JPH08211211A - Cooling device of reflection mirror for high power laser - Google Patents

Cooling device of reflection mirror for high power laser

Info

Publication number
JPH08211211A
JPH08211211A JP7039368A JP3936895A JPH08211211A JP H08211211 A JPH08211211 A JP H08211211A JP 7039368 A JP7039368 A JP 7039368A JP 3936895 A JP3936895 A JP 3936895A JP H08211211 A JPH08211211 A JP H08211211A
Authority
JP
Japan
Prior art keywords
reflection mirror
power laser
temperature
mirror
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039368A
Other languages
Japanese (ja)
Inventor
Masakatsu Sugii
正克 杉井
Hideaki Saito
英明 斉藤
Masaru Ushida
勝 牛田
Shozo Watabe
正造 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Nikon Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Nikon Corp
Priority to JP7039368A priority Critical patent/JPH08211211A/en
Publication of JPH08211211A publication Critical patent/JPH08211211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lasers (AREA)

Abstract

PURPOSE: To prevent the deformation of the reflection mirror of a high power laser caused by the pressure of coolant. CONSTITUTION: When coolant R flows into a coolant groove 5, the pressure of the coolant R is directly applied to a back plane 1b of a metallic mirror 1. Since the rigidity of a cover material 15 is smaller than the rigidity of the mirror 1, the material 15 is deflected to a space 23 side by the pressure of the coolant R, the deformation of the mirror 1 is prevented and as a result, a high surface precision of the mirror 1 is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高出力レーザ用反射ミ
ラーの冷却装置に関し、特に高出力レーザ用の金属ミラ
ーのレーザ光吸収による温度上昇を防ぐ高出力レーザ用
反射ミラーの冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a high-power laser reflecting mirror, and more particularly to a cooling device for a high-power laser reflecting mirror that prevents a temperature rise due to laser light absorption of a metal mirror for a high-power laser.

【0002】[0002]

【従来の技術】図3は従来の高出力レーザ用反射ミラー
の冷却装置を示す断面図である。
2. Description of the Related Art FIG. 3 is a sectional view showing a conventional cooling device for a high-power laser reflection mirror.

【0003】高出力レーザ(数百W以上のレーザ光)用
の反射ミラー101はホルダ102に保持され、反射ミ
ラー101の裏面101bと対向するホルダ102のミ
ラー対向部102aとの間には冷媒収容室105が形成
されている。ホルダ102のミラー対向部102aには
冷媒供給口110及び冷媒排出口111がそれぞれ設け
られている。冷媒供給口110には冷媒供給側継手11
2が、冷媒排出口111には冷媒排出側継手113がそ
れぞれ挿着され、冷媒供給側継手112には図示しない
冷媒供給側チューブが、冷媒排出側継手113には図示
しない冷媒排出側チューブがそれぞれ接続される。
A reflection mirror 101 for a high-power laser (laser light of several hundred W or more) is held by a holder 102, and a refrigerant is contained between a back surface 101b of the reflection mirror 101 and a mirror facing portion 102a of the holder 102 facing the back surface 101b. A chamber 105 is formed. A coolant supply port 110 and a coolant discharge port 111 are provided in the mirror facing portion 102a of the holder 102, respectively. The refrigerant supply port 110 has a refrigerant supply side joint 11
2, a refrigerant discharge side joint 113 is inserted into the refrigerant discharge port 111, a refrigerant supply side joint 112 has a refrigerant supply side tube (not shown), and a refrigerant discharge side joint 113 has a refrigerant discharge side tube (not shown). Connected.

【0004】空気や水等の冷媒Rは冷媒供給側チューブ
から冷媒供給側継手112を通じて冷媒収容室105内
に流入し、冷媒排出側継手113を通じて冷媒排出側チ
ューブへ排出される。このとき冷媒Rによって反射ミラ
ー101の熱が奪われ、反射ミラー101が冷却され
る。このようにして高出力レーザ用の反射ミラー101
のレーザ光吸熱による温度上昇が抑制される。
Refrigerant R such as air and water flows into the refrigerant storage chamber 105 from the refrigerant supply side tube through the refrigerant supply side joint 112, and is discharged to the refrigerant discharge side tube through the refrigerant discharge side joint 113. At this time, the heat of the reflection mirror 101 is taken by the refrigerant R, and the reflection mirror 101 is cooled. In this way, the reflection mirror 101 for high power laser
The temperature rise due to the absorption of the laser light is suppressed.

【0005】図4は従来の他の高出力レーザ用反射ミラ
ーの冷却装置を示す断面図、図5は図4の高出力レーザ
用反射ミラーの裏面を示す平面図である。
FIG. 4 is a sectional view showing another conventional cooling device for a high-power laser reflection mirror, and FIG. 5 is a plan view showing the back surface of the high-power laser reflection mirror shown in FIG.

【0006】高出力レーザ用の反射ミラー201の裏面
201bには複数のスクロール状の冷媒溝205が設け
られ、各冷媒溝205の終端部205bは反射ミラー2
01の裏面201bの中心部に設けられた排出穴214
と連通している。反射ミラー201の裏面201bには
円板状のカバー部材215が嵌合され、カバー部材21
5と冷媒溝205及び排出穴214とで、カバー部材2
15と反射ミラー201との間に冷媒流路が形成され
る。カバー部材215には、各冷媒溝205の始端部2
05aと対向する複数の冷媒供給口210と、排出穴2
14と対向する冷媒排出口211とがそれぞれ設けられ
ている。冷媒供給口210には冷媒供給側継手212
が、冷媒排出口211には冷媒排出側継手213がそれ
ぞれ挿着され、冷媒供給側継手212には図示しない冷
媒供給側チューブが、冷媒排出側継手213には図示し
ない冷媒排出側チューブがそれぞれ接続されている。
A plurality of scroll-shaped coolant grooves 205 are provided on the back surface 201b of the reflection mirror 201 for a high-power laser, and the end portion 205b of each coolant groove 205 has a reflection mirror 2.
A discharge hole 214 provided at the center of the back surface 201b of 01
Is in communication with A disk-shaped cover member 215 is fitted on the back surface 201b of the reflection mirror 201, and the cover member 21
5, the coolant groove 205 and the discharge hole 214, the cover member 2
A coolant channel is formed between 15 and the reflection mirror 201. The cover member 215 includes a starting end portion 2 of each refrigerant groove 205.
05a, a plurality of refrigerant supply ports 210, and discharge holes 2
14 and a refrigerant outlet 211 facing each other. The refrigerant supply port 210 has a refrigerant supply side joint 212
However, a refrigerant discharge side joint 213 is inserted into the refrigerant discharge port 211, a refrigerant supply side tube (not shown) is connected to the refrigerant supply side joint 212, and a refrigerant discharge side tube (not shown) is connected to the refrigerant discharge side joint 213. Has been done.

【0007】冷媒Rは、各冷媒供給側チューブから冷媒
供給側継手212を通じて冷媒溝205に流入し、冷媒
溝205の終端部205bから排出穴214に流入し、
排出穴214から冷媒排出側継手213を通じて冷媒排
出側チューブへ排出される。
The refrigerant R flows into the refrigerant groove 205 from each refrigerant supply side tube through the refrigerant supply side joint 212, and from the terminal end 205b of the refrigerant groove 205 into the discharge hole 214,
It is discharged from the discharge hole 214 to the refrigerant discharge side tube through the refrigerant discharge side joint 213.

【0008】図3の冷却装置と同様に、冷媒Rによって
反射ミラー201の熱が奪われて反射ミラー201が冷
却され、高出力レーザ用の反射ミラー201のレーザ光
吸熱による温度上昇が抑制される。
Similar to the cooling device of FIG. 3, the heat of the reflection mirror 201 is taken by the refrigerant R to cool the reflection mirror 201, and the temperature rise of the reflection mirror 201 for high-power laser due to the absorption of laser light is suppressed. .

【0009】[0009]

【発明が解決しようとする課題】ところが、図3及び図
4に示す従来の冷却装置のいずれも反射ミラー101,
201の裏面101b,201bに直接冷媒Rを供給す
ることによって反射ミラー101,201の冷却を行う
構成を採用しているので、供給される圧力によって反射
ミラー101,201の表面101a,201aが変形
し、その面精度が劣化するという問題があった。例え
ば、高出力レーザ送信光学系において反射ミラー10
1,201の表面101a,201aが変形すると、集
光ビームパターンが乱れてしまう。
However, in both of the conventional cooling devices shown in FIGS. 3 and 4, the reflection mirror 101,
Since the structure in which the reflection mirrors 101 and 201 are cooled by directly supplying the coolant R to the back surfaces 101b and 201b of the 201, the surfaces 101a and 201a of the reflection mirrors 101 and 201 are deformed by the supplied pressure. However, there is a problem that the surface accuracy is deteriorated. For example, in the high power laser transmission optical system, the reflection mirror 10
When the surfaces 101a and 201a of the reference numerals 1 and 201 are deformed, the focused beam pattern is disturbed.

【0010】また、従来の冷却装置のいずれも単に反射
ミラー101,201の裏面101b,201bを直接
一定流量の冷媒Rを供給して冷却するに過ぎないので、
反射ミラー101,201が設置される環境温度によっ
ては反射ミラー101,201が冷やされ過ぎ、反射ミ
ラー101,201の表面101a,201aに結露が
生じたり、変形したり、反対に冷却不足により反射ミラ
ー101,201が変形するという問題があった。
Further, since any of the conventional cooling devices merely cools the back surfaces 101b and 201b of the reflection mirrors 101 and 201 by directly supplying a constant flow rate of the refrigerant R,
Depending on the environmental temperature where the reflection mirrors 101 and 201 are installed, the reflection mirrors 101 and 201 are cooled too much, and the surfaces 101a and 201a of the reflection mirrors 101 and 201 are condensed or deformed. There is a problem that 101 and 201 are deformed.

【0011】この発明はこのような事情に鑑みてなされ
たもので、その課題は冷媒の圧力による高出力レーザ用
反射ミラーの変形や、冷却過多や冷却不足による結露や
変形を防ぐことができる高出力レーザ用反射ミラーの冷
却装置を提供することである。
The present invention has been made in view of the above circumstances, and its object is to prevent deformation of the reflection mirror for a high-power laser due to the pressure of the refrigerant and to prevent condensation or deformation due to excessive cooling or insufficient cooling. A cooling device for a reflection mirror for an output laser is provided.

【0012】[0012]

【課題を解決するための手段】前述の課題を解決するた
め請求項1記載の発明の高出力レーザ用反射ミラーの冷
却装置は、高出力レーザ用の反射ミラーの裏面をカバー
部材で覆って前記反射ミラーの裏面と前記カバー部材と
の間に冷媒流路を形成し、この冷媒流路に冷媒を循環さ
せてレーザ光吸熱による前記反射ミラーの温度上昇を抑
制する高出力レーザ用反射ミラーの冷却装置において、
前記カバー部材の剛性は、前記高出力レーザ用反射ミラ
ーの剛性より弱い。
In order to solve the above-mentioned problems, a cooling device for a reflecting mirror for a high-power laser according to a first aspect of the present invention covers the back surface of the reflecting mirror for a high-power laser with a cover member. Cooling of the reflection mirror for high-power laser, which forms a coolant channel between the back surface of the reflection mirror and the cover member, and circulates the coolant in this coolant channel to suppress the temperature rise of the reflection mirror due to absorption of laser light. In the device,
The rigidity of the cover member is weaker than the rigidity of the high-power laser reflection mirror.

【0013】また、請求項2記載の発明の高出力レーザ
用反射ミラーの冷却装置は、前記冷媒流路に冷媒を供給
するために前記カバー部材に形成された冷媒供給口の周
辺近傍において、前記反射ミラーと前記カバー部材とを
結合するねじを備えている。
According to a second aspect of the present invention, there is provided a cooling device for a high-power laser reflecting mirror according to the second aspect, in the vicinity of a coolant supply port formed in the cover member for supplying a coolant to the coolant channel, A screw is provided to connect the reflecting mirror and the cover member.

【0014】更に、請求項3記載の発明の高出力レーザ
用反射ミラーの冷却装置は、前記高出力レーザ用反射ミ
ラーの温度を検出する温度検出手段と、前記温度検出手
段からの検出信号に基づいて前記冷媒の流量あるいは温
度を調整して前記高出力レーザ用反射ミラーの温度を制
御する制御手段とを備えている。
Furthermore, in the cooling device for a high-power laser reflection mirror according to a third aspect of the present invention, based on a temperature detection means for detecting the temperature of the high-power laser reflection mirror and a detection signal from the temperature detection means. Control means for adjusting the flow rate or temperature of the refrigerant to control the temperature of the high-power laser reflection mirror.

【0015】また、請求項4記載の発明の高出力レーザ
用反射ミラーの冷却装置は、高出力レーザ用の反射ミラ
ーの裏面に冷媒を循環させてレーザ光吸熱による前記反
射ミラーの温度上昇を抑制する高出力レーザ用反射ミラ
ーの冷却装置において、前記高出力レーザ用反射ミラー
の温度を検出する温度検出手段と、前記温度検出手段か
らの検出信号に基づいて前記冷媒の流量あるいは温度を
調整して前記高出力レーザ用反射ミラーの温度を制御す
る制御手段とを備えている。
According to a fourth aspect of the present invention, in the cooling device for a high-power laser reflection mirror, a coolant is circulated on the back surface of the high-power laser reflection mirror to suppress the temperature rise of the reflection mirror due to the absorption of laser light. In the cooling device for the high-power laser reflection mirror, the temperature detection means for detecting the temperature of the high-power laser reflection mirror, and adjusting the flow rate or temperature of the refrigerant based on the detection signal from the temperature detection means. And a control means for controlling the temperature of the high-power laser reflection mirror.

【0016】[0016]

【作用】請求項1記載の発明の高出力レーザ用反射ミラ
ーの冷却装置では、冷媒が冷媒流路に流入したとき、そ
の冷媒の圧力が高出力レーザ用反射ミラーの裏面に直接
加わるが、カバー部材の剛性が高出力レーザ用反射ミラ
ーの剛性より弱いので、冷媒の圧力によってカバー部材
が撓み、高出力レーザ用反射ミラーの変形が抑制され
る。
In the cooling device for a high-power laser reflection mirror according to the first aspect of the present invention, when the coolant flows into the coolant channel, the pressure of the coolant is directly applied to the back surface of the high-power laser reflection mirror. Since the rigidity of the member is weaker than the rigidity of the high-power laser reflection mirror, the cover member is bent by the pressure of the refrigerant, and the high-power laser reflection mirror is prevented from being deformed.

【0017】また、請求項2記載の発明の高出力レーザ
用反射ミラーの冷却装置では、冷媒供給口の周辺近傍で
高出力レーザ用反射ミラーとカバー部材とがねじで結合
されているので、冷媒の圧力によってカバー部材が変形
したとしても、冷媒流路からの冷媒の漏れを防ぐことが
できる。
In the cooling device for a high-power laser reflection mirror according to a second aspect of the present invention, the high-power laser reflection mirror and the cover member are screwed together near the periphery of the coolant supply port. Even if the cover member is deformed by the pressure of 1, the leakage of the refrigerant from the refrigerant channel can be prevented.

【0018】更に、請求項3記載の発明の高出力レーザ
用反射ミラーの冷却装置では、冷媒の圧力による高出力
レーザ用反射ミラーの変形を抑制することができるとと
もに、高出力レーザ用反射ミラーを温度や湿度が大きく
変動する環境に設置したとき、高出力レーザ用反射ミラ
ーは環境温度に応じた温度に維持され、冷却過多や冷却
不足によって生じる高出力レーザ用反射ミラー表面の結
露や変形を防ぐことができる。
Further, in the cooling device for a high-power laser reflecting mirror according to the third aspect of the present invention, the deformation of the high-power laser reflecting mirror due to the pressure of the refrigerant can be suppressed and the high-power laser reflecting mirror can be suppressed. When installed in an environment where the temperature and humidity fluctuate greatly, the high-power laser reflection mirror is maintained at a temperature according to the environmental temperature, preventing condensation and deformation on the surface of the high-power laser reflection mirror caused by overcooling or insufficient cooling. be able to.

【0019】また、請求項4記載の発明の高出力レーザ
用反射ミラーの冷却装置では、高出力レーザ用反射ミラ
ーを温度や湿度が大きく変動する環境に設置したとき、
高出力レーザ用反射ミラーは環境温度に応じた温度に維
持され、冷却過多や冷却不足によって生じる高出力レー
ザ用反射ミラー表面の結露や変形を防ぐことができる。
Further, in the cooling device for a high-power laser reflection mirror according to a fourth aspect of the present invention, when the high-power laser reflection mirror is installed in an environment where temperature and humidity fluctuate greatly,
The high-power laser reflection mirror is maintained at a temperature according to the ambient temperature, and it is possible to prevent dew condensation or deformation on the high-power laser reflection mirror surface caused by excessive cooling or insufficient cooling.

【0020】[0020]

【実施例】以下この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図2はこの発明の一実施例に係る高出力レ
ーザ用反射ミラーの冷却装置を示しす背面図、図1は図
2のA−A線に沿う断面図である。
FIG. 2 is a rear view showing a cooling device for a high-power laser reflecting mirror according to an embodiment of the present invention, and FIG. 1 is a sectional view taken along the line AA of FIG.

【0022】モリブデン製の金属ミラー(高出力レーザ
用反射ミラー)1の裏面1bには複数のスクロール状の
冷媒溝5が設けられ、各冷媒溝5の終端部5bは金属ミ
ラー1の裏面1bの中心部に設けられた排出穴14と連
通している。金属ミラー1の裏面1bには黄銅製の円板
状カバー部材15がシールねじ16で結合され、カバー
部材15と冷媒溝5及び排出穴14とで、カバー部材1
5と金属ミラー1との間に冷媒流路が形成される。カバ
ー部材15のミラー接触面15aには環状溝が設けら
れ、環状溝にはOリング17が嵌め込まれて冷媒流路の
シール性が確保されている。
A plurality of scroll-shaped coolant grooves 5 are provided on the back surface 1b of a metal mirror (reflection mirror for high-power laser) 1 made of molybdenum, and the end portions 5b of each coolant groove 5 are on the back surface 1b of the metal mirror 1. It communicates with the discharge hole 14 provided at the center. A brass disk-shaped cover member 15 is joined to the back surface 1b of the metal mirror 1 by a seal screw 16, and the cover member 15 and the coolant groove 5 and the discharge hole 14 form a cover member 1
A coolant flow path is formed between the metal plate 5 and the metal mirror 1. An annular groove is provided on the mirror contact surface 15a of the cover member 15, and an O-ring 17 is fitted into the annular groove to ensure the sealing property of the refrigerant passage.

【0023】カバー部材15の剛性は金属ミラー1の剛
性より弱い。カバー部材15には、各冷媒溝5の始端部
5aと対向する複数の冷媒供給口10と、排出穴14と
対向する冷媒排出口11とがそれぞれ設けられている。
冷媒供給口10の周辺近傍で、金属ミラー1とカバー部
材15とが前記シールねじ16で結合されている。
The rigidity of the cover member 15 is weaker than that of the metal mirror 1. The cover member 15 is provided with a plurality of refrigerant supply ports 10 facing the starting ends 5 a of the respective coolant grooves 5 and a coolant discharge port 11 facing the discharge holes 14.
In the vicinity of the periphery of the coolant supply port 10, the metal mirror 1 and the cover member 15 are joined by the seal screw 16.

【0024】カバー部材15と金属ミラー1とはホルダ
2内に収容されている。ホルダ2のミラー対向部2aに
は中心孔18が設けられ、その中心孔18にカバー部材
15のボス部19が挿入されている。ボス部19の外周
面の環状溝にはOリング20が嵌め込まれ、カバー部材
15のボス部19とホルダ2のミラー対向部2aとの間
に冷媒Rが侵入しないようにしてある。
The cover member 15 and the metal mirror 1 are housed in the holder 2. A central hole 18 is provided in the mirror facing portion 2 a of the holder 2, and the boss portion 19 of the cover member 15 is inserted into the central hole 18. An O-ring 20 is fitted in an annular groove on the outer peripheral surface of the boss portion 19 so that the refrigerant R does not enter between the boss portion 19 of the cover member 15 and the mirror facing portion 2a of the holder 2.

【0025】カバー部材15とホルダ2のミラー対向部
2aとはねじ21で結合され、カバー部材15とホルダ
2のミラー対向部2aとの間には空間23が形成されて
いる。金属ミラー1の表面1aの外周縁は間隔環3及び
押さえ環4で支持されている。シールねじ16の頭部の
環状溝にはOリング21が嵌め込まれ、ねじ21の頭部
とカバー部材15との間から冷媒Rが漏れないようにし
てある。
The cover member 15 and the mirror facing portion 2a of the holder 2 are coupled by a screw 21, and a space 23 is formed between the cover member 15 and the mirror facing portion 2a of the holder 2. The outer peripheral edge of the surface 1 a of the metal mirror 1 is supported by the spacing ring 3 and the pressing ring 4. An O-ring 21 is fitted in an annular groove at the head of the seal screw 16 so that the refrigerant R does not leak from between the head of the screw 21 and the cover member 15.

【0026】ホルダ2のミラー対向部2aには、冷媒供
給口10と対向する孔22が周方向に沿って一定間隔お
きに設けられている。冷媒供給口10には冷媒供給側継
手12が挿着され、冷媒供給側継手12には冷媒供給側
チューブ24が接続される。冷媒排出口11には冷媒排
出側継手13を介して冷媒排出側チューブ25が接続さ
れる。
In the mirror facing portion 2a of the holder 2, holes 22 facing the coolant supply port 10 are provided at regular intervals along the circumferential direction. A refrigerant supply side joint 12 is inserted into the refrigerant supply port 10, and a refrigerant supply side tube 24 is connected to the refrigerant supply side joint 12. A refrigerant discharge side tube 25 is connected to the refrigerant discharge port 11 via a refrigerant discharge side joint 13.

【0027】金属ミラー1には、熱伝導性及び伸縮性の
高い充填材8(例えばシリコン系のコンパウンド)を介
して温度センサ(温度検出手段)7が埋設され、温度セ
ンサ7の出力端は図示しないハイブリッドレコーダや流
量あるいは温度コントローラ等で構成される流量あるい
は温度コントローラ系(制御手段)に接続されている。
A temperature sensor (temperature detecting means) 7 is embedded in the metal mirror 1 via a filler 8 (for example, a silicon compound) having high thermal conductivity and elasticity, and the output end of the temperature sensor 7 is illustrated. Not connected to a flow rate or temperature controller system (control means) composed of a hybrid recorder, a flow rate or temperature controller, or the like.

【0028】冷媒Rは、各冷媒供給側チューブ24から
冷媒供給側継手12を通じて冷媒溝5に流入し、冷媒溝
5の終端部5bから排出穴14に流入し、排出穴14か
ら冷媒排出側継手13を通じて冷媒排出側チューブ25
へ排出される。このとき冷媒Rによって金属ミラー1の
熱が奪われ、金属ミラー1が冷却される。なお、冷媒R
の流入と排出は逆転しても何ら問題はない。
The refrigerant R flows from each refrigerant supply side tube 24 into the refrigerant groove 5 through the refrigerant supply side joint 12, flows from the terminal end 5b of the refrigerant groove 5 into the discharge hole 14, and from the discharge hole 14 to the refrigerant discharge side joint. Refrigerant discharge side tube 25 through 13
Is discharged to At this time, the heat of the metal mirror 1 is taken by the refrigerant R, and the metal mirror 1 is cooled. The refrigerant R
There is no problem in reversing the inflow and outflow of.

【0029】冷媒Rが冷媒溝5に流入すると、冷媒Rの
圧力が金属ミラー1の裏面1bに直接加わるが、前述の
ようにカバー部材15の剛性が金属ミラー1の剛性より
弱いので、冷媒Rの圧力によってカバー部材15が空間
23側へ撓み、金属ミラー1の変形が抑制される。した
がって、金属ミラー1の高い面精度を維持することがで
き、高出力のレーザ光(数百W以上のレーザ光)を安定
して遠距離に最小集光径になるよう集光させることがで
きる。
When the refrigerant R flows into the refrigerant groove 5, the pressure of the refrigerant R is directly applied to the back surface 1b of the metal mirror 1, but the rigidity of the cover member 15 is weaker than that of the metal mirror 1 as described above. The pressure causes the cover member 15 to bend toward the space 23, and deformation of the metal mirror 1 is suppressed. Therefore, the high surface precision of the metal mirror 1 can be maintained, and high-power laser light (laser light of several hundred W or more) can be stably condensed to a long distance so as to have a minimum converged diameter. .

【0030】また、シールねじ16が冷媒供給口10の
周辺近傍で、金属ミラー1とカバー部材15とを結合さ
せているので、冷媒Rの圧力によってカバー部材15が
変形したとしても冷媒Rの漏れをOリング17にて防ぐ
ことができる。
Further, since the seal screw 16 connects the metal mirror 1 and the cover member 15 in the vicinity of the refrigerant supply port 10, even if the cover member 15 is deformed by the pressure of the refrigerant R, the refrigerant R leaks. Can be prevented by the O-ring 17.

【0031】更に、金属ミラー1には温度センサ7が埋
設され、流量あるいは温度コントローラ系によって温度
センサ7の検出温度に応じて冷媒Rの流量あるいは温度
を制御するようにしたので、例えば金属ミラー1を温度
や湿度が大きく変動する環境に設置したとしても、金属
ミラー1を環境温度に応じた温度に維持することができ
る。例えば環境温度に対する金属ミラー1の温度が低す
ぎるときは冷媒流量を減らしたり、冷媒温度を上げたり
し、環境温度に対する金属ミラー1の温度が高すぎると
きは冷媒流量を増やしたり、冷媒温度を下げたりする。
その結果、冷却過多による金属ミラー1の表面1aの結
露や変形を防いだり、冷却不足による金属ミラー1の変
形を防ぐことができ、高出力レーザ光の反射という金属
ミラー1の機能を一層安定させることができる。
Further, since the temperature sensor 7 is embedded in the metal mirror 1 and the flow rate or the temperature controller system controls the flow rate or temperature of the refrigerant R according to the temperature detected by the temperature sensor 7, for example, the metal mirror 1 Even if is installed in an environment in which the temperature and humidity fluctuate greatly, the metal mirror 1 can be maintained at a temperature according to the environmental temperature. For example, when the temperature of the metal mirror 1 is too low with respect to the ambient temperature, the coolant flow rate is reduced or the coolant temperature is raised, and when the temperature of the metal mirror 1 is too high with respect to the ambient temperature, the coolant flow rate is increased or the coolant temperature is lowered. Or
As a result, it is possible to prevent dew condensation or deformation of the surface 1a of the metal mirror 1 due to excessive cooling, and prevent deformation of the metal mirror 1 due to insufficient cooling, and further stabilize the function of the metal mirror 1 of reflecting high-power laser light. be able to.

【0032】[0032]

【発明の効果】以上説明したように請求項1記載の発明
の高出力レーザ用反射ミラーの冷却装置によれば、冷媒
が冷媒流路に流入し、その冷媒の圧力が高出力レーザ用
反射ミラーの裏面に直接加わるが、カバー部材の剛性が
高出力レーザ用反射ミラーの剛性より弱いので、冷媒の
圧力によってカバー部材が撓み、高出力レーザ用反射ミ
ラーの変形が抑制され、その結果高出力レーザ用反射ミ
ラーの高い面精度が維持されて、高出力のレーザ光を安
定して遠距離に最小集光径になるよう集光させることが
できる。
As described above, according to the cooling device for a high-power laser reflection mirror of the invention described in claim 1, the coolant flows into the coolant passage, and the pressure of the coolant is high-power laser reflection mirror. However, since the rigidity of the cover member is weaker than the rigidity of the high-power laser reflection mirror, the pressure of the refrigerant causes the cover member to bend, suppressing the deformation of the high-power laser reflection mirror. The high surface accuracy of the reflecting mirror for use is maintained, and high-power laser light can be stably condensed to a long distance with a minimum condensed diameter.

【0033】また、請求項2記載の発明の高出力レーザ
用反射ミラーの冷却装置によれば、冷媒供給口の周辺近
傍で高出力レーザ用反射ミラーとカバー部材とがねじで
結合されているので、冷媒の圧力によってカバー部材が
変形したとしても、冷媒流路からの冷媒の漏れを防ぐこ
とができる。
According to the cooling device for a high-power laser reflection mirror of the second aspect of the present invention, the high-power laser reflection mirror and the cover member are screwed together in the vicinity of the periphery of the coolant supply port. Even if the cover member is deformed by the pressure of the refrigerant, it is possible to prevent the refrigerant from leaking from the refrigerant channel.

【0034】更に、請求項3記載の発明の高出力レーザ
用反射ミラーの冷却装置によれば、冷媒の圧力による高
出力レーザ用反射ミラーの変形を抑制し、高出力レーザ
用反射ミラーの高い面精度を維持することができるとと
もに、高出力レーザ用反射ミラーを温度や湿度が大きく
変動する環境に設置したとき、高出力レーザ用反射ミラ
ーは環境温度に応じた温度に維持され、冷却過多や冷却
不足によって生じる高出力レーザ用反射ミラー表面の結
露や変形を防ぐことができ、高出力レーザ光の反射とい
う高出力レーザ用反射ミラーの機能を一層安定させるこ
とができる。
Further, according to the cooling device for a high-power laser reflection mirror of the present invention, the deformation of the high-power laser reflection mirror due to the pressure of the refrigerant is suppressed, and the high-power laser reflection mirror has a high surface. In addition to maintaining accuracy, when the high-power laser reflection mirror is installed in an environment where the temperature and humidity fluctuate greatly, the high-power laser reflection mirror is maintained at a temperature that corresponds to the ambient temperature, which causes excessive cooling or cooling. It is possible to prevent dew condensation and deformation of the surface of the high-power laser reflection mirror caused by the shortage, and it is possible to further stabilize the function of the high-power laser reflection mirror that reflects high-power laser light.

【0035】また、請求項4記載の発明の高出力レーザ
用反射ミラーの冷却装置によれば、高出力レーザ用反射
ミラーを温度や湿度が大きく変動する環境に設置したと
き、高出力レーザ用反射ミラーは環境温度に応じた温度
に維持され、冷却過多や冷却不足によって生じる高出力
レーザ用反射ミラー表面の結露や変形を防ぐことがで
き、高出力レーザ光の反射という高出力レーザ用反射ミ
ラーの機能を一層安定させることができる。
According to the cooling device for a high-power laser reflection mirror of the present invention, when the high-power laser reflection mirror is installed in an environment where the temperature and humidity greatly fluctuate, the high-power laser reflection mirror is reflected. The mirror is maintained at a temperature according to the ambient temperature, and it is possible to prevent condensation and deformation of the surface of the high-power laser reflection mirror caused by overcooling or insufficient cooling. The function can be further stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は図2のA−A線に沿う断面図である。1 is a cross-sectional view taken along the line AA of FIG.

【図2】図2はこの発明の一実施例に係る高出力レーザ
用反射ミラーの冷却装置の平面図である。
FIG. 2 is a plan view of a cooling device for a high-power laser reflecting mirror according to an embodiment of the present invention.

【図3】図3は従来の高出力レーザ用反射ミラーの冷却
装置を示す断面図である。
FIG. 3 is a cross-sectional view showing a conventional cooling device for a high-power laser reflection mirror.

【図4】図4は従来の他の高出力レーザ用反射ミラーの
冷却装置を示す断面図である。
FIG. 4 is a cross-sectional view showing another conventional cooling device for a high-power laser reflection mirror.

【図5】図5は図4の高出力レーザ用反射ミラーの裏面
を示す背面図である。
5 is a rear view showing the back surface of the high-power laser reflection mirror of FIG. 4;

【符号の説明】[Explanation of symbols]

1 金属ミラー 1b 金属ミラーの裏面 5 冷却溝 7 温度センサ 8 充填材 14 排出穴 15 カバー部材 16 シールねじ R 冷媒 1 Metal Mirror 1b Back Side of Metal Mirror 5 Cooling Groove 7 Temperature Sensor 8 Filling Material 14 Discharge Hole 15 Cover Member 16 Seal Screw R Refrigerant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛田 勝 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 渡部 正造 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Ushida 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nikon Corporation (72) Inventor Shozo Watabe 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Company Nikon

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高出力レーザ用の反射ミラーの裏面をカ
バー部材で覆って前記反射ミラーの裏面と前記カバー部
材との間に冷媒流路を形成し、この冷媒流路に冷媒を循
環させてレーザ光吸熱による前記反射ミラーの温度上昇
を抑制する高出力レーザ用反射ミラーの冷却装置におい
て、 前記カバー部材の剛性は、前記高出力レーザ用反射ミラ
ーの剛性より弱いことを特徴とする高出力レーザ用反射
ミラーの冷却装置。
1. A back surface of a reflection mirror for a high-power laser is covered with a cover member to form a coolant channel between the back surface of the reflection mirror and the cover member, and a coolant is circulated in the coolant channel. In a cooling device for a reflection mirror for a high-power laser, which suppresses a temperature rise of the reflection mirror due to absorption of laser light, the rigidity of the cover member is lower than the rigidity of the reflection mirror for the high-power laser. Cooling device for reflective mirrors.
【請求項2】 前記冷媒流路に冷媒を供給するために前
記カバー部材に形成された冷媒供給口の周辺近傍におい
て、前記反射ミラーと前記カバー部材とを結合するねじ
を備えていることを特徴とする請求項1に記載の高出力
レーザ用反射ミラーの冷却装置。
2. A screw for connecting the reflection mirror and the cover member is provided in the vicinity of a coolant supply port formed in the cover member for supplying the coolant to the coolant channel. The cooling device for a high-power laser reflection mirror according to claim 1.
【請求項3】 前記高出力レーザ用反射ミラーの温度を
検出する温度検出手段と、 前記温度検出手段からの検出信号に基づいて前記冷媒の
流量あるいは温度を調整して前記高出力レーザ用反射ミ
ラーの温度を制御する制御手段とを備えていることを特
徴とする請求項1又は2記載の高出力レーザ用反射ミラ
ーの冷却装置。
3. A temperature detecting means for detecting the temperature of the reflection mirror for high power laser, and a reflection mirror for high power laser by adjusting the flow rate or temperature of the refrigerant based on a detection signal from the temperature detection means. 3. The cooling device for a high-power laser reflection mirror according to claim 1, further comprising a control means for controlling the temperature of the.
【請求項4】 高出力レーザ用の反射ミラーの裏面に冷
媒を循環させてレーザ光吸熱による前記反射ミラーの温
度上昇を抑制する高出力レーザ用反射ミラーの冷却装置
において、 前記高出力レーザ用反射ミラーの温度を検出する温度検
出手段と、 前記温度検出手段からの検出信号に基づいて前記冷媒の
流量あるいは温度を調整して前記高出力レーザ用反射ミ
ラーの温度を制御する制御手段とを備えていることを特
徴とする高出力レーザ用反射ミラーの冷却装置。
4. A cooling device for a high-power laser reflection mirror, wherein a coolant is circulated on the back surface of the high-power laser reflection mirror to suppress the temperature rise of the reflection mirror due to laser light absorption. A temperature detection means for detecting the temperature of the mirror; and a control means for controlling the temperature of the high-power laser reflection mirror by adjusting the flow rate or temperature of the refrigerant based on the detection signal from the temperature detection means. A cooling device for a high-power laser reflection mirror.
JP7039368A 1995-02-03 1995-02-03 Cooling device of reflection mirror for high power laser Pending JPH08211211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039368A JPH08211211A (en) 1995-02-03 1995-02-03 Cooling device of reflection mirror for high power laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039368A JPH08211211A (en) 1995-02-03 1995-02-03 Cooling device of reflection mirror for high power laser

Publications (1)

Publication Number Publication Date
JPH08211211A true JPH08211211A (en) 1996-08-20

Family

ID=12551120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039368A Pending JPH08211211A (en) 1995-02-03 1995-02-03 Cooling device of reflection mirror for high power laser

Country Status (1)

Country Link
JP (1) JPH08211211A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992306B2 (en) 2003-04-15 2006-01-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
US7669593B2 (en) * 2001-06-12 2010-03-02 Pratt & Whitney Rocketdyne, Inc. Thermally controlled solar reflector facet with heat recovery
WO2011113591A2 (en) 2010-03-18 2011-09-22 Eth Zurich Optical collector for collecting extreme ultraviolet radiation, method for operating such an optical collector, and euv source with such a collector
JP2015529836A (en) * 2012-06-25 2015-10-08 カール・ツァイス・エスエムティー・ゲーエムベーハー Method and cooling system for cooling optical elements for EUV applications
CN105762616A (en) * 2015-11-10 2016-07-13 天津工业大学 Anti-condensation processing method of laser window with high damage threshold
CN107255855A (en) * 2017-08-15 2017-10-17 温州大学 Cooling device for the reflecting optics of Laser Transmission
JP2018504639A (en) * 2015-01-22 2018-02-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Method of manufacturing a reflective optical element, reflective optical element and use of the reflective optical element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669593B2 (en) * 2001-06-12 2010-03-02 Pratt & Whitney Rocketdyne, Inc. Thermally controlled solar reflector facet with heat recovery
US6992306B2 (en) 2003-04-15 2006-01-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
US7250616B2 (en) 2003-04-15 2007-07-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
WO2011113591A2 (en) 2010-03-18 2011-09-22 Eth Zurich Optical collector for collecting extreme ultraviolet radiation, method for operating such an optical collector, and euv source with such a collector
US9513569B2 (en) 2010-03-18 2016-12-06 ETH Zürich Optical collector for collecting extreme ultraviolet radiation, method for operating such an optical collector, and EUV source with such a collector
JP2015529836A (en) * 2012-06-25 2015-10-08 カール・ツァイス・エスエムティー・ゲーエムベーハー Method and cooling system for cooling optical elements for EUV applications
US9671584B2 (en) 2012-06-25 2017-06-06 Carl Zeiss Smt Gmbh Method and cooling system for cooling an optical element for EUV applications
JP2018504639A (en) * 2015-01-22 2018-02-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Method of manufacturing a reflective optical element, reflective optical element and use of the reflective optical element
JP2020115216A (en) * 2015-01-22 2020-07-30 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for producing reflective optical element, reflective optical element, and use of reflective optical element
US11372334B2 (en) 2015-01-22 2022-06-28 Carl Zeiss Smt Gmbh Method for producing a reflective optical element, reflective optical element, and use of a reflective optical element
CN105762616A (en) * 2015-11-10 2016-07-13 天津工业大学 Anti-condensation processing method of laser window with high damage threshold
CN107255855A (en) * 2017-08-15 2017-10-17 温州大学 Cooling device for the reflecting optics of Laser Transmission

Similar Documents

Publication Publication Date Title
EP1070979B1 (en) Liquid crystal projector
US6829031B2 (en) Liquid crystal display apparatus and optical device for use therein
JPH08211211A (en) Cooling device of reflection mirror for high power laser
US20060157230A1 (en) Cooling device
US20010001251A1 (en) Optical beam scanning device
US7200160B2 (en) Laser beam source with a laser element containing a thin crystal disk as a laser-active medium
CN113189809A (en) Display device
JP2006326580A (en) Nozzle for adhesive, having optical system for monitoring cooling
KR100540648B1 (en) Reflection type projector
US20120327379A1 (en) Image display apparatus
US20050213018A1 (en) Liquid crystal display device and liquid crystal cooling unit
JP2920168B2 (en) Cooling device for reflection mirror for high power laser
GB2181267A (en) Device for cooling reflecting mirror
US6038244A (en) Semiconductor excitation solid-state laser apparatus
US20040105472A1 (en) Semiconductor laser device
US6709118B2 (en) Device for the beam guiding of a laser beam
JPH0237709B2 (en)
KR900000284B1 (en) Device for cooling reflecting mirror
US6939010B2 (en) Data projector apparatus
CN219737974U (en) Single-chip liquid crystal projection optical machine and projector
CN219349279U (en) Facula adjusting device and laser processing system
JPS6364377A (en) Laser oscillator
EP3217490A1 (en) Laser-beam emitting device and engine spark plug system
JP2003015130A (en) Liquid crystal display device
JPH08211280A (en) Laser beam condensing device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990525