JPH08211145A - Radar unit carried on vehicle - Google Patents

Radar unit carried on vehicle

Info

Publication number
JPH08211145A
JPH08211145A JP7015375A JP1537595A JPH08211145A JP H08211145 A JPH08211145 A JP H08211145A JP 7015375 A JP7015375 A JP 7015375A JP 1537595 A JP1537595 A JP 1537595A JP H08211145 A JPH08211145 A JP H08211145A
Authority
JP
Japan
Prior art keywords
frequency
relative
distance
relative velocity
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7015375A
Other languages
Japanese (ja)
Other versions
JP3104558B2 (en
Inventor
Yukinori Yamada
幸則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP07015375A priority Critical patent/JP3104558B2/en
Publication of JPH08211145A publication Critical patent/JPH08211145A/en
Application granted granted Critical
Publication of JP3104558B2 publication Critical patent/JP3104558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE: To obtain a radar unit in which the modulation frequency of carrier waves is changed on the basis of the relative distance of a computed target object, in which the relative velocity of a target object is detected with high accuracy at a short distance and in which the pairing operation of peaks in the frequency rise section and the fall section of a plurality of target objects is performed easily at a long distance. CONSTITUTION: A target recognition device 30 detects peaks of powere spectrums in a frequency rise section and a fall section so as to perform a pairing operation, and it finds a relative distance and a relative velocity simultaneously. A danger judgment device 32 compares magnitudes of a predetermined safe distance and the relative distance so as to judge a danger. Then, the resolution of a relative velocity obtained from a relative velocity frequency appearing as a frequency difference becomes large, the larger a modulation frequency is. When the modulation frequency is large, the relative velocity frequency becomes relatively smaller with reference to a relative distance frequency, and the measuring accuracy of the relative velocity becomes worse. However, when a plurality of target objects exist, the difference between a peak in the frequency rise section and a peak in the fall section becomes smaller, and the pairing operation of the target objects can be performed easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車載用レーダ装置に関
し、先行車両等を検出する車載用レーダ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-vehicle radar device, and more particularly to an on-vehicle radar device for detecting a preceding vehicle.

【0002】[0002]

【従来の技術】従来より、自車両の前方にレーダビーム
を照射して、先行車両等の目標物体との相対距離及び相
対速度を検出する車載レーダ装置が開発されている。例
えば、特開平2−198380号公報には、搬送波を台
形波で周波数変調し、搬送波の周波数が一定の期間にお
いてビート信号の周波数から目標物体の相対速度を精度
良く検出することが開示されている。
2. Description of the Related Art Conventionally, an on-vehicle radar device has been developed which irradiates a radar beam in front of its own vehicle to detect a relative distance and a relative speed to a target object such as a preceding vehicle. For example, Japanese Patent Application Laid-Open No. 2-198380 discloses that a carrier wave is frequency-modulated by a trapezoidal wave and the relative velocity of a target object is accurately detected from the frequency of a beat signal in a period in which the carrier wave frequency is constant. .

【0003】[0003]

【発明が解決しようとする課題】検出対象である目標物
体が複数存在する場合には、送信波と受信波とのビート
信号は複数の目標物体に対して発生し、各ビート信号と
各目標物体との対応関係を知ることが困難であるという
問題があった。
When there are a plurality of target objects to be detected, the beat signals of the transmitted wave and the received wave are generated for the plurality of target objects, and the beat signals and the target objects are generated. There was a problem that it was difficult to know the correspondence relationship with.

【0004】本発明は上記の点に鑑みなされたもので、
目標物体の相対距離に基づいて搬送波の変調周波数を変
更することにより、近距離で目標物体の相対速度を高精
度に検出できると共に、遠距離で複数の目標物体の周波
数上昇区間と周波数下降区間とのピークのペアリングが
容易となる車載用レーダ装置を提供することを目的とす
る。
[0004] The present invention has been made in view of the above points,
By changing the modulation frequency of the carrier wave based on the relative distance of the target object, the relative speed of the target object can be detected with high accuracy at a short distance, and the frequency rising section and the frequency falling section of a plurality of target objects can be detected at a long distance. It is an object of the present invention to provide an on-vehicle radar device that facilitates pairing of the peaks of 1.

【0005】[0005]

【課題を解決するための手段】本発明は、図1に示す如
く、レーダ装置本体M1より周波数変調された搬送波を
送受信し、周波数上昇区間及び周波数下降区間夫々のビ
ート信号のパワースペクトラムで対をなすピークの周波
数から目標物体との相対距離及び相対速度を算出する車
載用レーダ装置において、上記算出された目標物体の相
対距離に基づいて、搬送波の変調周波数を変更する変調
周波数変更手段M2を有する。
As shown in FIG. 1, the present invention transmits and receives a frequency-modulated carrier wave from a radar apparatus main body M1 and forms pairs in the power spectrum of the beat signal in each of the frequency rising section and the frequency falling section. An in-vehicle radar device that calculates a relative distance and a relative speed to a target object from the frequency of a peak formed has a modulation frequency changing means M2 that changes the modulation frequency of a carrier wave based on the calculated relative distance of the target object. .

【0006】[0006]

【作用】本発明においては、算出された目標物体の相対
距離に基づいて、搬送波の変調周波数を変更するため、
目標物体が近距離にあるときは変調周波数を小さくして
相対速度周波数を相対的に大きくすることで目標物体の
相対速度を高精度に検出でき、また目標物体が遠距離に
あるときは変調周波数を大きくして相対速度周波数を相
対的に小さくすることで複数の目標物体の周波数上昇区
間と周波数下降区間とのピークのペアリングが容易とな
る。
In the present invention, since the modulation frequency of the carrier is changed based on the calculated relative distance of the target object,
When the target object is at a short distance, the relative frequency of the target object can be detected with high accuracy by decreasing the modulation frequency and increasing the relative speed frequency, and when the target object is at a long distance, the modulation frequency Is increased to relatively reduce the relative velocity frequency, which facilitates pairing of peaks in the frequency rising section and the frequency falling section of the plurality of target objects.

【0007】[0007]

【実施例】図2は本発明装置のブロック図を示す。同図
中、送信側回路は、搬送波発生器10,周波数変調器1
2,変調電圧発生器14,方向性結合器16,及び送信
アンテナ18から構成される。搬送波発生器10からは
搬送波が出力され、周波数変調器12に供給される。一
方、変調電圧発生器14からは振幅が三角形状に変化す
る繰り返し周波数fmの三角波が出力され、変調波とし
て周波数変調器12に供給される。これによって、搬送
波発生器10からの搬送波は周波数変調され、時間経過
に伴って周波数が三角形状に変化する送信信号が出力さ
れる。この送信信号は方向性結合器16を介して送信ア
ンテナ18に供給され、被検出物体に向けて放射され
る。一方、方向性結合器16を介して、送信信号の一部
は後述する受信側回路のミキサ22に供給される。
FIG. 2 shows a block diagram of the device of the present invention. In the figure, the transmission side circuit includes a carrier wave generator 10 and a frequency modulator 1.
2. The modulation voltage generator 14, the directional coupler 16, and the transmission antenna 18 are included. A carrier wave is output from the carrier wave generator 10 and supplied to the frequency modulator 12. On the other hand, the modulation voltage generator 14 outputs a triangular wave having a repeating frequency fm whose amplitude changes in a triangular shape, and is supplied to the frequency modulator 12 as a modulating wave. As a result, the carrier wave from the carrier wave generator 10 is frequency-modulated, and a transmission signal whose frequency changes in a triangular shape over time is output. This transmission signal is supplied to the transmission antenna 18 via the directional coupler 16 and radiated toward the object to be detected. On the other hand, a part of the transmission signal is supplied to the mixer 22 of the receiving side circuit described later via the directional coupler 16.

【0008】受信側回路は、受信アンテナ20,ミキサ
22,増幅器24,フィルタ26,高速フーリエ変換処
理器(FFT信号処理器)28,ターゲット認識器3
0,危険判定器32,及び警報器34から構成される。
被検出物体からの反射波は受信アンテナ20で受信さ
れ、ミキサ22に供給される。ミキサ22では受信信号
と方向性結合器16からの送信信号の一部が差分演算に
より結合され、ビート信号が生成される。ミキサ22か
らのビート信号は増幅器24で増幅され、アンチエリア
シングフィルタ26を介してFFT信号処理器28及び
ターゲット認識器30に供給される。FFT信号処理器
28は周波数上昇区間及び周波数下降区間夫々のパワー
スペクトラムを得て、ターゲット認識器30に供給す
る。
The receiving side circuit includes a receiving antenna 20, a mixer 22, an amplifier 24, a filter 26, a fast Fourier transform processor (FFT signal processor) 28, and a target recognizer 3.
0, a risk determiner 32, and an alarm 34.
The reflected wave from the detected object is received by the receiving antenna 20 and supplied to the mixer 22. In the mixer 22, the reception signal and a part of the transmission signal from the directional coupler 16 are combined by a difference calculation to generate a beat signal. The beat signal from the mixer 22 is amplified by the amplifier 24, and is supplied to the FFT signal processor 28 and the target recognizer 30 via the anti-aliasing filter 26. The FFT signal processor 28 obtains a power spectrum in each of the frequency rising section and the frequency falling section, and supplies the power spectrum to the target recognizer 30.

【0009】ターゲット認識器30は周波数上昇区間,
下降区間夫々のパワースペクトラムのピークを検出して
ペアリングを行ない、各目標物体に対応するピーク対を
形成する。このピーク対の周波数上昇区間のピーク周波
数fup と周波数下降区間のピーク周波数fdown とから得
られる相対速度周波数fd, 相対距離周波数fr fd=(fdown-fup)/2 …(1) fr=(fdown+fup)/2 …(2) 及び fd=2・V・f0/C …(3) fr=4・fm・Δf/C・R …(4) 但し、V:相対速度、C:光速、f0:中心周波数、f
m:変調周波数、Δf:周波数変移幅で例えば75MH
z、R:相対距離 により相対距離R及び相対速度Vを同時に求める。この
後、危険判定器32で予め定められた、又は自車の走行
状態に応じて算出される安全距離と上記相対距離の大小
比較を行ない、安全距離以下である場合には危険と判定
し、警報器34により運転者に報知する。
The target recognizer 30 has a frequency increasing section,
The peaks of the power spectrum of each descending section are detected and pairing is performed to form a peak pair corresponding to each target object. The relative velocity frequency fd and the relative distance frequency fr fd = (fdown-fup) / 2 (1) fr = (fdown +) obtained from the peak frequency fup in the frequency rising section and the peak frequency fdown in the frequency falling section of this peak pair. fup) / 2 (2) and fd = 2 · V · f0 / C (3) fr = 4 · fm · Δf / C · R (4) where V: relative velocity, C: speed of light, f0: Center frequency, f
m: modulation frequency, Δf: frequency shift width of, for example, 75 MH
z, R: Relative distance R and relative velocity V are simultaneously obtained from After that, the size of the safety distance and the relative distance, which is predetermined by the risk determiner 32 or calculated according to the running state of the vehicle, is compared. If the safety distance is less than or equal to the safety distance, it is determined to be dangerous, The driver is notified by the alarm device 34.

【0010】ところで、相対速度周波数fdは(3)式
から明らかなように単純に相対速度Vの関数である。し
かし相対距離周波数frは(4)式から三角波の変調周
波数fmにより変化することがわかる。また、周波数上
昇区間,周波数下降区間夫々は、ΔT=1/2・fmで
ある。各区間でFFT信号処理を行ってピークの周波数
を算出する際、サンプリング周期を一定とすると隣接す
るピークの周波数差Δfつまり分解能はΔf=1/ΔT
であるため、Δf=2・fmと表わされる。上記の周波
数差Δfとして現われる相対速度周波数fdから得られ
る相対速度の分解能ΔVdは図3の実線に示す如く変調周
波数fmが大なるほど大きくなる。つまり、変調周波数
fmが小さいほど相対速度の分解能が小さく良好とな
る。
By the way, the relative velocity frequency fd is simply a function of the relative velocity V, as is apparent from the equation (3). However, it can be seen from the equation (4) that the relative distance frequency fr changes depending on the modulation frequency fm of the triangular wave. Further, ΔT = 1/2 · fm in each of the frequency rising section and the frequency falling section. When the peak frequency is calculated by performing FFT signal processing in each section, if the sampling period is constant, the frequency difference Δf between adjacent peaks, that is, the resolution is Δf = 1 / ΔT.
Therefore, Δf = 2 · fm. The relative velocity resolution ΔVd obtained from the relative velocity frequency fd appearing as the frequency difference Δf increases as the modulation frequency fm increases, as shown by the solid line in FIG. That is, the smaller the modulation frequency fm, the smaller the resolution of the relative velocity and the better.

【0011】従って、変調周波数fmが小さいときは相
対速度周波数fdが相対距離周波数frに対して相対的
に大きくなり、相対速度Vの計測精度が良くなる。しか
し、複数の目標物体があった場合、図4(A)に示す周
波数上昇区間(up区間)のピークu1,u2,u3夫
々と、図4(B)に示す周波数下降区間(down区間)の
ピークd1,d2,d3夫々との周波数の差が大きくな
り、各目標物体の相対速度が大きな場合には、例えばピ
ークd1の周波数がピークd2の周波数より大となった
りして、ピークu1とd1、ピークu2とd2、ピーク
u3とd3夫々のペアリングが困難となる。
Therefore, when the modulation frequency fm is small, the relative speed frequency fd becomes relatively large with respect to the relative distance frequency fr, and the measurement accuracy of the relative speed V is improved. However, when there are a plurality of target objects, the peaks u1, u2, and u3 in the frequency increasing section (up section) shown in FIG. 4A and the frequency falling section (down section) shown in FIG. When the difference between the frequencies of the peaks d1, d2 and d3 becomes large and the relative speed of each target object is large, for example, the frequency of the peak d1 becomes larger than the frequency of the peak d2, and the peaks u1 and d1. , It is difficult to pair the peaks u2 and d2 and the peaks u3 and d3.

【0012】これとは逆に、変調周波数fmが大きいと
きは、相対速度周波数fdが相対距離周波数frに対し
て相対的に小さくなり、相対速度Vの計測精度が悪くな
る。しかし、複数の目標物体があった場合、図5(A)
に示す周波数上昇区間(up区間)のピークu1,u
2,u3夫々と、図5(B)に示す周波数下降区間(do
wn区間) のピークd1,d2,d3夫々との周波数の差
が小さくなり、各目標物体の相対速度が大きくてもピー
クu1,u2,u3の周波数の並びとピークd1,d
2,d3の周波数の並びが同じ順番となるため各目標物
体のペアリングが容易である。
On the contrary, when the modulation frequency fm is high, the relative velocity frequency fd becomes relatively small with respect to the relative distance frequency fr, and the measurement accuracy of the relative velocity V deteriorates. However, when there are a plurality of target objects, FIG.
Peaks u1 and u in the frequency increase section (up section) shown in
2 and u3, and the frequency falling section (do
(during wn interval), the frequency difference between the peaks d1, d2, d3 becomes small, and even if the relative velocity of each target object is large, the arrangement of the frequencies of the peaks u1, u2, u3 and the peaks d1, d3.
Since the frequencies of 2 and d3 are arranged in the same order, pairing of each target object is easy.

【0013】図6はターゲット認識器30が実行する変
調周波数変更手段M2としての変調周波数制御処理の一
実施例のフローチャートを示す。同図中、ステップS1
0では変調電圧発生器14に対してコマンドを発行し、
変調周波数fmを例えば780Hzである周波数fmM
に設定する。
FIG. 6 shows a flow chart of an embodiment of the modulation frequency control processing as the modulation frequency changing means M2 executed by the target recognizer 30. In the figure, step S1
At 0, a command is issued to the modulation voltage generator 14,
The modulation frequency fm is, for example, a frequency fm of 780 Hz.
Set to.

【0014】次にステップS20でターゲット認識を行
う。ここでは、FFT信号処理器28から供給されるパ
ワースペクトラムを取り込み、周波数上昇区間と周波数
下降区間とのピーク対毎、つまり目標物体毎に(1)式
〜(4)式を用いて各目標物体の相対距離R及び相対速
度V(Vは接近方向を正とする)を計算する。
Next, in step S20, target recognition is performed. Here, the power spectrum supplied from the FFT signal processor 28 is taken in, and each target object is expressed by using the formulas (1) to (4) for each peak pair of the frequency rising section and the frequency falling section, that is, for each target object. The relative distance R and the relative velocity V of V are calculated.

【0015】この後、ステップS30に進み、認識され
た目標物体との相対距離DT が閾値DL 未満か否かを判
別する。ここで、目標物体が単一の場合はその相対距離
RをDT とし、目標物体が複数の場合は最小の相対距離
RをDT とする。また、閾値DL は例えば30mとす
る。
After that, the process proceeds to step S30, and it is determined whether or not the relative distance D T to the recognized target object is less than the threshold value D L. Here, when there is a single target object, its relative distance R is D T, and when there are multiple target objects, the minimum relative distance R is D T. The threshold value D L is, for example, 30 m.

【0016】DT <DL の場合は目標物体がDL 未満の
近距離にあるため、危険回避のための時間が短かく、こ
の目標物体の相対速度を高精度に知る必要があり、かつ
近距離ではレーダビームの広がりが小さく複数の目標物
体を検出する可能性が低いので、ステップS40に進ん
で変調電圧発生器14に対してコマンドを発行し、変調
周波数fmを例えば390Hzである周波数fmLに設
定してステップS20に進む。
When D T <D L , the target object is in a short distance less than D L , so that the time for avoiding danger is short and it is necessary to know the relative speed of the target object with high accuracy. Since the spread of the radar beam is small at a short distance and a plurality of target objects are unlikely to be detected, the process proceeds to step S40 to issue a command to the modulation voltage generator 14 to set the modulation frequency fm to the frequency fmL of 390 Hz, for example. And the process proceeds to step S20.

【0017】ステップS30でDT ≧DL の場合はステ
ップS50に進み、相対距離DT が閾値DH (DH は例
えば70m)を越えるか否かを判別する。ここで、DT
>D H の場合は目標物体がDH 以上の遠距離にあるた
め、危険回避のための時間が長く、この目標物体の相対
速度を高精度に知る必要がなく、かつ、遠距離ではレー
ダビームの広がりが大きく複数の目標物体を検出する可
能性が高くペアリングを容易にする必要性が高いので、
ステップS60に進んで変調電圧発生器14に対してコ
マンドを発行し、変調周波数fmを例えば1500Hz
である周波数fmHに設定してステップS20に進む。
D in step S30T≧ DLIn case of
Relative distance DTIs the threshold DH(DHIs an example
For example, it is determined whether or not it exceeds 70 m. Where DT
> D HIf the target object is DHOver a long distance
Therefore, it takes a long time to avoid danger,
You do not need to know the speed with high accuracy,
The spread of the beam is large and it is possible to detect multiple target objects.
Since there is a high need for high efficiency and easy pairing,
In step S60, the modulation voltage generator 14 is
Issue a command and set the modulation frequency fm to 1500 Hz, for example.
To the frequency fmH, and the process proceeds to step S20.

【0018】また、ステップS50でDT <DH の場合
はステップS70に進み、目標物体がDL からDH まで
の範囲の中距離にあるため、変調周波数fmを周波数f
mMに設定してステップS20に進む。これによって、
目標物体との相対距離DT がDL ≦DT ≦DH の中距離
の場合は変調周波数fmは図7に実線で示すfmMとさ
れる。相対距離DT がDT <D L の近距離の場合は変調
周波数fmは図7に一点鎖線で示すfmLとされ、これ
により、相対速度周波数fdは相対距離周波数frに対
して相対的に大きくなり、目標物体の相対速度を高精度
に検出することができる。
In step S50, DT<DHin the case of
Proceeds to step S70, and the target object is DLTo DHUntil
The modulation frequency fm is equal to the frequency f
Set to mM and proceed to step S20. by this,
Relative distance D to the target objectTIs DL≤DT≤DHMiddle distance
In the case of, the modulation frequency fm is fmM shown by the solid line in FIG.
Be done. Relative distance DTIs DT<D LModulation for close range of
The frequency fm is set to fmL indicated by the alternate long and short dash line in FIG.
Therefore, the relative velocity frequency fd is compared with the relative distance frequency fr.
The relative speed of the target object with high accuracy
Can be detected.

【0019】また、相対距離DT がDT >DH の遠距離
の場合は変調周波数fmは図7に破線で示すfmHとさ
れ、これにより、相対速度周波数fdは相対距離周波数
frに対して相対的に小さくなり、複数の目標物体の周
波数上昇区間と周波数下降区間におけるピークの周波数
的な並びが同じ順番となり、ピークのペアリングが容易
となる。
Further, when the relative distance D T is a long distance D T > D H , the modulation frequency fm is set to fmH shown by a broken line in FIG. 7, whereby the relative velocity frequency fd is relative to the relative distance frequency fr. It becomes relatively small, and the peaks in the frequency rising section and the frequency falling section of the plurality of target objects are arranged in the same frequency order, which facilitates pairing of the peaks.

【0020】[0020]

【発明の効果】上述の如く、本発明によれば、算出され
た目標物体の相対距離に基づいて、搬送波の変調周波数
を変更するため、目標物体が近距離にあるときは変調周
波数を小さくして相対速度周波数を相対的に大きくする
ことで目標物体の相対速度を高精度に検出でき、また目
標物体が遠距離にあるときは変調周波数を大きくして相
対速度周波数を相対的に小さくすることで複数の目標物
体の周波数上昇区間と周波数下降区間とのピークのペア
リングが容易となり、実用上きわめて有用である。
As described above, according to the present invention, the modulation frequency of the carrier wave is changed based on the calculated relative distance of the target object. Therefore, when the target object is in a short distance, the modulation frequency is reduced. The relative velocity of the target object can be detected with high accuracy by increasing the relative velocity frequency relatively, and the modulation frequency is increased and the relative velocity frequency is relatively decreased when the target object is at a long distance. Thus, the pairing of peaks between the frequency rising section and the frequency falling section of a plurality of target objects becomes easy, which is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明装置のブロック図である。FIG. 2 is a block diagram of the device of the present invention.

【図3】変調周波数と分解能との関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing the relationship between modulation frequency and resolution.

【図4】周波数上昇区間及び周波数下降区間のビート信
号の対応を示す図である。
FIG. 4 is a diagram showing correspondence between beat signals in a frequency rising section and a frequency falling section.

【図5】周波数上昇区間及び周波数下降区間のビート信
号の対応を示す図である。
FIG. 5 is a diagram showing correspondence between beat signals in a frequency rising section and a frequency falling section.

【図6】変調周波数制御処理のフローチャートである。FIG. 6 is a flowchart of a modulation frequency control process.

【図7】変調信号波形を示す図である。FIG. 7 is a diagram showing a modulation signal waveform.

【符号の説明】[Explanation of symbols]

10 搬送波発生器 12 周波数変調器 14 変調電圧発生器 16 方向性結合器 18 送信アンテナ 20 受信アンテナ 22 ミキサ 24 増幅器 26 フィルタ 28 FFT信号処理器 30 ターゲット認識器 34 警報器 M1 レーダ装置本体 M2 変調周波数変更手段 10 carrier wave generator 12 frequency modulator 14 modulation voltage generator 16 directional coupler 18 transmission antenna 20 reception antenna 22 mixer 24 amplifier 26 filter 28 FFT signal processor 30 target recognizer 34 alarm device M1 radar device body M2 modulation frequency change means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周波数変調された搬送波を送受信し、周
波数上昇区間及び周波数下降区間夫々のビート信号のパ
ワースペクトラムで対をなすピークの周波数から目標物
体との相対距離及び相対速度を算出する車載用レーダ装
置において、 上記算出された目標物体の相対距離に基づいて、搬送波
の変調周波数を変更する変調周波数変更手段を有するこ
とを特徴とする車載用レーダ装置。
1. A vehicle-mounted device that transmits and receives a frequency-modulated carrier wave and calculates a relative distance and a relative velocity with respect to a target object from frequencies of a pair of peaks in a power spectrum of a beat signal in each of a frequency rising section and a frequency falling section. The radar apparatus has a modulation frequency changing means for changing the modulation frequency of a carrier wave based on the calculated relative distance of the target object.
JP07015375A 1995-02-01 1995-02-01 Automotive radar equipment Expired - Fee Related JP3104558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07015375A JP3104558B2 (en) 1995-02-01 1995-02-01 Automotive radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07015375A JP3104558B2 (en) 1995-02-01 1995-02-01 Automotive radar equipment

Publications (2)

Publication Number Publication Date
JPH08211145A true JPH08211145A (en) 1996-08-20
JP3104558B2 JP3104558B2 (en) 2000-10-30

Family

ID=11887037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07015375A Expired - Fee Related JP3104558B2 (en) 1995-02-01 1995-02-01 Automotive radar equipment

Country Status (1)

Country Link
JP (1) JP3104558B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905458A (en) * 1996-11-19 1999-05-18 Honda Giken Kogyo Kabushiki Kaisha FM radar apparatus
US5910786A (en) * 1997-10-02 1999-06-08 Mitsubishi Denki Kabushiki Kaisha On-vehicle radar
US6040795A (en) * 1997-07-15 2000-03-21 Mitsubishi Denki Kabushiki Kaisha Vehicle-mounted radar apparatus
US6043773A (en) * 1997-07-15 2000-03-28 Mitsubishi Denki Kabushiki Kaisha Vehicle-mounted radar apparatus
US6067038A (en) * 1997-08-21 2000-05-23 Mitsubishi Denki Kabushiki Kaisha Vehicle-mounted radar apparatus
EP1319961A1 (en) * 2001-12-13 2003-06-18 Murata Manufacturing Co., Ltd. FM-CW radar system
US7843381B2 (en) 2007-12-19 2010-11-30 Mitsubishi Electric Corporation Radar device
JP2014062804A (en) * 2012-09-21 2014-04-10 Mitsubishi Electric Corp Fmcw radar apparatus, and signal processing method for fmcw radar
US10775502B2 (en) 2016-11-10 2020-09-15 Ricoh Company, Ltd Distance-measuring apparatus, mobile object, robot, three-dimensional measuring device, surveillance camera, and distance-measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061842A (en) * 2019-11-20 2021-05-28 삼성전자주식회사 Moving robot device and method for controlling moving robot device thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905458A (en) * 1996-11-19 1999-05-18 Honda Giken Kogyo Kabushiki Kaisha FM radar apparatus
US6040795A (en) * 1997-07-15 2000-03-21 Mitsubishi Denki Kabushiki Kaisha Vehicle-mounted radar apparatus
US6043773A (en) * 1997-07-15 2000-03-28 Mitsubishi Denki Kabushiki Kaisha Vehicle-mounted radar apparatus
US6067038A (en) * 1997-08-21 2000-05-23 Mitsubishi Denki Kabushiki Kaisha Vehicle-mounted radar apparatus
US5910786A (en) * 1997-10-02 1999-06-08 Mitsubishi Denki Kabushiki Kaisha On-vehicle radar
US6753805B2 (en) 2001-12-13 2004-06-22 Murata Manufacturing Co., Ltd. Radar system
EP1319961A1 (en) * 2001-12-13 2003-06-18 Murata Manufacturing Co., Ltd. FM-CW radar system
EP1477826A2 (en) * 2001-12-13 2004-11-17 Murata Manufacturing Co., Ltd. FM-CW radar system
EP1477826A3 (en) * 2001-12-13 2004-12-01 Murata Manufacturing Co., Ltd. FM-CW radar system
KR100645771B1 (en) * 2001-12-13 2006-11-13 가부시키가이샤 무라타 세이사쿠쇼 Radar
US7843381B2 (en) 2007-12-19 2010-11-30 Mitsubishi Electric Corporation Radar device
JP2014062804A (en) * 2012-09-21 2014-04-10 Mitsubishi Electric Corp Fmcw radar apparatus, and signal processing method for fmcw radar
US10775502B2 (en) 2016-11-10 2020-09-15 Ricoh Company, Ltd Distance-measuring apparatus, mobile object, robot, three-dimensional measuring device, surveillance camera, and distance-measuring method

Also Published As

Publication number Publication date
JP3104558B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JP4462060B2 (en) FMCW radar equipment
JP4232570B2 (en) Radar equipment for vehicles
JP3726441B2 (en) Radar equipment
WO2015190565A1 (en) Radar device using chirp wave, and method for signal processing in radar device
JP3753652B2 (en) Mispairing judgment and signal processing method of FM-CW radar
JP5616693B2 (en) Radar system for vehicle and target height determination method
JP2001166042A (en) Fmcw radar device
EP1385020B1 (en) Fm-cw radar apparatus
JP6375744B2 (en) On-vehicle radar device and notification system
US6825799B2 (en) Radar apparatus equipped with abnormality detection function
JP5097467B2 (en) Automotive radar equipment
JP3104558B2 (en) Automotive radar equipment
JP3975883B2 (en) Distance prediction method and radar apparatus
JP2002071792A (en) Radar device and automobile control system
WO2014104298A1 (en) On-vehicle radar device
JP2003043139A (en) Millimeter wave radar device
JP3060790B2 (en) Intermittent frequency modulation radar device
JP2874826B2 (en) Detection state evaluation device for FM-CW radar device
JPH11271428A (en) Fm-cw radar apparatus
JPH0763843A (en) Vehicle mounted radar equipment
JP3471392B2 (en) Frequency modulation radar equipment
JP3104599B2 (en) FM-CW radar device
WO2011136281A1 (en) In-vehicle radar device and in-vehicle radar system
JP3178329B2 (en) Object detection device
JP2001183451A (en) Radar device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees