JPH08211090A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH08211090A
JPH08211090A JP7017173A JP1717395A JPH08211090A JP H08211090 A JPH08211090 A JP H08211090A JP 7017173 A JP7017173 A JP 7017173A JP 1717395 A JP1717395 A JP 1717395A JP H08211090 A JPH08211090 A JP H08211090A
Authority
JP
Japan
Prior art keywords
mass
displacement
pair
mass part
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017173A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7017173A priority Critical patent/JPH08211090A/en
Publication of JPH08211090A publication Critical patent/JPH08211090A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE: To improve degree in design freedom of damping power by composing a magnetic damping mechanism of a pair of magnets causing resiliency. CONSTITUTION: When acceleration is applied upward, a mass part 1 is displaced upward. By this, the gap between a pair of magnets 6 and 7 disposed on the upper side is narrowed, so that the resiliency acting between the pair of magnets 6 and 7 is increased, so that the mass part 1 is pushed downward. When the acceleration is applied downward, the gap between a pair of magnets 6 and 8 disposed on the lower side is narrowed so that the resiliency acting between the pair of magnets 6 and 8 is increased, so that the mass part 1 is pushed upward. Thus, the mass part 1 is displaced in accordance with the acceleration applied from outside so that acceleration is detected, and, as an action suppressing the displacement of the mass part 1, the resiliency between two pairs of magnets 6 and 7, and 6 and 8 act, thus a damping action is caused against the displacement of the mass part 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加速度センサに関し、
特にそのダンピング機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor,
Particularly, it relates to the damping mechanism.

【0002】[0002]

【従来の技術】加速度センサには、外力に応じて変位す
る質量部を枠体内に梁部で支持し、この質量部の変位で
生じる歪量を歪ゲージで検出することにより加速度を検
知する歪ゲージ方式や、質量部の変位を静電容量の変化
として検出することにより加速度を検知する静電容量方
式等がある。
2. Description of the Related Art In an acceleration sensor, a mass part that is displaced in response to an external force is supported by a beam part inside a frame, and a strain gauge detects the amount of strain generated by the displacement of the mass part to detect acceleration. There are a gauge system and a capacitance system that detects acceleration by detecting displacement of the mass section as a change in capacitance.

【0003】このような加速度センサにおける従来のダ
ンピング機構としては、例えばオイルの粘性を利用して
質量部の変位に対しダンピング作用を持たせるようにし
たオイル方式のものがある。また密閉空間に収容した空
気を質量部の動きで圧縮することにより質量部の変位に
対しダンピング力を発生させるようにしたエア方式のも
のがある。
As a conventional damping mechanism in such an acceleration sensor, for example, there is an oil type one in which the viscosity of oil is utilized to give a damping action to the displacement of the mass portion. Further, there is an air system in which the damping force is generated with respect to the displacement of the mass part by compressing the air contained in the closed space by the movement of the mass part.

【0004】[0004]

【発明が解決しようとする課題】従来の加速度センサに
おいてオイル方式のダンピング機構にあっては、加速度
センサが自動車等に用いられた場合、オイルの粘性がそ
の使用環境温度−30℃〜+100℃の範囲で2桁から
3桁位変化する。このため、低温側では著しく粘度が増
大して位相遅れ特性が大幅に悪化してしまう。また高温
側では粘度が低下して感度の周波数特性が増大してしま
うという問題点があった。
In the conventional acceleration sensor of the oil type damping mechanism, when the acceleration sensor is used in an automobile or the like, the viscosity of the oil is such that the working environment temperature is −30 ° C. to + 100 ° C. It changes from 2 to 3 digits in the range. Therefore, on the low temperature side, the viscosity remarkably increases and the phase delay characteristic deteriorates significantly. Further, there is a problem that the viscosity is lowered on the high temperature side and the frequency characteristic of sensitivity is increased.

【0005】また、エア方式のダンピング機構にあって
は、空気の粘性は温度が100℃変化しても3%程度し
か変化せず、ダンピング力の温度依存性は僅かである。
しかし、質量部の僅かの変位により空気を圧縮してダン
ピング力を生じさせる構造であるため、質量部と枠体間
の間隙を狭くする、質量部の面積を大きくする、或いは
空気の通路を絞り込むような枠体及び質量部構造とする
等、構造上の制約が存在し、またダンピング力の設計自
由度が低いという問題点があった。
Further, in the air type damping mechanism, the viscosity of the air changes only about 3% even if the temperature changes by 100 ° C., and the temperature dependence of the damping force is small.
However, since the structure is such that air is compressed by a slight displacement of the mass part to generate a damping force, the gap between the mass part and the frame is narrowed, the area of the mass part is increased, or the air passage is narrowed. There is a problem in that there are structural restrictions such as such a frame body and mass part structure, and the degree of freedom in designing the damping force is low.

【0006】本発明は、このような従来の問題点に着目
してなされたもので、質量部や枠体部等に構造上の制約
をもたらすことなく、ダンピング力の設計自由度が高
く、またダンピング力の温度依存性が著しく小さい磁気
ダンピング機構を備えた加速度センサを提供することを
目的とする。
The present invention has been made by paying attention to such a conventional problem and has a high degree of freedom in designing a damping force without causing structural restrictions on a mass portion, a frame portion and the like. An object of the present invention is to provide an acceleration sensor provided with a magnetic damping mechanism in which the temperature dependence of damping force is extremely small.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、外力に応じて変位する質量
部を枠体部内に梁部で支持し、該梁部には前記質量部の
変位で生じる歪量を検出する歪ゲージを設けてなる加速
度センサにおいて、前記質量部における変位方向両側部
と前記枠体部との間にそれぞれ反発力を生じさせる磁石
対を設置し、該磁石対により磁気ダンピング機構を構成
してなることを要旨とする。
In order to solve the above-mentioned problems, the invention according to claim 1 supports a mass part which is displaced according to an external force in a frame part by a beam part, and the beam part has the above-mentioned structure. In an acceleration sensor provided with a strain gauge that detects the amount of strain generated by displacement of the mass portion, a magnet pair that generates a repulsive force between both side portions of the mass portion in the displacement direction and the frame body portion is installed, The gist is that the pair of magnets constitutes a magnetic damping mechanism.

【0008】請求項2記載の発明は、外力に応じて変位
する質量部を枠体部内に梁部で支持し、前記質量部と前
記枠体部の間には該質量部の変位を静電容量の変化とし
て検出する電極対を設けてなる加速度センサにおいて、
前記質量部における変位方向両側部と前記枠体部との間
にそれぞれ反発力を生じさせる磁石対を設置し、該磁石
対により磁気ダンピング機構を構成してなることを要旨
とする。
According to a second aspect of the present invention, a mass portion that is displaced according to an external force is supported by a beam portion inside the frame body portion, and the displacement of the mass portion is electrostatically disposed between the mass portion and the frame body portion. In an acceleration sensor provided with an electrode pair that detects as a change in capacitance,
A gist is that a pair of magnets that generate a repulsive force is installed between both sides of the mass portion in the displacement direction and the frame body portion, and the pair of magnets constitutes a magnetic damping mechanism.

【0009】請求項3記載の発明は、外力に応じて変位
する質量部を複数の磁石対により3次元方向に発生させ
た各平衡反発力で浮き状態で枠体内に保持するとともに
前記複数の磁石対で磁気ダンピング機構を構成し、前記
質量部と前記枠体との間には該質量部の少なくとも2次
元方向の変位をそれぞれ静電容量の変化として検出する
複数の電極対を設けてなることを要旨とする。
According to a third aspect of the present invention, the mass portion that is displaced in response to an external force is held in the frame body in a floating state by the respective equilibrium repulsive forces generated in a three-dimensional direction by the plurality of magnet pairs, and the plurality of magnets are held. A pair of magnetic damping mechanisms are provided, and a plurality of electrode pairs are provided between the mass portion and the frame body to detect displacement of the mass portion in at least a two-dimensional direction as a change in capacitance. Is the gist.

【0010】請求項4記載の発明は、上記請求項2又は
3記載の加速度センサにおいて、前記質量部の一方向の
変位に対し静電容量値が相対的に増減する2組の前記電
極対を設け、該2組の電極対の静電容量値の差に対応し
た差動出力を検出出力としてなることを要旨とする。
According to a fourth aspect of the present invention, in the acceleration sensor according to the second or third aspect, two sets of the electrode pairs whose capacitance value increases or decreases relative to displacement of the mass portion in one direction are provided. The gist is that the differential output corresponding to the difference between the capacitance values of the two pairs of electrodes is provided as the detection output.

【0011】請求項5記載の発明は、上記請求項1,2
又は3記載の加速度センサにおいて、前記磁石対は希土
類磁石で構成してなることを要旨とする。
The invention according to claim 5 is the same as claims 1 and 2 above.
Alternatively, in the acceleration sensor described in 3, the gist is that the magnet pair is composed of a rare earth magnet.

【0012】[0012]

【作用】請求項1記載の発明において、印加加速度に応
じて質量部が変位し梁部に歪が発生する。この歪量が歪
ゲージで検出され、その抵抗変化率から印加加速度の大
きさが検知される。このような加速度検出作用時に、加
速度の印加方向と反対側の質量部側部と枠体部との間に
設けられた磁石対の反発力が増大し、質量部の変位が抑
えられてダンピング作用が生じる。磁石対の反発力、即
ちダンピング力は印加加速度の大きさに応じて自在に変
るので、低加速度から高加速度まで有効にダンピング作
用が生じる。
According to the first aspect of the invention, the mass portion is displaced according to the applied acceleration, and the beam portion is distorted. The amount of strain is detected by a strain gauge, and the magnitude of applied acceleration is detected from the rate of change in resistance. At the time of such acceleration detection action, the repulsive force of the magnet pair provided between the side of the mass part and the frame part on the side opposite to the direction in which the acceleration is applied increases, and the displacement of the mass part is suppressed to suppress the damping action. Occurs. Since the repulsive force of the magnet pair, that is, the damping force, freely changes according to the magnitude of the applied acceleration, the damping action effectively occurs from low acceleration to high acceleration.

【0013】請求項2記載の発明においては、印加加速
度に応じた質量部の変位が電極対により静電容量の変化
として検出され、この静電容量の変化から印加加速度の
大きさが検出される。このような加速度検出作用時に、
磁気ダンピング機構により上記と同様のダンピング作用
が生じる。
According to the second aspect of the invention, the displacement of the mass portion according to the applied acceleration is detected by the electrode pair as a change in the electrostatic capacitance, and the magnitude of the applied acceleration is detected from the change in the electrostatic capacitance. . During such acceleration detection action,
The magnetic damping mechanism produces the same damping action as described above.

【0014】請求項3記載の発明においては、少なくと
も2次元方向の印加加速度がそれぞれ静電容量の変化と
して検出されて印加加速度の大きさが検知される。この
加速度検出作用時に、何れの次元方向の印加加速度に対
しても、これに対応した磁気ダンピング機構が働いて有
効にダンピング作用が生じる。
According to the third aspect of the invention, the applied acceleration in at least the two-dimensional direction is detected as a change in the capacitance, and the magnitude of the applied acceleration is detected. At the time of this acceleration detecting action, a magnetic damping mechanism corresponding to the applied acceleration in any of the dimensional directions works to effectively produce a damping action.

【0015】請求項4記載の発明において、質量部の例
えば変位方向両側部に、質量部の変位に対し静電容量値
が相対的に増減する2組の電極対を設け、この2組の電
極対の静電容量値の差に対応した差動出力を検出出力と
することにより、2倍の大きさの検出出力が得られると
ともに温度ドリフトを含むノイズを打消すことが可能と
なる。
In the invention according to claim 4, two sets of electrode pairs whose capacitance values increase or decrease relative to the displacement of the mass part are provided on both sides of the mass part in the displacement direction, for example. By using the differential output corresponding to the difference between the capacitance values of the pair as the detection output, it is possible to obtain the detection output of double the magnitude and cancel the noise including the temperature drift.

【0016】請求項5記載の発明において、各磁石対を
希土類磁石で構成することにより、希土類磁石は温度変
化に対する磁束密度の変化が極めて小さいことからダン
ピング力の温度依存性を著しく小さくすることが可能と
なる。
According to the invention of claim 5, by forming each magnet pair with a rare earth magnet, the rare earth magnet has a very small change in the magnetic flux density with respect to the temperature change, so that the temperature dependence of the damping force can be remarkably reduced. It will be possible.

【0017】[0017]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の第1実施例を示す図である。本
実施例は、加速度検知部が片持ち梁構造で歪ゲージ検知
方式となっている。まず加速度センサの構成を説明する
と、外力に応じて変位する質量部1が枠体3内に梁部2
で支持され、梁部2上には質量部1の変位で生じる歪量
を検出する歪ゲージ4が取り付けられている。5は梁部
2を枠体3に固定させるための固定部材である。また梁
部2が、地球Gが印加された状態で水平になるように質
量部1の一部を形成する磁石6が質量部1に一体化され
ている。磁石6は厚み方向に着磁されており、例えば図
の上側がN極で下側がS極になっている。磁石6の両極
と対向する枠体3の位置にそれぞれ磁石7,8が配置さ
れている。磁石7,8はそれぞれ上側がS極、下側がN
極で、磁石6と磁石7の対向面及び磁石6と磁石8の対
向面はそれぞれ同一極性となって反発力が生じるように
なっており、これらの磁石6,7,8で磁気ダンピング
機構が構成されている。磁石6,7,8には温度特性の
小さい希土類磁石が用いられており、例えば温度が10
0℃変化しても磁束の変化は僅か3%程度であり、ダン
ピング力の温度依存性は著しく小さくなっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention. In this embodiment, the acceleration detection unit has a cantilever structure and is a strain gauge detection system. First, the structure of the acceleration sensor will be described. The mass portion 1 that is displaced according to an external force is provided in the frame body 3 with the beam portion 2
A strain gauge 4 for detecting the amount of strain generated by the displacement of the mass portion 1 is mounted on the beam portion 2. Reference numeral 5 is a fixing member for fixing the beam portion 2 to the frame body 3. Further, a magnet 6 forming a part of the mass part 1 is integrated with the mass part 1 so that the beam part 2 becomes horizontal when the earth G is applied. The magnet 6 is magnetized in the thickness direction. For example, the upper side of the drawing is the N pole and the lower side is the S pole. Magnets 7 and 8 are arranged at the positions of the frame body 3 facing both poles of the magnet 6, respectively. The magnets 7 and 8 each have an S pole on the upper side and an N pole on the lower side.
At the poles, the opposing surfaces of the magnet 6 and the magnet 7 and the opposing surface of the magnet 6 and the magnet 8 have the same polarity to generate a repulsive force. It is configured. Rare earth magnets having small temperature characteristics are used as the magnets 6, 7 and 8, and the temperature is 10
Even if the temperature changes by 0 ° C., the change in the magnetic flux is only about 3%, and the temperature dependence of the damping force is significantly reduced.

【0018】次に、上述のように構成された加速度セン
サの作用を説明する。検出する加速度が図1のZ方向
(図の上下方向)に加わると、この印加加速度に応じて
質量部1が変位し、梁部2に歪が発生する。この歪量が
歪ゲージ4で検出され、その抵抗変化率から加速度が検
出される。このような加速度検出作用時に磁気ダンピン
グ機構が次のように動作する。加速度が上方向に加わる
と、質量部1が上方向に変位する。この質量部1の上方
向への変位により上側に配置された磁石対6,7間の間
隙が狭まり、この磁石対6,7の間に作用する反発力が
増大して質量部1は下方向に押しやられる。また加速度
が下方向に加わった場合は下側に配置された磁石対6,
8間の間隙が狭まり、この磁石対6,8の間に作用する
反発力が増大して質量部1は上方向に押しやられる。こ
のように外部から加えられた加速度に応じて質量部1が
変位し、加速度が検出されるが、この質量部1の変位を
抑える作用として各磁石対6と7、6と8の間の反発力
が働き、質量部1の変位に対しダンピング作用が生じ
る。
Next, the operation of the acceleration sensor configured as described above will be described. When the acceleration to be detected is applied in the Z direction in FIG. 1 (the vertical direction in the drawing), the mass portion 1 is displaced according to the applied acceleration, and the beam portion 2 is distorted. This strain amount is detected by the strain gauge 4, and the acceleration is detected from the rate of change in resistance. During such acceleration detection operation, the magnetic damping mechanism operates as follows. When acceleration is applied in the upward direction, the mass unit 1 is displaced in the upward direction. Due to the upward displacement of the mass portion 1, the gap between the magnet pairs 6 and 7 arranged on the upper side is narrowed, the repulsive force acting between the magnet pairs 6 and 7 increases, and the mass portion 1 moves downward. Pushed to. When the acceleration is applied downward, the magnet pair 6 arranged on the lower side is
The gap between the magnets 8 is narrowed, the repulsive force acting between the magnet pairs 6, 8 is increased, and the mass portion 1 is pushed upward. In this way, the mass part 1 is displaced according to the acceleration applied from the outside, and the acceleration is detected. As a function of suppressing the displacement of the mass part 1, the repulsion between the magnet pairs 6 and 7 and 6 and 8 is performed. A force acts, and a damping action occurs with respect to the displacement of the mass portion 1.

【0019】上述したように、本実施例によれば、検出
する加速度の大きさに応じて、即ち質量部1の変位の大
きさに応じて磁気ダンピング機構のダンピング力が自在
に変るので±2Gという低Gセンサとして或いは±50
Gより高い高Gセンサと機能するような磁気ダンピング
機構を質量部1及び梁部2等の構造を極端に変更するこ
となく実現することができる。また磁気ダンピング機構
は、非接触で質量部1を押えるストッパとして機能させ
ることができる。即ち、落下衝撃等で過大Gが加わった
場合、質量部の過大変位を抑えて梁部の破断を防止する
ため従来はストッパを別部品として設けていたが、本実
施例では磁気ダンピング機構にそのままストッパとして
の機能を持たせることができ、かつ非接触式であるため
質量部及び梁部等に損傷をもたらすことがない。
As described above, according to the present embodiment, the damping force of the magnetic damping mechanism is freely changed according to the magnitude of the acceleration to be detected, that is, the magnitude of the displacement of the mass portion 1, so that ± 2 G is obtained. As a low G sensor or ± 50
A magnetic damping mechanism that functions as a high G sensor higher than G can be realized without extremely changing the structures of the mass portion 1, the beam portion 2, and the like. Further, the magnetic damping mechanism can function as a stopper that presses the mass unit 1 in a non-contact manner. That is, when excessive G is applied due to a drop impact or the like, a stopper is conventionally provided as a separate component in order to prevent the displacement of the mass portion and prevent the beam portion from breaking. However, in the present embodiment, the magnetic damping mechanism is provided. Since it can function as a stopper as it is and is a non-contact type, it does not cause damage to the mass portion, the beam portion, and the like.

【0020】図2には、本発明の第2実施例を示す。本
実施例は、加速度検知部が前記と同様に片持ち梁構造で
静電容量方式となっている。なお、図2において前記図
1における部材及び部位と同一ないし均等のものは、前
記と同一符号を以って示し、重複した説明を省略する。
本実施例では、質量部1における変位方向両側部(図2
の質量部1の上下)と枠体3との間に、質量部1の変位
を静電容量値の変化として検出するための円形状の電極
対9aと9b、10aと10bがそれぞれ設けられてい
る。電極対9aと9bでコンデンサC1 が形成され、電
極対10aと10bでコンデンサC2 が形成されてい
る。2つのコンデンサC1 ,C2 の静電容量値は、後述
する図5に示すように交流ブリッジ等で電圧信号に変換
されたのち差動増幅器に入力され、その2つの静電容量
値の差に対応した差動出力をとることにより2倍の検出
出力が得られるようになっている。11aと11b及び
12aと12bはストレーキャパシタンスを固定してし
まうためのガード電極対であり、検出用の電極対9aと
9b、10aと10bの周囲にそれぞれリング形状に形
成されている。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the acceleration detecting section has a cantilever structure and is of the electrostatic capacity type as in the above. 2 that are the same as or equivalent to the members and parts in FIG. 1 are designated by the same reference numerals as those used above, and duplicate explanations are omitted.
In this embodiment, both sides of the mass portion 1 in the displacement direction (see FIG.
Between the upper and lower parts of the mass part 1) and the frame body 3, circular electrode pairs 9a and 9b, 10a and 10b for detecting the displacement of the mass part 1 as a change in capacitance value are provided, respectively. There is. The electrode pair 9a and 9b form a capacitor C 1 , and the electrode pair 10a and 10b form a capacitor C 2 . The capacitance values of the two capacitors C 1 and C 2 are converted into voltage signals by an AC bridge or the like and then input to a differential amplifier as shown in FIG. By taking the differential output corresponding to, the doubled detection output can be obtained. 11a and 11b and 12a and 12b are guard electrode pairs for fixing the stray capacitance, and are formed in a ring shape around the detection electrode pairs 9a and 9b, 10a and 10b, respectively.

【0021】次に、本実施例の加速度センサの作用を説
明する。印加加速度の大きさに応じて質量部1が変位す
ると、両コンデンサC1 ,C2 のうちの一方のコンデン
サの電極間隙が狭まり他方のコンデンサの電極間隙が増
大して両コンデンサC1 ,C2 の静電容量値は相対的に
増減する。2つのコンデンサC1 ,C2 の電極対9aと
9b、10aと10bの形状、位置、間隙は対称的に同
一に形成されているので、2つのコンデンサC1 ,C2
の電極間隙の変化に対する静電容量値の変化の相関関係
は同一特性となる。この2つのコンデンサC1 ,C2
静電容量値を交流ブリッジ等で電圧信号に変換したのち
差動増幅器に入力して差動出力をとることにより2倍の
検出出力が得られる。さらに2つのコンデンサC1 ,C
2 は同一のコンデンサであるため、ゼロ点の温度ドリフ
トは略同一の特性となり、差動増幅器に入力することに
より、この温度ドリフトを含むノイズが打消される。こ
のような加速度検出作用時における各磁石対6と7、6
と8によるダンピング作用は、前記第1実施例の場合と
略同様である。
Next, the operation of the acceleration sensor of this embodiment will be described. When the mass part 1 is displaced according to the magnitude of the applied acceleration, the electrode gap of one of the capacitors C 1 and C 2 is narrowed, and the electrode gap of the other capacitor is increased to increase the capacitance of both capacitors C 1 and C 2. The capacitance value of is relatively increased or decreased. Since the electrode pairs 9a and 9b, 10a and 10b of the two capacitors C 1 and C 2 are symmetrically formed in the same shape, position and gap, the two capacitors C 1 and C 2 are
The correlation of the change in the capacitance value with respect to the change in the electrode gap has the same characteristic. The capacitance values of the two capacitors C 1 and C 2 are converted into voltage signals by an AC bridge or the like and then input to a differential amplifier to obtain a differential output, so that a double detection output can be obtained. Two more capacitors C 1 and C
Since 2 is the same capacitor, the temperature drift at the zero point has almost the same characteristics, and the noise including this temperature drift is canceled by inputting it to the differential amplifier. During such acceleration detection operation, each magnet pair 6 and 7, 6
The damping action by 8 and 8 is substantially the same as in the case of the first embodiment.

【0022】図3乃至図5には、本発明の第3実施例を
示す。本実施例は、質量部が磁気的な反発力により枠体
の内部空間に浮いた構造で、2次元方向の加速度を静電
容量で検知する方式となっている。図3、図4におい
て、15は質量部、16は枠体であり、質量部15は、
X方向には2組の磁石対17aと17b、18aと18
bによる平衡反発力で、Y方向には2組の磁石対19a
と19b、20aと20bによる平衡反発力で、またZ
方向には2組の磁石対21aと21b、22aと22b
による平衡反発力で枠体16の内部空間に浮いた状態で
保持されている。また2組の磁石対17aと17b、1
8aと18bでX方向の磁気ダンピング機構が構成さ
れ、2組の磁石対19aと19b、20aと20bでY
方向の磁気ダンピング機構が構成され、2組の磁石対2
1aと21b、22aと22bでZ方向の磁気ダンピン
グ機構が構成されている。質量部15におけるX変位方
向両側部と枠体16との間には質量部15のX方向変位
を静電容量値の変化として検出するための電極対23a
と23bからなるコンデンサC3 と電極対24aと24
bからなるコンデンサC4 が設けられ、質量部15にお
けるY変位方向両側部と枠体16との間には質量部15
のY方向変位を静電容量値の変化として検出するための
電極対25aと25bからなるコンデンサC1 と電極対
26aと26bからなるコンデンサC2 が設けられてい
る。27はアース電極短絡部品でありばね体で形成され
ている。図5に示すように、質量部15のX方向変位検
出用の2つのコンデンサC3 ,C4 の静電容量値は交流
ブリッジ28c,28dでそれぞれ電圧信号に変換され
たのち差動増幅器29bに入力され、その2つの静電容
量値の差に対応した差動出力をとることにより2倍の検
出出力が得られるようになっている。これと同様に、質
量部15のY方向変位検出用の2つのコンデンサC1
2 の静電容量値は交流ブリッジ28a,28bでそれ
ぞれ電圧信号に変換されたのち差動増幅器29aに入力
され、2倍の検出出力が得られるようになっている。
3 to 5 show a third embodiment of the present invention. The present embodiment has a structure in which the mass portion floats in the internal space of the frame due to the magnetic repulsive force, and is a method of detecting acceleration in the two-dimensional direction by electrostatic capacitance. 3 and 4, 15 is a mass part, 16 is a frame body, and the mass part 15 is
Two pairs of magnets 17a and 17b, 18a and 18 in the X direction
Equilibrium repulsive force due to b, and two magnet pairs 19a in the Y direction.
And 19b, and 20a and 20b by the equilibrium repulsive force, and Z
Two pairs of magnets 21a and 21b, 22a and 22b in the direction
It is held in a state of floating in the internal space of the frame body 16 by the equilibrium repulsive force of. Two pairs of magnets 17a and 17b, 1
8a and 18b form a magnetic damping mechanism in the X direction, and two pairs of magnets 19a and 19b and 20a and 20b form a Y
Direction magnetic damping mechanism is configured, and two pairs of magnets 2
A magnetic damping mechanism in the Z direction is constituted by 1a and 21b and 22a and 22b. An electrode pair 23a for detecting the displacement of the mass portion 15 in the X direction as a change in electrostatic capacitance value is provided between both sides of the mass portion 15 in the X displacement direction and the frame body 16.
And a capacitor C 3 and electrode pairs 24a and 24
The capacitor C 4 composed of b is provided, and the mass portion 15 is provided between both sides of the mass portion 15 in the Y displacement direction and the frame body 16.
There is provided a capacitor C 1 composed of electrode pairs 25a and 25b and a capacitor C 2 composed of electrode pairs 26a and 26b for detecting the displacement in the Y direction as a change in capacitance value. Reference numeral 27 is a ground electrode short-circuit component, which is formed of a spring body. As shown in FIG. 5, the capacitance values of the two capacitors C 3 and C 4 for detecting the displacement of the mass portion 15 in the X direction are converted into voltage signals by the AC bridges 28c and 28d, respectively, and then converted into a differential amplifier 29b. By inputting the differential output corresponding to the difference between the two electrostatic capacitance values, a double detection output can be obtained. Similarly, the two capacitors C 1 for detecting the displacement of the mass portion 15 in the Y direction,
The capacitance value of C 2 is converted into a voltage signal by the AC bridges 28a and 28b and then input to the differential amplifier 29a so that a double detection output can be obtained.

【0023】コンデンサC1 ,C2 によるY方向印加加
速度の検出作用及びコンデンサC3,C4 によるX方向
印加加速度の検出作用は、前記第2実施例の場合と略同
様であり、また2組の磁石対17aと17b、18aと
18bによる質量部15のX方向変位に対するダンピン
グ作用及び2組の磁石対19aと19b、20aと20
bによる質量部15のY方向変位に対するダンピング作
用は、前記第1実施例の場合と略同様である。なお、本
実施例では、質量部15におけるZ変位方向両側部と枠
体16との間にもそれぞれ電極対を設けることにより、
3次元方向の加速度検知方式とすることもできる。
The action of detecting the applied acceleration in the Y direction by the capacitors C 1 and C 2 and the action of detecting the applied acceleration in the X direction by the capacitors C 3 and C 4 are substantially the same as in the case of the second embodiment, and two sets are used. Of the pair of magnets 17a and 17b, 18a and 18b against the displacement of the mass portion 15 in the X direction and two pairs of magnets 19a and 19b, 20a and 20
The damping action for the displacement of the mass portion 15 in the Y direction by b is substantially the same as in the case of the first embodiment. In this embodiment, electrode pairs are provided between both side portions of the mass portion 15 in the Z displacement direction and the frame body 16.
A three-dimensional acceleration detection method can also be used.

【0024】[0024]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、外力に応じて変位する質量部を枠体部内に
梁部で支持し、該梁部には前記質量部の変位で生じる歪
量を検出する歪ゲージを設けてなる加速度センサにおい
て、前記質量部における変位方向両側部と前記枠体部と
の間にそれぞれ反発力を生じさせる磁石対を設置し、該
磁石対により磁気ダンピング機構を構成したため、歪ゲ
ージ方式の加速度センサにおいて磁気ダンピング機構は
磁石対を設置するだけの比較的簡単な構造であり、また
磁石の材質、形状、着磁条件を変えることにより漏れ磁
束、云い換えれば磁石対としての反発力が決ることから
質量部や枠体部等に構造上の制約をもたらすことなくダ
ンピング力の設計自由度が高いという効果が得られる。
As described above, according to the first aspect of the present invention, the mass portion that is displaced according to an external force is supported by the beam portion inside the frame body portion, and the beam portion is displaced by the displacement of the mass portion. In an acceleration sensor provided with a strain gauge that detects the amount of strain generated in, a pair of magnets that generate a repulsive force between the both sides in the displacement direction of the mass portion and the frame portion are installed, and the magnet pair is used. Since the magnetic damping mechanism is configured, in the strain gauge type acceleration sensor, the magnetic damping mechanism has a relatively simple structure in which only a magnet pair is installed, and by changing the magnet material, shape, and magnetizing condition, leakage magnetic flux, In other words, since the repulsive force as the magnet pair is determined, the effect of having a high degree of freedom in designing the damping force can be obtained without causing structural restrictions on the mass portion, the frame body portion and the like.

【0025】請求項2記載の発明によれば、外力に応じ
て変位する質量部を枠体部内に梁部で支持し、前記質量
部と前記枠体部の間には該質量部の変位を静電容量の変
化として検出する電極対を設けてなる加速度センサにお
いて、前記質量部における変位方向両側部と前記枠体部
との間にそれぞれ反発力を生じさせる磁石対を設置し、
該磁石対により磁気ダンピング機構を構成したため、静
電容量方式の加速度センサにおいて磁気ダンピング機構
は上記と同様の効果が得られる。
According to the second aspect of the present invention, the mass part which is displaced according to the external force is supported by the beam part inside the frame body part, and the displacement of the mass part is provided between the mass part and the frame body part. In an acceleration sensor provided with an electrode pair that detects as a change in electrostatic capacitance, a magnet pair that generates a repulsive force between both side portions of the mass portion in the displacement direction and the frame body portion is installed,
Since the magnetic damping mechanism is composed of the pair of magnets, the magnetic damping mechanism in the capacitance type acceleration sensor has the same effect as described above.

【0026】請求項3記載の発明によれば、外力に応じ
て変位する質量部を複数の磁石対により3次元方向に発
生させた各平衡反発力で浮き状態で枠体内に保持すると
ともに前記複数の磁石対で磁気ダンピング機構を構成
し、前記質量部と前記枠体との間には該質量部の少なく
とも2次元方向の変位をそれぞれ静電容量の変化として
検出する複数の電極対を設けたため、簡単な構造で静電
容量方式により少なくとも2次元方向の印加加速度の大
きさを検知することができる。また上記何れの方向の印
加加速度に対しても前記請求項1記載の発明の効果と同
様の効果を有する磁気ダンピング機構により有効にダン
ピング作用を生じさせることができる。
According to the third aspect of the present invention, the mass portion that is displaced according to an external force is held in the frame body in a floating state by the respective equilibrium repulsive forces generated in the three-dimensional direction by the plurality of magnet pairs, and the plurality of the plurality of magnet portions are held. A magnetic damping mechanism is constituted by the magnet pair, and a plurality of electrode pairs for detecting at least two-dimensional displacement of the mass part as a change in capacitance are provided between the mass part and the frame body. The magnitude of the applied acceleration in at least the two-dimensional direction can be detected by the capacitance method with a simple structure. Further, the damping action can be effectively generated by the magnetic damping mechanism having the same effect as the effect of the invention according to the first aspect with respect to the applied acceleration in any of the directions.

【0027】請求項4記載の発明によれば、前記質量部
の一方向の変位に対し静電容量値が相対的に増減する2
組の前記電極対を設け、該2組の電極対の静電容量値の
差に対応した差動出力を検出出力としたため、上記請求
項2又は3記載の発明の効果に加えて、さらに2倍の大
きさの検出出力を得ることができるとともにその検出出
力から温度ドリフトを含むノイズを打消すことができ
る。
According to the fourth aspect of the invention, the capacitance value increases or decreases relative to the displacement of the mass portion in one direction.
Since a pair of the electrode pairs is provided and the differential output corresponding to the difference in electrostatic capacitance value of the two pairs of electrodes is used as the detection output, in addition to the effect of the invention according to claim 2 or 3, It is possible to obtain a detection output having a size twice that of the detection output and cancel the noise including the temperature drift from the detection output.

【0028】請求項5記載の発明によれば、前記磁石対
は希土類磁石で構成したため、上記請求項1,2又は3
記載の各発明の効果に加えて、さらに希土類磁石は温度
変化に対する磁束密度の変化が極めて小さいことからダ
ンピング力の温度依存性を著しく小さくすることができ
る。
According to the invention described in claim 5, since the magnet pair is composed of a rare earth magnet, the above-mentioned claim 1, 2 or 3
In addition to the effects of the inventions described, the rare earth magnet has a very small change in the magnetic flux density with respect to the temperature change, so that the temperature dependence of the damping force can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加速度センサの第1実施例の内部
構成を示す構成図である。
FIG. 1 is a configuration diagram showing an internal configuration of a first embodiment of an acceleration sensor according to the present invention.

【図2】本発明の第2実施例の内部構成を示す構成図で
ある。
FIG. 2 is a configuration diagram showing an internal configuration of a second embodiment of the present invention.

【図3】本発明の第3実施例の内部構成を示す構成図で
ある。
FIG. 3 is a configuration diagram showing an internal configuration of a third embodiment of the present invention.

【図4】図3のA−A線断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【図5】上記第3実施例において2組のコンデンサの静
電容量による差動出力方式を示すブロック図である。
FIG. 5 is a block diagram showing a differential output system using the capacitance of two sets of capacitors in the third embodiment.

【符号の説明】[Explanation of symbols]

1,15 質量部 2 梁部 3,16 枠体 4 歪ゲージ 6,7,8,17a,17b,18a,18b,19
a,19b,20a,20b,21a,21b,22
a,22b 磁石 9a,9b,10a,10b,23a,23b,24
a,24b,25a,25b,26a,26b 電極
1,15 Mass part 2 Beam part 3,16 Frame body 4 Strain gauge 6,7,8,17a, 17b, 18a, 18b, 19
a, 19b, 20a, 20b, 21a, 21b, 22
a, 22b Magnets 9a, 9b, 10a, 10b, 23a, 23b, 24
a, 24b, 25a, 25b, 26a, 26b electrodes

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 外力に応じて変位する質量部を枠体部内
に梁部で支持し、該梁部には前記質量部の変位で生じる
歪量を検出する歪ゲージを設けてなる加速度センサにお
いて、前記質量部における変位方向両側部と前記枠体部
との間にそれぞれ反発力を生じさせる磁石対を設置し、
該磁石対により磁気ダンピング機構を構成してなること
を特徴とする加速度センサ。
1. An acceleration sensor comprising: a mass part that is displaced according to an external force; and a beam part that supports the mass part in a frame part, and the beam part is provided with a strain gauge that detects a strain amount caused by the displacement of the mass part. , A pair of magnets that respectively generate a repulsive force between both side portions in the displacement direction of the mass portion and the frame body portion are installed,
An acceleration sensor characterized in that a magnetic damping mechanism is constituted by the magnet pair.
【請求項2】 外力に応じて変位する質量部を枠体部内
に梁部で支持し、前記質量部と前記枠体部の間には該質
量部の変位を静電容量の変化として検出する電極対を設
けてなる加速度センサにおいて、前記質量部における変
位方向両側部と前記枠体部との間にそれぞれ反発力を生
じさせる磁石対を設置し、該磁石対により磁気ダンピン
グ機構を構成してなることを特徴とする加速度センサ。
2. A mass part that is displaced according to an external force is supported by a beam part inside a frame part, and the displacement of the mass part is detected as a change in capacitance between the mass part and the frame part. In an acceleration sensor provided with an electrode pair, a magnet pair for generating a repulsive force is installed between both side portions of the mass portion in the displacement direction and the frame portion, and the magnet pair constitutes a magnetic damping mechanism. An acceleration sensor characterized by:
【請求項3】 外力に応じて変位する質量部を複数の磁
石対により3次元方向に発生させた各平衡反発力で浮き
状態で枠体内に保持するとともに前記複数の磁石対で磁
気ダンピング機構を構成し、前記質量部と前記枠体との
間には該質量部の少なくとも2次元方向の変位をそれぞ
れ静電容量の変化として検出する複数の電極対を設けて
なることを特徴とする加速度センサ。
3. A mass part which is displaced according to an external force is held in a frame by a balance repulsive force generated in a three-dimensional direction by a plurality of magnet pairs in a floating state, and a magnetic damping mechanism is formed by the plurality of magnet pairs. A plurality of pairs of electrodes are provided between the mass section and the frame body to detect a displacement of the mass section in at least a two-dimensional direction as a change in electrostatic capacitance, respectively. .
【請求項4】 前記質量部の一方向の変位に対し静電容
量値が相対的に増減する2組の前記電極対を設け、該2
組の電極対の静電容量値の差に対応した差動出力を検出
出力としてなることを特徴とする請求項2又は3記載の
加速度センサ。
4. Two sets of said electrode pairs whose electrostatic capacitance values increase and decrease relative to displacement of said mass part in one direction are provided,
The acceleration sensor according to claim 2 or 3, wherein a differential output corresponding to a difference in electrostatic capacitance value between the pair of electrodes is used as a detection output.
【請求項5】 前記磁石対は希土類磁石で構成してなる
ことを特徴とする請求項1,2又は3記載の加速度セン
サ。
5. The acceleration sensor according to claim 1, wherein the magnet pair is composed of a rare earth magnet.
JP7017173A 1995-02-03 1995-02-03 Acceleration sensor Pending JPH08211090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017173A JPH08211090A (en) 1995-02-03 1995-02-03 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017173A JPH08211090A (en) 1995-02-03 1995-02-03 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH08211090A true JPH08211090A (en) 1996-08-20

Family

ID=11936572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017173A Pending JPH08211090A (en) 1995-02-03 1995-02-03 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH08211090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289009B1 (en) * 2004-09-15 2007-10-30 Sandia Corporation Eddy-current-damped microelectromechanical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289009B1 (en) * 2004-09-15 2007-10-30 Sandia Corporation Eddy-current-damped microelectromechanical switch

Similar Documents

Publication Publication Date Title
CN108375371B (en) Four-degree-of-freedom weak coupling resonant accelerometer based on modal localization effect
US8073167B2 (en) Comb sense microphone
EP1603830B1 (en) An accelerometer
US20200355722A1 (en) Mems accelerometer
JP6295435B2 (en) MEMS device
CN108450010B (en) Improved micro-electromechanical accelerometer device
JP6732012B2 (en) Accelerometer
Zou et al. Non-linear frequency noise modulation in a resonant MEMS accelerometer
JP2018531377A6 (en) Improved microelectromechanical accelerometer
EP3754343B1 (en) Mems inertial sensor with high resistance to stiction
CN204256053U (en) A kind of micro mechanical vibration formula electric-field sensor
Xiao et al. Silicon micro-accelerometer with mg resolution, high linearity and large frequency bandwidth fabricated with two mask bulk process
CN113092817B (en) High-precision and wide-range acceleration sensor with switchable detection modes and control method thereof
JPH08211090A (en) Acceleration sensor
US10656173B2 (en) Micromechanical structure for an acceleration sensor
US5524488A (en) Flux control groove
US8746064B2 (en) Micromechanical sensor having a bandpass characteristic
EP3376162B1 (en) Mems out of plane actuator
JP2002048813A (en) Capacitance-type acceleration sensor
US5856772A (en) Low stress magnet interface
US5532665A (en) Low stress magnet interface
US20190195909A1 (en) Closed loop accelerometer
Mohammed et al. High dynamic range Z-axis hybrid spring MEMS capacitive accelerometer
US20230204622A1 (en) Dual and triple axis accelerometers
Bais et al. Structure design and fabrication of an area-changed bulk micromachined capacitive accelerometer