, in such a conventional road surface shape measuring apparatus, when the measurement width of the road surface shape is, for example, 3 m, the length of the main frame 1 becomes long corresponding to this measurement width. There is a problem. Therefore, the traveling carriage mechanism and the drive mechanism are large in size, and because the traveling accuracy is required for a long stroke, not only the price becomes expensive, but also the weight is disadvantageous, and it is difficult to move and operate at a measurement site. There is also the problem of requiring a large number of people.

【0005】また、入り子式フレーム構造にしてフレー
ムを伸縮可能とし、最小に縮んだ状態のフレームより測
定幅を長くすることもできるが、その機構が複雑にな
り、同様に、重量的、価格的に問題がある。本発明はか
かる問題点に鑑みなされたもので、装置を小型化、低重
量化でき、ひいては省人化をはかることのできる路面形
状測定装置を提供することを目的とする。
Further, it is possible to make the frame expandable and contractible by making it into a telescopic frame structure so that the measuring width can be made longer than that of the frame in the minimum contracted state, but the mechanism becomes complicated, and similarly, it is heavy and expensive. I have a problem. The present invention has been made in view of the above problems, and an object of the present invention is to provide a road surface shape measuring apparatus which can be downsized and reduced in weight, and can be reduced in manpower.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1記載の路面形状測定装置は、ほぼ
垂直面内における回動運動を発生すると共にその回動角
度に関する信号を出力する回動駆動部と、回動駆動部の
傾斜角度を検出する傾斜計と、回動駆動部からの回動運
動によって回動しながら路面との距離を測定する距離計
測部と、距離計測部で求めた距離測定値、傾斜計で検出
された傾斜角度及び回動駆動部から出力された回動角度
を用いて路面形状測定装置から路面までの鉛直距離と水
平距離を求める処理装置とを備える。この路面形状測定
装置は、車両に搭載することができる。また、本発明の
請求項2記載の路面形状測定装置は、水準器と、ほぼ垂
直面内における回動運動を発生すると共にその回動角度
に関する信号を出力する回動駆動部と、回動駆動部から
の回動運動によって回動しながら路面との距離を測定す
る距離計測部と、距離計測部で求めた距離測定値及び回
動駆動部から出力された回動角度を用いて路面形状測定
装置から路面までの鉛直距離と水平距離を求める処理装
置とを備える。この路面形状測定装置は、路肩または車
道外に設置することができる。
In order to achieve the above object, a road surface profile measuring apparatus according to claim 1 of the present invention generates a turning motion in a substantially vertical plane and outputs a signal relating to the turning angle. A rotation drive unit that outputs, an inclinometer that detects the inclination angle of the rotation drive unit, a distance measurement unit that measures the distance to the road surface while rotating by the rotation movement from the rotation drive unit, and a distance measurement And a processing device for obtaining the vertical distance and the horizontal distance from the road surface shape measuring device to the road surface using the distance measurement value obtained by the section, the tilt angle detected by the inclinometer, and the turning angle output from the turning drive unit. Prepare This road surface shape measuring device can be mounted on a vehicle. According to a second aspect of the present invention, there is provided a level measuring device, a level, a rotary drive unit that generates a rotary motion in a substantially vertical plane, and outputs a signal related to the rotary angle, and a rotary drive. A road surface shape is measured using a distance measurement unit that measures the distance to the road surface while rotating by the rotation movement from the unit, and the distance measurement value obtained by the distance measurement unit and the rotation angle output from the rotation drive unit. A processing device for determining a vertical distance and a horizontal distance from the device to the road surface is provided. This road surface shape measuring device can be installed on the road shoulder or outside the road.

【0007】また、前記距離計測部として、例えば、路
面に向けて光波を照射してその反射波を受光することに
より距離を測定する光波距離計とすることができる。回
動駆動部は、回動運動を発生するパルスモータとパルス
モータを駆動するパルスモータ駆動回路を有して、該パ
ルスモータ駆動回路が回動角度に関する信号を出力する
よう構成することができる。
The distance measuring unit may be, for example, a light wave distance meter that measures a distance by irradiating a light wave toward a road surface and receiving a reflected wave thereof. The rotation drive unit may include a pulse motor that generates a rotation movement and a pulse motor drive circuit that drives the pulse motor, and the pulse motor drive circuit may be configured to output a signal regarding a rotation angle.

【0008】また、回動駆動部は、回動運動を発生する
パルスモータと、パルスモータからの回動運動を往復直
線運動に変換し、さらに該往復直線運動を路面形状測定
装置の所定点を回動中心とするほぼ垂直面内における回
動運動に変換する伝達機構と、パルスモータを駆動する
パルスモータ駆動回路を有し、該パルスモータ駆動回路
が回動角度に関する信号を出力することができる。
The rotary drive unit converts the rotary motion from the pulse motor for generating rotary motion into a reciprocating linear motion, and further translates the reciprocating linear motion into a predetermined point of the road surface shape measuring apparatus. It has a transmission mechanism for converting into a rotational movement in a substantially vertical plane which is the center of rotation, and a pulse motor drive circuit for driving a pulse motor, and the pulse motor drive circuit can output a signal relating to a rotation angle. .

【0009】[0009]

【作用】請求項1記載の発明においては、距離計測部
が、回動駆動部によって発生された回動運動によってほ
ぼ垂直面内において回動する。例えば、傾斜計で検出さ
れた回動駆動部の水平面からの傾斜角度をθ0 、回動駆
動部の基準軸からの回動角度をθ1 とすれば、距離計測
部の鉛直軸からの偏角θは、
According to the first aspect of the invention, the distance measuring section is rotated in a substantially vertical plane by the rotational movement generated by the rotational drive section. For example, if the tilt angle of the rotation drive unit detected from the inclinometer from the horizontal plane is θ 0 , and the rotation angle of the rotation drive unit from the reference axis is θ 1 , the distance measurement unit deviates from the vertical axis. The angle θ is

【0010】[0010]

【数1】θ=θ0 +θ1 となる。この偏角θを用いて距離計測部で求めた距離測
定値を、路面形状測定装置から路面までの鉛直距離と水
平距離に変換する。これらの距離を距離計測部を回動さ
せながら、路面を横切る複数の測定点において求めるこ
とで、路面の凹凸を表す路面横断断面図が求められる。
距離測定部を回動させることで、路面形状測定装置全体
の大きさを路面形状の測定幅に比較して十分に小型化、
低重量化できる。請求項2記載の発明においては、距離
計測部が、回動駆動部によって発生された回動運動によ
ってほぼ垂直面内において回動する。例えば、回動駆動
部の基準軸からの回動角度をθ1 とし、回動駆動部を水
準器によって水平に設置しておけば、距離計測部の鉛直
軸からの偏角θは、
## EQU1 ## θ = θ 0 + θ 1 . The distance measurement value obtained by the distance measuring unit using the argument θ is converted into a vertical distance and a horizontal distance from the road surface shape measuring device to the road surface. By obtaining these distances at a plurality of measurement points that traverse the road surface while rotating the distance measuring unit, a cross-sectional road surface cross-sectional view showing unevenness of the road surface can be obtained.
By rotating the distance measuring unit, the size of the entire road surface shape measuring device can be made sufficiently smaller than the measurement width of the road surface shape,
Weight can be reduced. According to the second aspect of the invention, the distance measuring section is rotated substantially in the vertical plane by the rotational movement generated by the rotational drive section. For example, if the rotation angle of the rotation drive unit from the reference axis is θ 1 and the rotation drive unit is installed horizontally with a level, the deviation angle θ of the distance measurement unit from the vertical axis is

【数2】θ=θ1 となる。この偏角θを用いて距離計測部で求めた距離測
定値を、路面形状測定装置から路面までの鉛直距離と水
平距離に変換する。これらの距離を距離計測部を回動さ
せながら、路面を横切る複数の測定点において求めるこ
とで、路面の凹凸を表す路面横断断面図が求められる。
距離測定部を回動させることで、路面形状測定装置全体
の大きさを路面形状の測定幅に比較して十分に小型化、
低重量化できる。
## EQU2 ## θ = θ 1 . The distance measurement value obtained by the distance measuring unit using the argument θ is converted into a vertical distance and a horizontal distance from the road surface shape measuring device to the road surface. By obtaining these distances at a plurality of measurement points that traverse the road surface while rotating the distance measuring unit, a cross-sectional road surface cross-sectional view showing unevenness of the road surface can be obtained.
By rotating the distance measuring unit, the size of the entire road surface shape measuring device can be made sufficiently smaller than the measurement width of the road surface shape,
Weight can be reduced.

【0011】[0011]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。図1は、本発明の路面形状測定装置の構成を示す斜
視図であり、本実施例の路面形状測定装置は計測車両1
0に搭載される。図において、11は計測車両10に固
定されるフレームで、必要によってオン/オフライン台
車15によって支持され、その水平面(X−Y面)上の
位置、鉛直軸(Z軸)回りの回転角度が調整される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a road surface shape measuring apparatus of the present invention. The road surface shape measuring apparatus of this embodiment is a measuring vehicle 1
It is installed in 0. In the figure, reference numeral 11 denotes a frame fixed to the measurement vehicle 10, which is supported by an on / offline carriage 15 as necessary, and its position on a horizontal plane (XY plane) and a rotation angle around a vertical axis (Z axis) are adjusted. To be done.

【0012】フレーム11上には、フレーム11の長手
方向の水平面からの傾斜角度を検出出力する傾斜計12
が設置されると共に、回動駆動部13がフレーム11に
固定されている。回動駆動部13は、回動運動を発生す
る駆動モータとその回動出力軸13aの回動角度を検出
出力するポテンショメータまたはエンコーダ等の角度発
信器29を備える。角度発信器29からの出力は、後述
の処理装置16へ供給されると共に駆動モータにフィー
ドバックされ、公知のサーボ制御がなされる。尚、傾斜
計12は、フレーム11に固定された回動駆動部13の
筐体等の固定部に直接取り付けて回動駆動部13の傾斜
角度を直接検出するようにしてもよい。
An inclinometer 12 is provided on the frame 11 to detect and output an inclination angle from the horizontal plane in the longitudinal direction of the frame 11.
Is installed and the rotation drive unit 13 is fixed to the frame 11. The rotary drive unit 13 includes a drive motor that generates a rotary motion and an angle transmitter 29 such as a potentiometer or an encoder that detects and outputs the rotary angle of the rotary output shaft 13a. The output from the angle transmitter 29 is supplied to the processing device 16 described later and fed back to the drive motor to perform known servo control. The inclinometer 12 may be directly attached to a fixed part such as a housing of the rotation drive part 13 fixed to the frame 11 to directly detect the inclination angle of the rotation drive part 13.

【0013】回動駆動部13の回動出力軸13aには、
距離計測部14が取り付けられる。尚、フレーム11、
回動駆動部13及び距離計測部14の相互の取付は、フ
レーム11を計測車両10に固定する前に予め行い、調
整して精度を出しておくことが望まれる。距離計測部1
4には、例えば路面に向けて光波を照射する光波距離計
19(図3)が備えられる。光波距離計19は、その光
軸が路面を横断するよう、回動駆動部13によってほぼ
垂直面内において左右へ往復回動される。図2に示した
ように、光波距離計19からの信号は、回動駆動部13
の角度発信器29及び傾斜計12の信号と共に、計測車
両10に搭載される処理装置16へ伝送される。処理装
置16は表示装置17と接続され、また、電源装置18
が計測車両10に搭載され、回動駆動部13、光波距離
計19等の電力を供給する。
The rotation output shaft 13a of the rotation drive unit 13 has
The distance measuring unit 14 is attached. The frame 11,
It is desirable that the rotation drive unit 13 and the distance measurement unit 14 be attached to each other in advance before fixing the frame 11 to the measurement vehicle 10 and adjusted to obtain accuracy. Distance measuring unit 1
4 is provided with a light wave range finder 19 (FIG. 3) that emits a light wave toward the road surface, for example. The optical distance meter 19 is reciprocally rotated right and left in a substantially vertical plane by the rotation drive unit 13 so that its optical axis crosses the road surface. As shown in FIG. 2, the signal from the lightwave distance meter 19 is supplied to the rotation driving unit 13
The signals from the angle transmitter 29 and the inclinometer 12 are transmitted to the processing device 16 mounted on the measurement vehicle 10. The processing device 16 is connected to the display device 17, and the power supply device 18
Is mounted on the measurement vehicle 10 and supplies electric power to the rotation drive unit 13, the optical distance meter 19, and the like.

【0014】処理装置16は、さらに時間計測部25、
測定距離演算部26及び路面凹凸演算部27を備え(図
3参照)、測定距離演算部26で光波距離計19からの
測定距離を演算し、路面凹凸演算部27で傾斜計12及
び回動駆動部13の角度発信器29の出力を受けて路面
の凹凸に関する情報に変換する。図3は、光波距離計1
9の測定原理を表すもので、光波距離計19は、詳細に
は、レーザ発光素子20、投光レンズ21、受光レンズ
23及びレーザ受光素子24を備える。レーザ発光素子
20で所定時間毎にレーザパルス光が発光され、投光レ
ンズ21で平行光となり路面RSへ向けて照射される。
路面RSからの反射光の一部は、受光レンズ23で集光
されてレーザ受光素子24へ到達する。処理装置16の
時間計測部25において、このレーザ発光素子20への
トリガ信号となる送信信号と、レーザ受光素子24から
の受光信号との時間間隔が、クロック周波数でカウント
され、そのカウント数が測定距離演算部26で距離に換
算され、測定距離lが求められる。測定距離lは路面凹
凸演算部27に送られて以下に述べる処理が行われる。
The processing device 16 further includes a time measuring unit 25,
The measurement distance calculation unit 26 and the road surface unevenness calculation unit 27 are provided (see FIG. 3), the measurement distance calculation unit 26 calculates the measurement distance from the lightwave distance meter 19, and the road surface unevenness calculation unit 27 drives the inclinometer 12 and the rotation drive. The output of the angle transmitter 29 of the unit 13 is received and converted into information about the unevenness of the road surface. FIG. 3 shows a lightwave rangefinder 1
The light wave range finder 19 includes a laser light emitting element 20, a light projecting lens 21, a light receiving lens 23, and a laser light receiving element 24. The laser light emitting element 20 emits laser pulse light at predetermined time intervals, and the light projecting lens 21 turns the light into parallel light and irradiates the road surface RS.
Part of the reflected light from the road surface RS is condensed by the light receiving lens 23 and reaches the laser light receiving element 24. In the time measuring unit 25 of the processing device 16, the time interval between the transmission signal serving as the trigger signal to the laser light emitting element 20 and the light receiving signal from the laser light receiving element 24 is counted at the clock frequency, and the count number is measured. The distance calculation unit 26 converts the distance into a distance and obtains the measured distance l. The measured distance 1 is sent to the road surface unevenness calculation unit 27 and the processing described below is performed.

【0015】図4は、本装置の作用を説明する説明図で
ある。30は、距離計測部14の回動中心点である。3
1はフレーム11の長手方向のみを表した概念線であ
り、傾斜計12によってフレーム11の長手方向の、言
い替えれば回動駆動部13の固定部の水平面からの傾斜
角度θ0 が求められる。回動駆動部13の回動出力軸1
3aに取り付けられた距離計測部14は、回動中心点3
0を中心及び回動駆動部13の基準線である垂直線32
を中心線として左右に回動を行う。垂直線32からの回
動角度θ1 は、角度発信器29から出力される。距離計
測部14の光軸の鉛直軸33からの偏角θは、
FIG. 4 is an explanatory view for explaining the operation of this device. Reference numeral 30 is a rotation center point of the distance measuring unit 14. Three
Reference numeral 1 is a conceptual line representing only the longitudinal direction of the frame 11, and the inclinometer 12 obtains the inclination angle θ 0 of the frame 11 in the longitudinal direction, in other words, from the horizontal plane of the fixed portion of the rotary drive unit 13. Rotation output shaft 1 of the rotation drive unit 13
The distance measuring unit 14 attached to the 3a has a rotation center point 3
A vertical line 32 which is a reference line of the rotation drive unit 13 with 0 as the center
Rotate left and right around the center line. The rotation angle θ 1 from the vertical line 32 is output from the angle transmitter 29. The deviation angle θ of the optical axis of the distance measuring unit 14 from the vertical axis 33 is

【0016】[0016]

【数3】θ=θ1 +θ0 で求められる。回動中心点30から距離計測部14の測
定基準点34までの距離をR、測定距離をlとすると、
回動中心点30から測定点の路面までの高さ即ち鉛直距
離H及び回動中心点30から測定点の路面までの水平距
離Lは、次式で求められる。
## EQU3 ## It is obtained by θ = θ 1 + θ 0 . When the distance from the rotation center point 30 to the measurement reference point 34 of the distance measuring unit 14 is R and the measurement distance is 1,
The height from the rotation center point 30 to the road surface at the measurement point, that is, the vertical distance H, and the horizontal distance L from the rotation center point 30 to the road surface at the measurement point are calculated by the following equations.

【0017】[0017]

【数4】 H=(R+l)cosθ=(R+l)cos(θ1 +θ0 ) L=(R+l)sinθ=(R+l)sin(θ1 +θ0 ) 従って、路面凹凸演算部27では、既知の値であるRと
測定距離演算部26から出力される測定距離lと、傾斜
計12からの出力θ0 と、回動駆動部13の角度発信器
29からの出力θ1 を用いて上記演算を行うことで、
H,Lを求める。この測定点までの鉛直距離H及び水平
距離Lは、表示装置17へ送られて、プロットされる。
Equation 4] H = (R + l) cosθ = (R + l) cos (θ 1 + θ 0) L = (R + l) sinθ = (R + l) sin (θ 1 + θ 0) Therefore, the uneven road surface calculating section 27, a known value And the measured distance 1 output from the measured distance calculation unit 26, the output θ 0 from the inclinometer 12, and the output θ 1 from the angle transmitter 29 of the rotation drive unit 13 to perform the above calculation. By that,
Find H and L. The vertical distance H and the horizontal distance L to this measurement point are sent to the display device 17 and plotted.

【0018】図5は、測定結果の一例を示したもので、
最大走査回動角を51.34゜とし、その中から5mの
測定幅をとっている。距離の単位はmmであり、各測定
点は回動中心点30を基準として鉛直距離H及び測定点
までの水平距離Lが求められてプロットされている。こ
のようにして、距離計測部14を回動駆動部13によっ
て回動させて路面の凹凸を計測することによって、小型
化、低重量化をはかることができ、ひいては低価格化及
び省人化をはかることができる。
FIG. 5 shows an example of the measurement results.
The maximum scanning rotation angle is 51.34 °, and the measurement width of 5 m is taken from it. The unit of the distance is mm, and the vertical distance H and the horizontal distance L to the measurement point are obtained and plotted for each measurement point with the rotation center point 30 as a reference. In this way, by rotating the distance measuring unit 14 by the rotation driving unit 13 and measuring the unevenness of the road surface, downsizing and weight reduction can be achieved, which leads to lower cost and labor saving. You can measure.

【0019】図6は、回動駆動部の他の実施例を表す。
本実施例の回動駆動部40は、駆動モータとしてパルス
モータ41を用いて、角度発信器29を省略したもので
ある。即ち、パルスモータ41の出力軸41aに取付板
41bを介して距離計測部14を取り付けると共に、パ
ルス分配回路42、パルスモータ駆動回路であるマイク
ロステップドライバ43を備え、パルスモータ41を所
定角度毎に駆動する。
FIG. 6 shows another embodiment of the rotary drive unit.
The rotation drive unit 40 of the present embodiment uses a pulse motor 41 as a drive motor and omits the angle transmitter 29. That is, the distance measuring unit 14 is attached to the output shaft 41a of the pulse motor 41 via the attachment plate 41b, and the pulse distribution circuit 42 and the micro step driver 43, which is a pulse motor drive circuit, are provided, and the pulse motor 41 is provided at predetermined angles. To drive.

【0020】高分解能であるため、任意のステップ動作
を行わせることができ、路面凹凸演算部27は、マイク
ロステップドライバ43から距離計測部14の回動角度
θ1に対応する信号を得ることができる。図7は、さら
に、回動駆動部の他の実施例を表す。本実施例の回動駆
動部50は、駆動モータとしてパルスモータ51を用い
て、角度発信器29を省略すると同時に、パルスモータ
51のステップ駆動が、測定面の水平距離の均一な走査
になるように構成したものである。即ち、パルスモータ
51の出力軸がフレーム11に対してその長手方向に平
行且つ回転可能に配設されるようにパルスモータ51が
フレーム11に固定され、その出力軸にボールネジ部5
2が一体的に取り付けられる。ボールネジ部52と螺合
するナット部53からボールネジ部52とほぼ垂直方向
に伸びた軸53aに軸受54を介して回動可能に取り付
けられたリニアガイド板55に摺動可能に取付板56が
支持される。取付板56の上端は軸受57を介してフレ
ーム11に回動可能に支持される。そして取付板56に
距離計測部14が固定される。これら、ボールネジ部5
2、ナット部53、軸受54、リニアガイド板55、取
付板56、及び軸受57が、パルスモータ51からの回
動運動を回動中心点30を回動中心とする回動運動に変
換する伝達機構を構成している。
Since the resolution is high, an arbitrary stepping operation can be performed, and the road surface unevenness calculating section 27 can obtain a signal corresponding to the rotation angle θ 1 of the distance measuring section 14 from the microstep driver 43. it can. FIG. 7 further shows another embodiment of the rotary drive unit. The rotary drive unit 50 of the present embodiment uses the pulse motor 51 as a drive motor, omits the angle transmitter 29, and at the same time, makes the step drive of the pulse motor 51 a uniform scan of the horizontal distance of the measurement surface. It is configured in. That is, the pulse motor 51 is fixed to the frame 11 so that the output shaft of the pulse motor 51 is rotatably arranged in parallel with the longitudinal direction of the frame 11, and the output shaft of the pulse motor 51 has a ball screw portion 5.
2 are attached integrally. A mounting plate 56 is slidably supported by a linear guide plate 55 rotatably mounted via a bearing 54 to a shaft 53a extending in a direction substantially perpendicular to the ball screw portion 52 from a nut portion 53 screwed with the ball screw portion 52. To be done. The upper end of the mounting plate 56 is rotatably supported by the frame 11 via a bearing 57. Then, the distance measuring unit 14 is fixed to the mounting plate 56. These, ball screw part 5
2, the nut portion 53, the bearing 54, the linear guide plate 55, the mounting plate 56, and the bearing 57, the transmission that converts the rotational movement from the pulse motor 51 into rotational movement with the rotational center point 30 as the rotational center. It constitutes the mechanism.

【0021】かかる構成によれば、パルスモータ51の
回動によってボールネジ52が回動し、ナット部53が
フレーム11の長手方向に平行に移動する。取付板56
は、上端がフレーム11に対して回動可能に取り付けら
れており、かつナット部53と共にフレーム11の長手
方向に平行に移動するリニアガイド板55に対して摺動
可能に支持されているから、その回動中心点30を中心
として往復回動することができる。
According to this structure, the ball screw 52 is rotated by the rotation of the pulse motor 51, and the nut portion 53 is moved in parallel with the longitudinal direction of the frame 11. Mounting plate 56
Has an upper end rotatably attached to the frame 11 and is slidably supported by a linear guide plate 55 that moves in parallel with the longitudinal direction of the frame 11 together with the nut portion 53. It is possible to reciprocally rotate about the rotation center point 30.

【0022】図8に示したように、パルスモータ51の
回動ステップがボールネジ部52方向の所定距離毎の変
位点60、60・・・に対応し、回動中心点30と所定
距離毎の変位点60、60・・・を結ぶ方向に光が照射
されるので、測定面での水平方向の測定ステップ間隔
を、略均一にすることができる。路面凹凸演算部27
は、図示しないパルスモータ駆動回路から距離計測部1
4の回動角度θ1 に対応する信号を得る。
As shown in FIG. 8, the turning step of the pulse motor 51 corresponds to the displacement points 60, 60 ... Since light is emitted in the direction connecting the displacement points 60, 60, ..., The measurement step intervals in the horizontal direction on the measurement surface can be made substantially uniform. Road surface unevenness calculation unit 27
Is a distance measuring unit 1 from a pulse motor drive circuit (not shown).
A signal corresponding to the rotation angle θ 1 of 4 is obtained.

【0023】尚、ボールネジ部52とナット部53の代
わりにピニオンとラックを使用することも可能である。
次に、図11は、本発明の他の実施例の路面形状測定装
置の構成を示す斜視図であり、本実施例の路面形状測定
装置は路肩または車道外ERに設置される。図におい
て、11−1は路肩または車道外ERに設置されるフレ
ームで、ここではエレベータ三脚としている。
It is possible to use a pinion and a rack instead of the ball screw portion 52 and the nut portion 53.
Next, FIG. 11 is a perspective view showing a configuration of a road surface shape measuring apparatus according to another embodiment of the present invention. The road surface shape measuring apparatus according to the present embodiment is installed on a road shoulder or outside the road ER. In the figure, 11-1 is a frame installed on the road shoulder or outside the road ER, which is an elevator tripod here.

【0024】フレーム11−1の上部平面部には第1実
施例と同様の回動駆動部13が固定され、その回動出力
軸13aには、距離計測部14が取り付けられる。回動
駆動部13の筐体には水準器62が直接取り付けられて
いる。尚、この水準器62は、フレーム11−1に直接
取り付けることでもよい。また、図示しないが、回動駆
動部13がその回動出力軸13aの回動角度を検出出力
する角度発信器29を備え、距離計測部14が光波距離
計19を備えることも第1実施例と同様であり、角度発
信器29及び光波距離計19からの出力は、処理装置へ
供給される。処理装置は第1実施例と同様に、時間計測
部、測定距離演算部及び路面凹凸演算部を備え、測定距
離演算部で距離計測部の光波距離計19からの測定距離
を演算し、路面凹凸演算部で回動駆動部の角度発信器2
9の出力を受けて路面の凹凸に関する情報に変換する。
処理装置は表示装置17と接続され、また、図示しない
電源装置が接続され、回動駆動部13、光波距離計19
等の電力を供給する。
A rotary drive unit 13 similar to that of the first embodiment is fixed to the upper flat surface of the frame 11-1, and a distance measuring unit 14 is attached to the rotary output shaft 13a. A level 62 is directly attached to the housing of the rotation drive unit 13. The level 62 may be directly attached to the frame 11-1. Further, although not shown, the rotation drive unit 13 may include an angle transmitter 29 that detects and outputs the rotation angle of the rotation output shaft 13a, and the distance measurement unit 14 may include the optical distance meter 19. Similarly, the outputs from the angle transmitter 29 and the optical distance meter 19 are supplied to the processing device. Similar to the first embodiment, the processing device includes a time measuring unit, a measurement distance calculating unit, and a road surface unevenness calculating unit. The measurement distance calculating unit calculates the measurement distance from the lightwave range finder 19 of the distance measuring unit to obtain the road surface unevenness. Angle transmitter 2 of the rotation drive unit in the calculation unit
It receives the output of 9 and converts it into information about the unevenness of the road surface.
The processing device is connected to the display device 17, a power supply device (not shown) is connected, and the rotation drive unit 13 and the lightwave distance meter 19 are connected.
Power is supplied.

【0025】本装置の作用を説明すると、路肩または車
道外ERに設置された装置は、水準器62によって、回
動駆動部13の筐体及びフレーム11−1の上部水平部
が水平に予め調整される。図11に示したように、回動
駆動部13の回動出力軸13aに取り付けられた距離計
測部14は、回動中心点30を中心及び回動駆動部13
の基準線である垂直線32を原点として車道RD方向に
向けてθ1MAXからθ1MINの範囲の旋回動作を行う。垂直
線32からの回動角度θ1 は、距離計測部14の光軸の
鉛直軸33からの偏角θとなり(θ=θ1 )、角度発信
器29から出力される。前実施例と同様に、回動中心点
30から距離計測部14の測定基準点34までの距離を
R、測定距離をlとすると、回動中心点30から測定点
の路面までの高さ即ち鉛直距離H及び回動中心点30か
ら測定点の路面までの水平距離Lは、次式で求められ
る。
To explain the operation of this device, in the device installed on the road shoulder or outside the road ER, the casing of the rotary drive unit 13 and the upper horizontal part of the frame 11-1 are preliminarily adjusted horizontally by the level 62. To be done. As shown in FIG. 11, the distance measuring unit 14 attached to the rotation output shaft 13 a of the rotation driving unit 13 has the rotation center point 30 as the center and the rotation driving unit 13.
With the vertical line 32, which is the reference line, as the origin, the turning motion is performed in the range of θ 1MAX to θ 1MIN toward the road RD direction. The rotation angle θ 1 from the vertical line 32 becomes the deviation angle θ from the vertical axis 33 of the optical axis of the distance measuring unit 14 (θ = θ 1 ) and is output from the angle transmitter 29. As in the previous embodiment, if the distance from the rotation center point 30 to the measurement reference point 34 of the distance measuring unit 14 is R and the measurement distance is l, the height from the rotation center point 30 to the road surface of the measurement point, that is, The vertical distance H and the horizontal distance L from the rotation center point 30 to the road surface at the measurement point are calculated by the following equations.

【0026】[0026]

【数5】H=(R+l)cosθ1 L=(R+l)sinθ1 従って、路面凹凸演算部では、既知の値であるRと測定
距離演算部から出力される測定距離lと、回動駆動部1
3の角度発信器29からの出力θ1 を用いて上記演算を
行うことで、H,Lを求める。この測定点までの鉛直距
離H及び水平距離Lは、表示装置17へ送られて、プロ
ットされる。
## EQU5 ## H = (R + 1) cos θ 1 L = (R + 1) sin θ 1 Therefore, in the road surface unevenness calculation unit, R which is a known value, the measurement distance 1 output from the measurement distance calculation unit, and the rotation drive unit 1
By using the output θ 1 from the angle transmitter 29 of No. 3, H and L are obtained. The vertical distance H and the horizontal distance L to this measurement point are sent to the display device 17 and plotted.

【0027】図12は、測定結果の一例を示したもの
で、走査回動角範囲をθ1MIN=18.4゜からθ1MAX
59.0゜とし、その中から4mの測定幅をとってい
る。距離の単位はmmであり、各測定点は回動中心点3
0を基準として鉛直距離H及び測定点までの水平距離L
が求められてプロットされている。このようにして、前
実施例と同様に路面形状測定装置全体の大きさを小型に
且つ低重量に構成することができると共に、路肩及び車
道外に設置するので、車道の道路規制を行う必要がな
い。従って、道路規制にかかる人手、費用及び時間を節
約でき、かつ規制に起因する渋滞を起こすこと無く、危
険な車道での作業が無くなり安全性が向上するという効
果もある。
FIG. 12 shows an example of the measurement result. The scanning rotation angle range is from θ 1MIN = 18.4 ° to θ 1MAX =
It is set to 59.0 ° and the measuring width of 4 m is taken from it. The unit of distance is mm, and each measurement point is the center of rotation 3
Vertical distance H and horizontal distance L to the measurement point with 0 as the reference
Is sought and plotted. In this way, the size of the entire road surface shape measuring device can be made small and low in weight as in the previous embodiment, and since it is installed on the road shoulder and outside the roadway, it is necessary to regulate the roadway. Absent. Therefore, it is possible to save manpower, cost, and time required for road regulation, to avoid traffic congestion due to the regulation, to eliminate work on a dangerous road, and to improve safety.

【0028】図13は、図11で示した路面形状測定装
置全体を自走台車または手押し台車70に搭載した例で
あり、図に示した各測定位置,,・・・で台車を停
止し、水準器62で回動駆動部13の筐体及びフレーム
11−1の上部水平部を水平に調整した後、各位置,
,・・・から車道RDの横断方向に測定を行うことに
より、測定位置の移動が容易に行える。
FIG. 13 shows an example in which the entire road surface shape measuring device shown in FIG. 11 is mounted on a self-propelled carriage or a hand-pushed carriage 70. The carriage is stopped at each measurement position shown in the figure ,. After leveling the casing of the rotary drive unit 13 and the upper horizontal part of the frame 11-1 with the level 62,
The measurement position can be easily moved by performing the measurement in the transverse direction of the road RD from.

【0029】尚、図1に示した例において、フレーム1
1を図11または図13で示したフレーム11−1にし
て路肩または車道外に設置することも可能である。ま
た、以上の各実施例において、距離計測部14として光
波距離計19を使用する例について説明したが、これに
限らず従来の計測部4と同じ構成とすることもでき、ま
た、レーザ光の代わりに赤外線、超音波等を使用するこ
とも可能である。
In the example shown in FIG. 1, the frame 1
It is also possible to set 1 as the frame 11-1 shown in FIG. 11 or FIG. 13 and install it on the road shoulder or outside the road. Further, in each of the above embodiments, an example in which the lightwave distance meter 19 is used as the distance measuring unit 14 has been described, but the present invention is not limited to this, and the same configuration as that of the conventional measuring unit 4 can be used, and the laser light Alternatively, infrared rays, ultrasonic waves, or the like can be used.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
距離計測部を回動駆動部からの回動運動によって回動す
ることとしたので、路面形状測定装置全体の大きさを路
面形状の測定幅に比較して十分小型、且つ低重量に構成
できる。本装置をいったん車両に搭載した後は、装置の
積み降ろしの必要もなく、また測定にあたって操作者が
車外に出ることなく操作を行えるので、省人化を図るこ
とができる。同時に操作者が車外に出る必要がないの
で、危険な路上での作業が無くなり安全性が増加すると
いう効果を有する。
As described above, according to the present invention,
Since the distance measuring unit is rotated by the rotation movement from the rotation driving unit, the size of the entire road surface shape measuring device can be sufficiently small and the weight thereof can be configured as compared with the measurement width of the road surface shape. Once this device is installed in the vehicle, it is not necessary to load and unload the device, and the operator can operate the device without going out of the vehicle for the measurement, thus saving labor. At the same time, since the operator does not have to go out of the vehicle, there is an effect that work on a dangerous road is eliminated and safety is increased.

【0031】また、本装置を路肩または車道外に設置す
ることによって、車道の道路規制を行う必要がないの
で、道路規制にかかる人手、費用及び時間を節約でき、
かつ規制に起因する渋滞を起こすこと無く、危険な車道
での作業が無くなり安全性が向上するという効果を有す
る。さらに、計測機構が簡単であるので、低価格で製造
できるという効果も有する。
By installing this device on the shoulder or outside the roadway, it is not necessary to regulate the roadway, so the labor, cost and time required for roadway regulation can be saved.
Moreover, there is an effect that traffic on the road is not caused due to the regulation, work on a dangerous road is eliminated, and safety is improved. Further, since the measuring mechanism is simple, there is an effect that it can be manufactured at a low price.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の路面形状測定装置の実施例の構成を示
す斜視図である。
FIG. 1 is a perspective view showing a configuration of an embodiment of a road surface shape measuring apparatus of the present invention.

【図2】本発明の路面形状測定装置の実施例のブロック
図である。
FIG. 2 is a block diagram of an embodiment of a road surface shape measuring device of the present invention.

【図3】距離計測部の一例である光波距離計及び処理装
置のブロック図を表す。
FIG. 3 is a block diagram of a lightwave rangefinder and a processing device that are examples of a distance measuring unit.

【図4】本発明の実施例の作用の説明図である。FIG. 4 is an explanatory view of the operation of the embodiment of the present invention.

【図5】図1で示した路面形状測定装置の測定結果の一
例を表す。
5 shows an example of a measurement result of the road surface shape measuring device shown in FIG.

【図6】本発明の路面形状測定装置の回動駆動部の他の
実施例である。
FIG. 6 is another embodiment of the rotation drive unit of the road surface profile measuring apparatus of the present invention.

【図7】本発明の路面形状測定装置の回動駆動部の他の
実施例である。
FIG. 7 is another embodiment of the rotation drive unit of the road surface profile measuring apparatus of the present invention.

【図8】図7の実施例の走査説明図である。FIG. 8 is a scanning explanatory view of the embodiment shown in FIG.

【図9】従来の路面形状測定装置の斜視図である。FIG. 9 is a perspective view of a conventional road surface shape measuring device.

【図10】従来の路面形状測定装置の計測部の測定原理
を表す説明図である。
FIG. 10 is an explanatory diagram showing a measurement principle of a measuring unit of a conventional road surface shape measuring apparatus.

【図11】本発明の路面形状測定装置の他の実施例の構
成を示す斜視図である。
FIG. 11 is a perspective view showing the configuration of another embodiment of the road surface profile measuring apparatus of the present invention.

【図12】図11で示した路面形状測定装置の測定結果
の一例を表す。
12 shows an example of the measurement result of the road surface shape measuring device shown in FIG.

【図13】本発明の路面形状測定装置の他の実施例の構
成を示す斜視図である。
FIG. 13 is a perspective view showing the configuration of another embodiment of the road surface profile measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

11、11−1 フレーム 12 傾斜計 13、40、50 回動駆動部 14 距離計測部 16 処理装置 19 光波距離計 30 回動中心点 41、51 パルスモータ 43 マイクロステップドライバ(パルスモータ駆動
回路) 52、53、54、55、56、57 伝達機構 62 水準器
11, 11-1 Frame 12 Inclinometer 13, 40, 50 Rotation drive unit 14 Distance measurement unit 16 Processing device 19 Lightwave distance meter 30 Rotation center point 41, 51 Pulse motor 43 Micro step driver (pulse motor drive circuit) 52 , 53, 54, 55, 56, 57 Transmission mechanism 62 Level

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 路面の形状を測定する路面形状測定装置
であって、ほぼ垂直面内における回動運動を発生すると
共にその回動角度に関する信号を出力する回動駆動部
と、回動駆動部の傾斜角度を検出する傾斜計と、回動駆
動部からの回動運動によって回動しながら路面との距離
を測定する距離計測部と、距離計測部で求めた距離測定
値、傾斜計で検出された傾斜角度及び回動駆動部から出
力された回動角度を用いて路面形状測定装置から路面ま
での鉛直距離と水平距離を求める処理装置とを備えるこ
とを特徴とする路面形状測定装置。
1. A road surface shape measuring device for measuring the shape of a road surface, comprising: a rotary drive unit that generates a rotary motion in a substantially vertical plane and outputs a signal related to the rotary angle; and a rotary drive unit. Inclinometer that detects the angle of inclination of the vehicle, a distance measurement unit that measures the distance to the road surface while rotating by the rotation movement from the rotation drive unit, the distance measurement value obtained by the distance measurement unit, and the inclinometer detects A road surface shape measuring device, comprising: a processing device that obtains a vertical distance and a horizontal distance from the road surface shape measuring device to the road surface by using the tilted angle and the turning angle output from the turning drive unit.
【請求項2】 路面の形状を測定する路面形状測定装置
であって、水準器と、ほぼ垂直面内における回動運動を
発生すると共にその回動角度に関する信号を出力する回
動駆動部と、回動駆動部からの回動運動によって回動し
ながら路面との距離を測定する距離計測部と、距離計測
部で求めた距離測定値及び回動駆動部から出力された回
動角度を用いて路面形状測定装置から路面までの鉛直距
離と水平距離を求める処理装置とを備えることを特徴と
する路面形状測定装置。
2. A road surface shape measuring device for measuring the shape of a road surface, comprising: a level; and a rotary drive section for generating a rotary motion in a substantially vertical plane and outputting a signal related to the rotary angle. Using the distance measurement unit that measures the distance to the road surface while rotating by the rotation motion from the rotation drive unit, the distance measurement value obtained by the distance measurement unit, and the rotation angle output from the rotation drive unit. A road surface shape measuring device comprising: a processing device for obtaining a vertical distance and a horizontal distance from the road surface shape measuring device to the road surface.
【請求項3】 前記距離計測部は、路面に向けて光波を
照射してその反射波を受光することにより距離を測定す
る光波距離計である請求項1または2記載の路面形状測
定装置。
3. The road surface shape measuring device according to claim 1, wherein the distance measuring unit is a light wave range finder that measures a distance by irradiating a light wave toward a road surface and receiving a reflected wave thereof.
【請求項4】 回動駆動部は、回動運動を発生するパル
スモータとパルスモータを駆動するパルスモータ駆動回
路を有し、該パルスモータ駆動回路が回動角度に関する
信号を出力する請求項1または2記載の路面形状測定装
置。
4. The rotation drive section has a pulse motor for generating a rotation motion and a pulse motor drive circuit for driving the pulse motor, and the pulse motor drive circuit outputs a signal relating to a rotation angle. Or the road surface shape measuring device according to 2.
【請求項5】 回動駆動部は、回動運動を発生するパル
スモータと、パルスモータからの回動運動を往復直線運
動に変換し、さらに該往復直線運動を路面形状測定装置
の所定点を回動中心とするほぼ垂直面内における回動運
動に変換する伝達機構と、パルスモータを駆動するパル
スモータ駆動回路を有し、該パルスモータ駆動回路が回
動角度に関する信号を出力する請求項1または2記載の
路面形状測定装置。
5. The rotary drive unit converts a rotary motion that generates rotary motion and a rotary motion from the pulse motor into a reciprocating linear motion, and further converts the reciprocating linear motion to a predetermined point of the road surface shape measuring device. 2. A transmission mechanism for converting into a rotational movement in a substantially vertical plane, which is the center of rotation, and a pulse motor drive circuit for driving a pulse motor, wherein the pulse motor drive circuit outputs a signal relating to a rotation angle. Or the road surface shape measuring device according to 2.
【請求項6】 前記路面形状測定装置は、車両に搭載さ
れるものである請求項1記載の路面形状測定装置。
6. The road surface shape measuring apparatus according to claim 1, wherein the road surface shape measuring apparatus is mounted on a vehicle.
【請求項7】 前記路面形状測定装置は、路肩または車
道外に設置されるものである請求項2記載の路面形状測
定装置。
7. The road surface shape measuring apparatus according to claim 2, wherein the road surface shape measuring apparatus is installed on a road shoulder or outside a road.
JP7108479A 1994-05-06 1995-05-02 Road-surface shape measuring device Pending JPH0821714A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7108479A JPH0821714A (en) 1994-05-06 1995-05-02 Road-surface shape measuring device
GB9525498A GB2308256B (en) 1995-05-02 1995-12-14 An apparatus for measuring a shape of road surface
US08/572,330 US5745225A (en) 1995-05-02 1995-12-14 Apparatus for measuring a shape of road surface
SE9504480A SE506753C2 (en) 1995-05-02 1995-12-14 Device for determining the shape of a road surface

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9448294 1994-05-06
JP6-94482 1994-05-06
JP7108479A JPH0821714A (en) 1994-05-06 1995-05-02 Road-surface shape measuring device
GB9525498A GB2308256B (en) 1995-05-02 1995-12-14 An apparatus for measuring a shape of road surface
US08/572,330 US5745225A (en) 1995-05-02 1995-12-14 Apparatus for measuring a shape of road surface
SE9504480A SE506753C2 (en) 1995-05-02 1995-12-14 Device for determining the shape of a road surface

Publications (1)

Publication Number Publication Date
JPH0821714A true JPH0821714A (en) 1996-01-23

Family

ID=27517325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7108479A Pending JPH0821714A (en) 1994-05-06 1995-05-02 Road-surface shape measuring device

Country Status (1)

Country Link
JP (1) JPH0821714A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092403A (en) * 2011-10-24 2013-05-16 Pasuko:Kk Detection support device for deformed spot associated with liquefaction and detection support program for deformed spot associated with liquefaction
US8503265B2 (en) 2009-02-27 2013-08-06 Nippon Soken, Inc. Obstacle detection apparatus and method for detecting obstacle
JP2013535671A (en) * 2010-07-29 2013-09-12 ファロ テクノロジーズ インコーポレーテッド Device for optically scanning and measuring the surrounding environment
JP5878664B1 (en) * 2015-06-11 2016-03-08 株式会社岩崎 Ground surveying device, ground surveying system, ground surveying program, and ground surveying method
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503265B2 (en) 2009-02-27 2013-08-06 Nippon Soken, Inc. Obstacle detection apparatus and method for detecting obstacle
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
JP2013535671A (en) * 2010-07-29 2013-09-12 ファロ テクノロジーズ インコーポレーテッド Device for optically scanning and measuring the surrounding environment
JP2013092403A (en) * 2011-10-24 2013-05-16 Pasuko:Kk Detection support device for deformed spot associated with liquefaction and detection support program for deformed spot associated with liquefaction
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
JP5878664B1 (en) * 2015-06-11 2016-03-08 株式会社岩崎 Ground surveying device, ground surveying system, ground surveying program, and ground surveying method
JP2017003448A (en) * 2015-06-11 2017-01-05 株式会社岩崎 Ground survey device, ground survey system, ground survey program, and ground survey method
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
US5745225A (en) Apparatus for measuring a shape of road surface
JP5490321B2 (en) Device for optically scanning and measuring the surrounding environment
JPH0821714A (en) Road-surface shape measuring device
CN109387826B (en) Method for measuring angle and distance, method for drawing track diagram and laser ranging system
JP3731123B2 (en) Object position detection method and apparatus
JPH03208105A (en) Method of disposing floor space and induction system of machine
JPH05248866A (en) Truck for measuring distance between rail and fixed point
EP3489625B1 (en) Surveying instrument
JPH032513A (en) Automatic surveying equipment
EP4012333A1 (en) Stable mobile platform for coordinate measurement
CN106052654B (en) A kind of automatic centering total powerstation base unit
JP2001091249A (en) Hollow cross section measuring device
JPH11325892A (en) Road surface shape measuring apparatus
CN115320664A (en) Receiving device for detecting track smoothness and system for detecting track smoothness
US20140125997A1 (en) Device and method for calibrating the direction of a polar measurement device
US12000689B2 (en) Environmental scanning and image reconstruction thereof
JP2615015B2 (en) Self-propelled work vehicle position measurement method
JP2694647B2 (en) Distance measuring theodolite
JPH062088Y2 (en) Road height measuring device
JPH09505883A (en) Equipment for measuring the dimensions of large objects
JP3385174B2 (en) Cross section profile measurement method
JP4268404B2 (en) Self-position measurement method for moving objects
JPH112521A (en) Position-measuring plotting device with inclination sensor
JP5688926B2 (en) Pedestal navigation system
JPH087056B2 (en) Road and other painting line measuring device