JPH08215686A - Flocculation treatment of muddy water - Google Patents

Flocculation treatment of muddy water

Info

Publication number
JPH08215686A
JPH08215686A JP4900295A JP4900295A JPH08215686A JP H08215686 A JPH08215686 A JP H08215686A JP 4900295 A JP4900295 A JP 4900295A JP 4900295 A JP4900295 A JP 4900295A JP H08215686 A JPH08215686 A JP H08215686A
Authority
JP
Japan
Prior art keywords
muddy water
starch
mud
cationic polysaccharides
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4900295A
Other languages
Japanese (ja)
Other versions
JP3924765B2 (en
Inventor
Katsumi Matsumoto
克美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP04900295A priority Critical patent/JP3924765B2/en
Publication of JPH08215686A publication Critical patent/JPH08215686A/en
Application granted granted Critical
Publication of JP3924765B2 publication Critical patent/JP3924765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: To obtain a muddy water flocculation treatment method excellent in the consolidation of muddy water, good in solid-liquid separation and suitably utilizable in a civil enginearing field of dredging, landfilling or construction by adding cationic polysaccharides and an anionic polymeric compd. to muddy water. CONSTITUTION: By using cationic polysaccharides in place of an inorg. flocculant used together with an anionic polymeric flocculant heretofore, the consolidation property of sedimented muddy water is improved. That is, muddy water is subjected to flocculation treatment by adding cationic polysaccharides and an anionic polymeric compd. to muddy water. At this time, the degree of substitution of cationic polysaccharides is set, for example, to 0.01 or more. As cationic polysaccharides, for example, cationized starch or cationized guar gum is used. Further, the intrinsic viscosity of the anionic polymeric compd. measured at 30 deg.C using a 1N sodium chloride aq. soln. as a solvent is set, for example, to 2.0dl/g or more and the colloid equivalent thereof measured at pH=10 is set, for example, to -0.20meq/g or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、泥水の凝集処理方法に
関する。さらに詳しくは、本発明は、処理後の泥土の凝
集圧密性が良好で固液分離性にすぐれ、河川、湖沼など
での浚渫埋め立て現場や建設現場などで排出される泥水
の処理に好適に使用することができる泥水の凝集処理方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coagulating mud water. More specifically, the present invention has good coagulation compaction of treated mud and excellent solid-liquid separation property, and is suitably used for treating mud water discharged at a dredged landfill site or a construction site in a river, lake, etc. The present invention relates to a method for coagulating muddy water that can be used.

【0002】[0002]

【従来の技術】従来、河川、湖沼などにおける浚渫埋め
立てや、建設現場などで排出される泥水の凝集処理方法
として、無機凝集剤とアニオン性有機合成高分子凝集剤
の併用法が用いられている。この方法は、スラリー状の
泥水に、無機凝集剤とアニオン性有機合成高分子凝集剤
を添加して、固形分を凝集沈降させ、上澄水と分離する
方法である。通常、無機凝集剤としては、ポリ塩化アル
ミニウム、硫酸アルミニウム、塩化第二鉄などが使用さ
れており、アニオン性有機合成高分子凝集剤としては、
アクリルアミドとアクリル酸の共重合物、ポリアクリル
アミドの加水分解物などが用いられている。無機凝集剤
とアニオン性有機合成高分子凝集剤の併用法は、泥水の
固液分離を効率よく行うための必要不可欠な方法とされ
ているが、次のような問題点があった。すなわち、無機
凝集剤とアニオン性有機合成高分子凝集剤を用いた場
合、大きな凝集フロックを形成するものの、凝集フロッ
クの密度が低いために沈降した泥土の圧密性が悪く、ス
ラッジボリュームが容易に減少しないという好ましくな
い事態を招来する。その結果、凝集スラッジから上澄液
を分離して固形分を処分する場合、水分含有量が高いた
めに、その運搬作業に手間がかかり、処理コストがかさ
み、さらに脱水処理において脱水効果が大幅に低下する
ことなどが問題になっている。また、浚渫埋め立て現場
においては、海底や湖、池などの底から土砂をくみ上
げ、海岸、湖岸などの埋め立てを行っている。この場
合、くみ上げたスラリー状の土砂に凝集剤を添加してフ
ロック化し、土砂を沈降させたのち上澄液を除去し、埋
め立てを行っているが、圧密性が悪いために堆積した土
砂からなかなか水が抜けず、埋め立てた土地を利用し得
るまでに長期間を要し、改善が求められている。
2. Description of the Related Art Conventionally, a combination method of an inorganic flocculant and an anionic organic synthetic polymer flocculant has been used as a method for coagulating mud discharged from a construction site, etc. in a river or lake. . This method is a method in which an inorganic coagulant and an anionic organic synthetic polymer coagulant are added to slurry-like muddy water to cause the solid content to coagulate and settle, and then be separated from the supernatant water. Usually, as the inorganic flocculant, polyaluminum chloride, aluminum sulfate, ferric chloride, etc. are used, and as the anionic organic synthetic polymer flocculant,
Copolymers of acrylamide and acrylic acid, hydrolysates of polyacrylamide, etc. are used. The combined use of an inorganic flocculant and an anionic organic synthetic polymer flocculant is said to be an indispensable method for efficiently performing solid-liquid separation of mud water, but has the following problems. That is, when an inorganic flocculant and an anionic organic synthetic polymer flocculant are used, although large flocculant flocs are formed, the density of the flocculant flocs is low, so the compaction of the sedimented mud is poor and the sludge volume easily decreases. It causes an unfavorable situation of not doing it. As a result, when the supernatant liquid is separated from the coagulated sludge and the solid content is disposed of, the high water content makes it difficult to carry the product, which increases the processing cost, and further the dewatering effect in the dewatering process is large. It is becoming a problem to decrease. In addition, at the dredging landfill site, sediment is drawn from the bottom of the seabed, lakes, ponds, etc. to reclaim the coast and lake shore. In this case, a flocculent is added to the pumped slurry-like soil to make it floc, the sediment is allowed to settle, and then the supernatant liquid is removed, and landfilling is carried out. It takes a long time before water can be drained and the land that has been reclaimed can be used, and improvements are required.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
従来法の有する問題点を改善し、泥土の圧密性が良く、
固液分離が良好で、浚渫埋め立てや建設などの土木分野
において好適に用いることができる泥水の凝集処理方法
を提供することを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the conventional method and improves the compaction of mud,
The object of the present invention is to provide a method for coagulating mud water, which has good solid-liquid separation and can be suitably used in the field of civil engineering such as dredging landfill and construction.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、従来アニオン性高
分子凝集剤と併用されている無機凝集剤の代わりにカチ
オン性多糖類を使用することにより、沈降した泥土の圧
密性が著しく改善されることを見いだし、この知見に基
づいて本発明を完成するに至った。すなわち、本発明
は、(1)泥水に、カチオン性多糖類及びアニオン性高
分子化合物を添加することを特徴とする泥水の凝集処理
方法、を提供するものである。さらに、本発明の好まし
い態様として、(2)カチオン性多糖類の置換度が0.
01以上である第(1)項記載の泥水の凝集処理方法、
(3)カチオン性多糖類が、カチオン化デンプン又はカ
チオン化グアーガムである第(1)〜(2)項記載の泥水の
凝集処理方法、(4)1N塩化ナトリウム水溶液を溶媒
として30℃で測定したアニオン性高分子化合物の固有
粘度が2.0dl/g以上である第(1)〜(3)項記載の泥
水の凝集処理方法、(5)pH=10において測定したア
ニオン性高分子化合物のコロイド当量が−0.20meq/
g以下である第(1)〜(4)項記載の泥水の凝集処理方
法、(6)アニオン性高分子化合物が、アニオン性合成
高分子化合物である第(1)〜(5)項記載の泥水の凝集処
理方法、及び、(7)アニオン性合成高分子化合物が、
アクリルアミドとアクリル酸の共重合物又はポリアクリ
ルアミドの部分加水分解物である第(6)項記載の泥水の
凝集処理方法、を挙げることができる。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that a cationic polysaccharide is used instead of the inorganic flocculant conventionally used in combination with an anionic polymer flocculant. It was found that the use of the above-mentioned method significantly improves the compaction property of the sedimented mud, and the present invention has been completed based on this finding. That is, the present invention provides (1) a method for coagulating mud water, which comprises adding a cationic polysaccharide and an anionic polymer compound to the mud water. Furthermore, in a preferred embodiment of the present invention, (2) the degree of substitution of the cationic polysaccharide is 0.
The method for coagulating mud water according to item (1), which is 01 or more;
(3) The cationic polysaccharide is a cationized starch or a cationized guar gum. The method for coagulating mud water according to (1) to (2), and (4) 1N sodium chloride aqueous solution as a solvent, measured at 30 ° C. The method for coagulating mud water according to any one of (1) to (3), wherein the anionic polymer compound has an intrinsic viscosity of 2.0 dl / g or more, and (5) a colloid of the anionic polymer compound measured at pH = 10. Equivalent weight is -0.20 meq /
The method for coagulating mud water according to any one of (1) to (4), which is less than or equal to g, (6) The method according to (1) to (5), wherein the anionic polymer compound is an anionic synthetic polymer compound. A method for coagulating muddy water, and (7) an anionic synthetic polymer compound,
The method for coagulating mud water according to item (6), which is a copolymer of acrylamide and acrylic acid or a partial hydrolyzate of polyacrylamide can be mentioned.

【0005】本発明方法においては、泥水にカチオン性
多糖類及びアニオン性高分子化合物を添加し、混合撹拌
する。対象となる泥水としては、河川、湖沼、海、池な
どで浚渫される泥水、建設現場や土木工事現場などで排
出される泥水などを挙げることができる。カチオン性多
糖類及びアニオン性高分子化合物の添加順序には特に制
限はないが、通常はカチオン性多糖類を先に添加し撹拌
したのち、アニオン性高分子化合物を添加して混合す
る。カチオン性多糖類及びアニオン性高分子化合物は、
取り扱いを容易にするために通常は水溶液として添加す
るが、粉末の形態で添加しても同様に性能を発揮するこ
とができる。本発明方法において使用するカチオン性多
糖類は、多糖類のカチオン化により得られる化合物であ
る。多糖類としては、例えば、澱粉、セルロース、グリ
コーゲンなどのほか、マンナンなどの根茎多糖類、アラ
ビアガム、トラガントガム、カラヤガムなどの樹液多糖
類、ローカストビーンガム、グアーガム、タラガムなど
の種子多糖類、寒天、カラギーナン、アルギンなどの海
藻多糖類、キチン、キトサンなどの動物性多糖類、デキ
ストラン、シクロデキストリン、キサンタンガムなどの
微生物多糖類などを使用することができる。これらの多
糖類をカチオン化する方法には特に制限はなく、例え
ば、エピハロヒドリンと三級アミンを反応させる方法、
アルカリ触媒存在下でハロゲン化アルキルアミン塩を反
応させる方法、グリシジル基あるいはハロヒドリン基を
有する第四級アンモニウム塩を反応させる方法などを挙
げることができる。本発明方法において使用するカチオ
ン性多糖類は、置換度0.01以上であることが好まし
い。置換度とは、多糖類を構成する単糖1個当たりの置
換された水酸基の平均値である。例えば、置換度0.0
1とは単糖100個に1個の置換を表す。
In the method of the present invention, a cationic polysaccharide and an anionic polymer compound are added to muddy water and mixed and stirred. Examples of the target mud water include mud water dredged in rivers, lakes, seas, ponds, and the like, and mud water discharged at construction sites and civil engineering sites. The order of addition of the cationic polysaccharide and the anionic polymer compound is not particularly limited, but usually, the cationic polysaccharide is first added and stirred, and then the anionic polymer compound is added and mixed. Cationic polysaccharides and anionic polymer compounds,
It is usually added as an aqueous solution for easy handling, but the same performance can be obtained by adding it in the form of powder. The cationic polysaccharide used in the method of the present invention is a compound obtained by cationizing a polysaccharide. The polysaccharides include, for example, starch, cellulose, glycogen, etc., rhizome polysaccharides such as mannan, sap polysaccharides such as gum arabic, tragacanth, karaya gum, locust bean gum, guar gum, seed polysaccharides such as tara gum, agar, Seaweed polysaccharides such as carrageenan and algin, animal polysaccharides such as chitin and chitosan, microbial polysaccharides such as dextran, cyclodextrin and xanthan gum can be used. There is no particular limitation on the method of cationizing these polysaccharides, for example, a method of reacting epihalohydrin with a tertiary amine,
Examples thereof include a method of reacting a halogenated alkylamine salt in the presence of an alkali catalyst, and a method of reacting a quaternary ammonium salt having a glycidyl group or a halohydrin group. The cationic polysaccharide used in the method of the present invention preferably has a substitution degree of 0.01 or more. The substitution degree is the average value of the substituted hydroxyl groups per monosaccharide constituting the polysaccharide. For example, the degree of substitution is 0.0
1 represents substitution of 1 in 100 monosaccharides.

【0006】本発明方法において使用するカチオン性多
糖類としては、カチオン化デンプン、カチオン化グアー
ガム、カチオン化セルロース、キトサンが好ましく、こ
れらの中でカチオン化デンプンを特に好適に使用するこ
とができる。カチオン化デンプンは、デンプンにカチオ
ン化剤を反応させて得られる化合物であり、通常その窒
素含量は0.1〜3重量%程度である。原料物質として
用いるデンプンとしては、例えば、バレイショデンプ
ン、カンショデンプン、トウモロコシデンプン、モチト
ウモロコシデンプン、高アミローストウモロコシデンプ
ン、コムギデンプン、コメデンプン、タピオカデンプ
ン、サゴデンプンなどの天然デンプンやこれらの分解
物、アミロースやアミロペクチン分画物、架橋デンプ
ン、エーテル化デンプン、酸化デンプン、エステル化デ
ンプン、酸処理デンプン、グラフト変性デンプン、酵素
処理デンプン、デキストリンなどの化工デンプン、小麦
粉、トウモロコシ粉、切干甘藷、切干タピオカなどのデ
ンプン含有物などを挙げることができる。また、カチオ
ン化剤としては、3−クロロ−2−ヒドロキシプロピル
トリメチルアンモニウムクロライド、3−クロロ−2−
ヒドロキシプロピルトリエチルアンモニウムクロライ
ド、2−クロロエチルトリメチルアンモニウムクロライ
ドなどのハロゲン化アルキル四級アンモニウム塩や、グ
リシジルトリメチルアンモニウムクロライド、グリシジ
ルトリエチルアンモニウムクロライドなどのグリシジル
四級アンモニウム塩などを挙げることができる。
As the cationic polysaccharide used in the method of the present invention, cationized starch, cationized guar gum, cationized cellulose and chitosan are preferable, and among these, cationized starch can be particularly preferably used. Cationized starch is a compound obtained by reacting starch with a cationizing agent, and its nitrogen content is usually about 0.1 to 3% by weight. Examples of starch used as a raw material include natural starch such as potato starch, sweet potato starch, corn starch, waxy corn starch, high amylose corn starch, wheat starch, rice starch, tapioca starch, sago starch, and their degradation products, amylose and Amylopectin fraction, cross-linked starch, etherified starch, oxidized starch, esterified starch, acid-treated starch, graft-modified starch, enzyme-treated starch, modified starch such as dextrin, starch such as wheat flour, corn flour, dried sweet potato, dried dried tapioca Examples thereof include inclusions. Further, as a cationizing agent, 3-chloro-2-hydroxypropyltrimethylammonium chloride, 3-chloro-2-
Examples thereof include halogenated alkyl quaternary ammonium salts such as hydroxypropyltriethylammonium chloride and 2-chloroethyltrimethylammonium chloride, and glycidyl quaternary ammonium salts such as glycidyltrimethylammonium chloride and glycidyltriethylammonium chloride.

【0007】本発明方法において使用するアニオン性高
分子化合物には特に制限はなく、例えば、ポリアクリル
酸ナトリウム、アクリルアミドとアクリル酸の共重合
物、ポリアクリルアミド部分加水分解物、部分スルホメ
チル化ポリアクリルアミド、ポリ(2−アクリルアミ
ド)−2−メチルプロパン硫酸塩などのアニオン性合成
高分子化合物、カルボキシメチルセルロースなどのアニ
オン性半合成高分子化合物、アルギン酸ナトリウムなど
のアニオン性天然高分子化合物などを挙げることができ
る。本発明方法において使用するアニオン性高分子化合
物は、分子量の指標である固有粘度(1N塩化ナトリウ
ム水溶液を溶媒として30℃において測定)が2.0dl
/g以上であることが好ましく、5.0dl/g以上であ
ることがさらに好ましい。本発明方法において使用する
アニオン性高分子化合物は、アニオン量の指標として用
いられるコロイド当量(pH=10において測定)が−
0.20meq/g以下であることが好ましく、−0.50m
eq/g以下であることがさらに好ましい。本発明方法に
おいて使用するカチオン性多糖類の凝集性は無機凝集剤
の凝集性よりもすぐれ、無機凝集剤を用いた場合と比較
してアニオン性高分子化合物の添加量を低減することが
でき、あるいは、より分子量の低いアニオン性高分子化
合物を用いることができる。したがって、従来の無機凝
集剤を用いる方法と比較して、凝集処理後の泥土中に残
存する凝集薬剤の量を減少するか、あるいは凝集薬剤の
分子量を小さくすることができるため、泥土の圧密性を
改善することができると考えられる。また、カチオン性
多糖類は生分解性を有し、処理後の泥土中に長期間残存
することがないので、泥土の圧密性に悪影響を与えな
い。
The anionic polymer compound used in the method of the present invention is not particularly limited, and examples thereof include sodium polyacrylate, a copolymer of acrylamide and acrylic acid, a partial hydrolyzate of polyacrylamide, a partial sulfomethylated polyacrylamide, Examples thereof include anionic synthetic polymer compounds such as poly (2-acrylamido) -2-methylpropane sulfate, anionic semi-synthetic polymer compounds such as carboxymethyl cellulose, and anionic natural polymer compounds such as sodium alginate. . The anionic polymer compound used in the method of the present invention has an intrinsic viscosity (measured at 30 ° C. with a 1N sodium chloride aqueous solution as a solvent), which is an index of molecular weight, of 2.0 dl.
/ G or more, more preferably 5.0 dl / g or more. The anionic polymer compound used in the method of the present invention has a colloid equivalent (measured at pH = 10) used as an index of the amount of anions.
It is preferably less than 0.20 meq / g, -0.50 m
More preferably, it is eq / g or less. The aggregating property of the cationic polysaccharide used in the method of the present invention is superior to the aggregating property of the inorganic aggregating agent, and the addition amount of the anionic polymer compound can be reduced as compared with the case of using the inorganic aggregating agent, Alternatively, an anionic polymer compound having a lower molecular weight can be used. Therefore, as compared with the conventional method using an inorganic flocculant, the amount of the flocculant remaining in the mud after the flocculation treatment can be reduced or the molecular weight of the flocculant can be reduced, so that the compaction property of the mud can be reduced. It is thought that it can be improved. Moreover, since the cationic polysaccharide has biodegradability and does not remain in the treated mud for a long period of time, it does not adversely affect the compaction property of the mud.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。実施例及び比較例に用いた凝集
薬剤を第1表に示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Table 1 shows the aggregating agents used in Examples and Comparative Examples.

【0009】[0009]

【表1】 [Table 1]

【0010】また、試験泥水として浚渫泥水を用いた。
用いた泥水の性状を第2表に示す。
Further, as the test mud, dredging mud was used.
The properties of the muddy water used are shown in Table 2.

【0011】[0011]

【表2】 [Table 2]

【0012】実施例1 1000mlビーカに試験泥水1を1000mlとり、ジャ
ーテスターにて150rpmで撹拌しながら、第1表に
示すカチオン化多糖類(A、カチオン化デンプン)を濃
度150mg/リットルになるよう添加し、1分間撹拌し
た。次いで、第1表に示すアニオン性高分子化合物
(C、アクリルアミドとアクリル酸の共重合物)を濃度
3mg/リットルになるよう添加して、1分間撹拌した。
撹拌停止後、直ちに凝集させた泥水を容積1000ml、
内径60mmのメスシリンダーに移した。フロックは界面
をつくって沈降した。沈降界面が水面から2、5、1
0、15、20cmの深さに達するまでの時間を測定し、
経過時間及び沈降距離の関係を図に表したところ、等速
沈降域におけるフロック沈降速度は7.6m/hrであっ
た。10分後の上澄水濁度は4.3度であった。また、
スラッジボリュームの経時変化を測定し、第4表及び図
1に示した。 実施例2 実施例1の第1表に示すカチオン化多糖類(A、カチオ
ン化デンプン)を濃度150mg/リットルになるよう添
加する代わりに、第1表に示すカチオン化多糖類(B、
カチオン化グアーガム)を濃度70mg/リットルになる
よう添加した以外は、実施例1と全く同じ操作を繰り返
した。フロック沈降速度は7.9m/hrであり、10分
後の上澄水濁度は4.5度であった。また、スラッジボ
リュームの経時変化は、第4表及び図1に示すごとくで
あった。 比較例1 実施例1の第1表に示すカチオン化多糖類(A、カチオ
ン化デンプン)を濃度150mg/リットルになるよう添
加する代わりに、ポリ塩化アルミニウムを濃度600mg
/リットルになるよう添加し、第1表に示すアニオン性
高分子化合物(C、アクリルアミドとアクリル酸の共重
合物)を濃度3mg/リットルになるよう添加する代わり
に、濃度8mg/リットルになるよう添加した以外は、実
施例1と全く同じ操作を繰り返した。フロック沈降速度
は7.2m/hrであり、10分後の上澄水濁度は4.5度
であった。また、スラッジボリュームの経時変化は、第
4表及び図1に示すごとくであった。フロック沈降速度
と上澄水濁度は凝集性を示す指標であり、スラッジボリ
ュームの経時変化は圧密性を示す指標である。実施例
1、2及び比較例1の薬剤添加量、フロック沈降速度及
び上澄液濁度を第3表に、スラッジボリュームの経時変
化を第4表及び図1に示す。
Example 1 1000 ml of test mud water 1 was placed in a 1000 ml beaker and stirred at 150 rpm with a jar tester so that the concentration of the cationized polysaccharide (A, cationized starch) shown in Table 1 was 150 mg / liter. Add and stir for 1 minute. Then, an anionic polymer compound (C, a copolymer of acrylamide and acrylic acid) shown in Table 1 was added to have a concentration of 3 mg / liter, and the mixture was stirred for 1 minute.
Immediately after the stirring was stopped, the muddy water which had been agglomerated was mixed with a volume of 1000 ml,
It was transferred to a measuring cylinder having an inner diameter of 60 mm. Flock formed an interface and settled. Settling interface is 2, 5, 1 from the water surface
Measure the time to reach the depth of 0, 15, 20 cm,
When the relationship between the elapsed time and the sedimentation distance was shown in the figure, the floc sedimentation velocity in the constant velocity sedimentation region was 7.6 m / hr. The turbidity of the supernatant water after 10 minutes was 4.3 degrees. Also,
The change with time of the sludge volume was measured and shown in Table 4 and FIG. Example 2 Instead of adding the cationized polysaccharide (A, cationized starch) shown in Table 1 of Example 1 to a concentration of 150 mg / liter, the cationized polysaccharide shown in Table 1 (B,
The same operation as in Example 1 was repeated except that cationized guar gum) was added so that the concentration was 70 mg / liter. The floc sedimentation speed was 7.9 m / hr, and the supernatant water turbidity after 10 minutes was 4.5 degrees. The change with time of the sludge volume was as shown in Table 4 and FIG. Comparative Example 1 Instead of adding the cationized polysaccharide (A, cationized starch) shown in Table 1 of Example 1 so as to have a concentration of 150 mg / liter, polyaluminum chloride had a concentration of 600 mg.
/ L, and instead of adding the anionic polymer compound (C, a copolymer of acrylamide and acrylic acid) shown in Table 1 to a concentration of 3 mg / L, adjust the concentration to 8 mg / L. Except for the addition, the same operation as in Example 1 was repeated. The floc sedimentation speed was 7.2 m / hr and the supernatant water turbidity after 10 minutes was 4.5 degrees. The change with time of the sludge volume was as shown in Table 4 and FIG. The floc sedimentation rate and supernatant water turbidity are indicators of cohesiveness, and the change over time in the sludge volume is an indicator of compaction. Table 3 shows the amount of chemicals added, the floc sedimentation rate, and the supernatant turbidity of Examples 1 and 2 and Comparative Example 1, and Table 4 and FIG.

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】実施例1及び実施例2の処理泥水は、いず
れもフロック沈降速度が大きく、10分後の上澄水濁度
も低い。比較例1の処理泥水は、薬剤添加濃度を実施例
1、2より高くすることにより、実施例1、2とほぼ同
程度のフロック沈降速度及び上澄水濁度が得られてい
る。しかし、実施例1及び実施例2の処理泥水は、時間
の経過とともにスラッジボリュームが速やかに減少する
のに対して、比較例1の処理泥水は、時間が経過しても
スラッジボリュームは約30容量%にとどまっている。 実施例3 1000mlビーカに試験泥水2を1000mlとり、ジャ
ーテスターにて150rpmで撹拌しながら、第1表に
示すカチオン化多糖類(A、カチオン化デンプン)を濃
度600mg/リットルになるよう添加し、1分間撹拌し
た。次いで、第1表に示すアニオン性高分子化合物
(D、アクリルアミドとアクリル酸の共重合物)を濃度
20mg/リットルになるよう添加して、1分間撹拌し
た。撹拌停止後、直ちに凝集させた泥水を容積1000
ml、内径60mmのメスシリンダーに移した。フロックは
界面をつくって沈降した。沈降界面が水面から2、5、
10、15、20cmの深さに達するまでの時間を測定
し、経過時間及び沈降距離の関係を図に表したところ、
等速沈降域におけるフロック沈降速度は6.4m/hrで
あった。10分後の上澄水濁度は2.1度であった。ま
た、スラッジボリュームの経時変化を測定し、第6表及
び図2に示した。 比較例2 実施例3の第1表に示すカチオン化多糖類(A、カチオ
ン化デンプン)を濃度600mg/リットルになるように
添加する代わりに、ポリ塩化アルミニウムを濃度800
mg/リットルになるように添加し、第1表に示すアニオ
ン性高分子化合物(D、アクリルアミドとアクリル酸の
共重合物)を濃度20mg/リットルになるように添加す
る代わりに、アニオン性高分子化合物(C、アクリルア
ミドとアクリル酸の共重合物)を濃度20mg/リットル
になるように添加した以外は、実施例3と全く同じ操作
を繰り返した。フロック沈降速度は6.2m/hrであ
り、10分後の上澄水濁度は2.3度であった。また、
スラッジボリュームの経時変化は、第6表及び図2に示
すごとくであった。実施例3及び比較例2の薬剤添加
量、フロック沈降速度及び上澄液濁度を第5表に、スラ
ッジボリュームの経時変化を第6表及び図2に示す。
The treated mud of Examples 1 and 2 both had a high floc sedimentation rate and a low supernatant water turbidity after 10 minutes. In the treated mud water of Comparative Example 1, the floc sedimentation rate and the supernatant water turbidity which are almost the same as those in Examples 1 and 2 were obtained by increasing the concentration of the chemicals added to Examples 1 and 2. However, the sludge volume of the treated mud of Examples 1 and 2 rapidly decreases with the passage of time, whereas the treated mud of Comparative Example 1 has a sludge volume of about 30 volumes over time. %. Example 3 1000 ml of test mud water 2 was added to a 1000 ml beaker, and the cationized polysaccharide (A, cationized starch) shown in Table 1 was added thereto at a concentration of 600 mg / l while stirring with a jar tester at 150 rpm. Stir for 1 minute. Then, an anionic polymer compound (D, a copolymer of acrylamide and acrylic acid) shown in Table 1 was added to a concentration of 20 mg / liter and stirred for 1 minute. Immediately after the stirring is stopped, the volume of muddy water that has been aggregated is increased to 1000
It was transferred to a graduated cylinder having an inner diameter of 60 mm and a volume of 60 mm. Flock formed an interface and settled. The sedimentation interface is 2, 5 from the water surface,
The time to reach the depth of 10, 15 and 20 cm was measured, and the relationship between elapsed time and sedimentation distance was shown in the figure.
The floc sedimentation velocity in the constant velocity sedimentation region was 6.4 m / hr. The turbidity of the supernatant water after 10 minutes was 2.1 degrees. Further, the change with time of the sludge volume was measured and is shown in Table 6 and FIG. Comparative Example 2 Instead of adding the cationized polysaccharide (A, cationized starch) shown in Table 1 of Example 3 to a concentration of 600 mg / liter, polyaluminum chloride was added at a concentration of 800.
Instead of adding the anionic polymer compound (D, a copolymer of acrylamide and acrylic acid) shown in Table 1 to a concentration of 20 mg / liter, the anionic polymer is added at a concentration of 20 mg / liter. The same operation as in Example 3 was repeated except that the compound (C, a copolymer of acrylamide and acrylic acid) was added so as to have a concentration of 20 mg / liter. The floc sedimentation speed was 6.2 m / hr, and the turbidity of the supernatant water after 10 minutes was 2.3 degrees. Also,
The change with time of the sludge volume was as shown in Table 6 and FIG. Table 5 shows the amount of chemicals added, the floc sedimentation rate, and the turbidity of the supernatant in Example 3 and Comparative Example 2, and Table 6 and FIG. 2 show the changes over time in the sludge volume.

【0016】[0016]

【表5】 [Table 5]

【0017】[0017]

【表6】 [Table 6]

【0018】実施例3の処理泥水は、フロック沈降速度
が大きく、10分後の上澄水濁度も低い。比較例2の処
理泥水は、固有粘度の大きいアニオン性高分子化合物を
使用することにより、実施例3とほぼ同程度のフロック
沈降速度及び上澄水濁度が得られている。しかし、スラ
ッジボリュームの経時変化に見られるように、圧密性で
は実施例3の処理泥水の方が比較例2の処理泥水よりす
ぐれている。
The treated mud water of Example 3 has a high floc sedimentation rate and a low supernatant water turbidity after 10 minutes. In the treated mud water of Comparative Example 2, by using the anionic polymer compound having a large intrinsic viscosity, the floc sedimentation rate and the supernatant water turbidity which are almost the same as those of Example 3 were obtained. However, as seen in the change over time in the sludge volume, the treated mud of Example 3 is superior to the treated mud of Comparative Example 2 in terms of compaction.

【0019】[0019]

【発明の効果】泥水の凝集処理において、カチオン性多
糖類及びアニオン性高分子化合物を用いることにより、
凝集処理後の泥土の圧密性を改善することができる。
INDUSTRIAL APPLICABILITY By using a cationic polysaccharide and an anionic polymer compound in the coagulation treatment of muddy water,
The compactness of the mud after the coagulation treatment can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、スラッジボリュームの経時変化を示す
グラフである。
FIG. 1 is a graph showing changes over time in sludge volume.

【図2】図2は、スラッジボリュームの経時変化を示す
グラフである。
FIG. 2 is a graph showing changes over time in sludge volume.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】泥水に、カチオン性多糖類及びアニオン性
高分子化合物を添加することを特徴とする泥水の凝集処
理方法。
1. A method for coagulating mud water, which comprises adding a cationic polysaccharide and an anionic polymer compound to the mud water.
JP04900295A 1995-02-14 1995-02-14 Mud water aggregation treatment method Expired - Fee Related JP3924765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04900295A JP3924765B2 (en) 1995-02-14 1995-02-14 Mud water aggregation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04900295A JP3924765B2 (en) 1995-02-14 1995-02-14 Mud water aggregation treatment method

Publications (2)

Publication Number Publication Date
JPH08215686A true JPH08215686A (en) 1996-08-27
JP3924765B2 JP3924765B2 (en) 2007-06-06

Family

ID=12818986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04900295A Expired - Fee Related JP3924765B2 (en) 1995-02-14 1995-02-14 Mud water aggregation treatment method

Country Status (1)

Country Link
JP (1) JP3924765B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152683A (en) * 1996-11-22 1998-06-09 Shimizu Corp Method and material for treating muddy water
JP2000189999A (en) * 1998-12-25 2000-07-11 Terunaito:Kk Volume reducing method of high water content dredged bottom mud
WO2005068552A1 (en) * 2004-01-20 2005-07-28 Toagosei Co., Ltd. Composition containing amphoteric water-soluble polymer
JP2006075818A (en) * 2004-08-11 2006-03-23 Ngk Insulators Ltd Method for treating drainage containing inorganic suspended particle
JP2006263572A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method and apparatus for treating waste water containing inorganic suspended particle
JP2008105001A (en) * 2006-10-27 2008-05-08 Kochi Univ Of Technology Biodegradable cationic flocculant
JP2013525096A (en) * 2010-04-20 2013-06-20 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Water treatment by ballast flocculation using natural flocculants
JP2015199057A (en) * 2014-04-02 2015-11-12 国立大学法人茨城大学 Dispersion type polymer coagulant, soil solidifying agent and coagulation and sedimentation agent, and contamination spreading prevention method of radioactive substance, decontamination method of contaminated soil, vegetation base creation method and water cleaning method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152683A (en) * 1996-11-22 1998-06-09 Shimizu Corp Method and material for treating muddy water
JP2000189999A (en) * 1998-12-25 2000-07-11 Terunaito:Kk Volume reducing method of high water content dredged bottom mud
WO2005068552A1 (en) * 2004-01-20 2005-07-28 Toagosei Co., Ltd. Composition containing amphoteric water-soluble polymer
EP1721933A4 (en) * 2004-01-20 2010-01-20 Toagosei Co Ltd Composition containing amphoteric water-soluble polymer
JP2006075818A (en) * 2004-08-11 2006-03-23 Ngk Insulators Ltd Method for treating drainage containing inorganic suspended particle
JP4526078B2 (en) * 2004-08-11 2010-08-18 日本碍子株式会社 Method for treating wastewater containing inorganic suspended particles
JP2006263572A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method and apparatus for treating waste water containing inorganic suspended particle
JP4522297B2 (en) * 2005-03-24 2010-08-11 日本碍子株式会社 Method and apparatus for treating wastewater containing inorganic suspended particles
JP2008105001A (en) * 2006-10-27 2008-05-08 Kochi Univ Of Technology Biodegradable cationic flocculant
JP2013525096A (en) * 2010-04-20 2013-06-20 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Water treatment by ballast flocculation using natural flocculants
JP2015199057A (en) * 2014-04-02 2015-11-12 国立大学法人茨城大学 Dispersion type polymer coagulant, soil solidifying agent and coagulation and sedimentation agent, and contamination spreading prevention method of radioactive substance, decontamination method of contaminated soil, vegetation base creation method and water cleaning method

Also Published As

Publication number Publication date
JP3924765B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
Yang et al. A review on chitosan-based flocculants and their applications in water treatment
EP0939788B1 (en) Aqueous dispersion polymers
CN105481070A (en) Inorganic-organic composite polymeric flocculant and preparation method thereof
Saranya et al. Effectiveness of natural coagulants from non-plant-based sources for water and wastewater treatment—a review
Chen et al. Cationic starch-grafted-cationic polyacrylamide based graphene oxide ternary composite flocculant for the enhanced flocculation of oil sludge suspension
KR20090005005A (en) Method for treatment of sludge or wastewater
US9790111B2 (en) Method for thickening or dehydrating sludge
JP3924765B2 (en) Mud water aggregation treatment method
CN107055729A (en) The chitosan flocculant that a kind of dopamine is modified
Wang et al. Preparation of cationic chitosan-polyacrylamide flocculant and its properties in wastewater treatment
KR102496780B1 (en) Anionic coagulant, manufacturing method and processing method of anionic coagulant
Wei et al. Synthesis of a polyamine-modified starch flocculant and its application
Kuutti et al. Properties and flocculation efficiency of cationized biopolymers and their applicability in papermaking and in conditioning of pulp and paper sludge.
WO1999031017A1 (en) Method of removing harmful ions and remover for use in the same
CN108163953A (en) A kind of water treatment composite flocculant and preparation method thereof
JP2001219005A (en) Flocculant and flocculating method in water treatment
CN113651963B (en) Hyperbranched lignin-based cationic starch multifunctional composite flocculant and preparation and application thereof
JP2011167656A (en) Treatment method of inorganic material-suspended waste water
JPH0938415A (en) Flocculant for muddy water
JP2001049981A (en) Dehydrating method for civil engineering construction muddy water
JP3705012B2 (en) Muddy water dehydration
JP2000254700A (en) Treatment agent for high water content dredged (deposited bottom) mud and its treatment
JP5733677B2 (en) Wastewater treatment agent
JPH0474592A (en) Water treatment method
JPH06254306A (en) Water-soluble high molecular flocculant

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050531

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Effective date: 20061004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees