JPH08210998A - Method for measuring concentration distribution of element in solid, and measuring sample - Google Patents

Method for measuring concentration distribution of element in solid, and measuring sample

Info

Publication number
JPH08210998A
JPH08210998A JP7304275A JP30427595A JPH08210998A JP H08210998 A JPH08210998 A JP H08210998A JP 7304275 A JP7304275 A JP 7304275A JP 30427595 A JP30427595 A JP 30427595A JP H08210998 A JPH08210998 A JP H08210998A
Authority
JP
Japan
Prior art keywords
concentration
solid
measuring
sample
concentration distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7304275A
Other languages
Japanese (ja)
Other versions
JP3439584B2 (en
Inventor
Kokurin Riyuu
国林 劉
Eiji Uchida
英次 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP30427595A priority Critical patent/JP3439584B2/en
Publication of JPH08210998A publication Critical patent/JPH08210998A/en
Application granted granted Critical
Publication of JP3439584B2 publication Critical patent/JP3439584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To measure the concentration distribution of an impurity element in a solid with high precision by forming, on a solid containing a concentration-known element, a film of the same material containing the same concentration-known same element, and determining the concentration distribution of the concentration-unknown element with the concentration-known element as a reference. CONSTITUTION: On a silicon substrate (solid) 101 treated in the same manufacturing condition as the actual case after ion-planting a concentration-unknown impurity element, a film of polysilicon 102 of the same material as the substrate 101 is formed, for example, in a thickness of 50-1000nm. The same concentration-known impurity element as the one implanted to the substrate 101 is ion-implanted to form a measuring sample. When this sample is subjected to secondary ion mass analysis, and the concentration distribution of the impurity element is measured, since the dose of the profile 105 of the reference (concentration-known) impurity element and the thickness of the polysilicon 102 are known, the profile 103 of the impurity element in the substrate 101 can be obtained from the data only by measuring the same position once in the depth direction of the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体中の元素の濃度
分布、特に半導体素子製造に於いて、半導体基板中の不
純物の濃度分布を高精度で測定する方法及び測定用の試
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for highly accurately measuring the concentration distribution of elements in a solid, particularly the concentration distribution of impurities in a semiconductor substrate in the manufacture of semiconductor devices, and a sample for the measurement. is there.

【0002】[0002]

【従来の技術】半導体素子の製造に於いては、イオン注
入や固層拡散などによって不純物層を形成する必要があ
る。近年の半導体装置の微細化にともない、不純物層も
より高精度に制御する必要がでてきた。そのためには、
不純物元素の濃度分布を、より高精度に測定する技術が
不可欠である。従来の測定方法として特に広く用いられ
てきたのが二次イオン質量分析(SIMS)である。こ
の方法は、目的とする不純物元素のマトリックス元素に
対する相対感度係数(RSF)を用いて、定量的検討を
行うものである。通常は、別途作成した濃度既知の標準
試料に於ける相対感度係数(RSF)により、測定しよ
うとする試料中の元素の濃度分布を求めるものであっ
た。
2. Description of the Related Art In manufacturing a semiconductor device, it is necessary to form an impurity layer by ion implantation, solid layer diffusion or the like. With the recent miniaturization of semiconductor devices, it has become necessary to control the impurity layer with higher precision. for that purpose,
A technique for measuring the concentration distribution of impurity elements with higher accuracy is essential. Secondary ion mass spectrometry (SIMS) has been particularly widely used as a conventional measurement method. This method is a quantitative study using the relative sensitivity coefficient (RSF) of the target impurity element to the matrix element. Usually, the concentration distribution of the element in the sample to be measured is obtained by the relative sensitivity coefficient (RSF) of a standard sample of separately known concentration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、二次イ
オン質量分析(SIMS)において一次ビームに対する
角度などの測定条件の変化が、相対感度係数(RSF)
の変動をもたらす。実際に測定しようとする試料と標準
試料とのわずかな形態の違い、例えば表面の凹凸や構造
上の違いなどにより、測定精度の低下をもたらす。した
がって、従来の測定方法、及び測定に用いられる試料で
は、不純物の濃度分布を高精度に測定することが困難で
あるという問題点があった。
However, in secondary ion mass spectrometry (SIMS), a change in measurement conditions such as an angle with respect to the primary beam causes a change in relative sensitivity coefficient (RSF).
Bring fluctuations. A slight difference in morphology between the sample to be actually measured and the standard sample, for example, unevenness of the surface or difference in structure causes a decrease in measurement accuracy. Therefore, the conventional measurement method and the sample used for the measurement have a problem that it is difficult to measure the impurity concentration distribution with high accuracy.

【0004】この発明は、以上述べた問題点を除去し、
二次イオン質量分析(SIMS)を用いながら、高精度
に不純物の濃度分布を測定する方法、及び測定に用いら
れる試料を提供することを目的とする。
The present invention eliminates the above-mentioned problems,
An object of the present invention is to provide a method for measuring the concentration distribution of impurities with high accuracy while using secondary ion mass spectrometry (SIMS), and a sample used for the measurement.

【0005】[0005]

【課題を解決するための手段】この発明は、上記目的を
達成するために、固体中元素の濃度分布の測定方法に於
いて、単一の測定試料内に同一の元素で濃度未知の領域
と濃度既知の領域とを形成し、両者を質量分析により測
定することにより、濃度既知の領域を標準として、濃度
未知の領域の元素濃度分布を求めるようにしたものであ
る。
In order to achieve the above object, the present invention provides a method for measuring the concentration distribution of elements in a solid, in which a single measurement sample has a region of unknown concentration with the same element. By forming a region of known concentration and measuring both by mass spectrometry, the element concentration distribution of the region of unknown concentration is obtained using the region of known concentration as a standard.

【0006】また、固体中元素の濃度分布の測定用試料
に於いて、濃度未知の元素が含まれる前記固体と同一材
料の固体上に、濃度既知の同一元素が含まれた膜を形成
するようにしたものである。
Further, in a sample for measuring the concentration distribution of elements in a solid, a film containing the same element of known concentration is formed on a solid of the same material as the solid containing the element of unknown concentration. It is the one.

【0007】さらに、固体中元素の濃度分布の測定用試
料に於いて、濃度未知の元素が含まれる固体の同一面内
に、濃度既知の同一元素が含まれた領域を形成するよう
にしたものである。
Further, in a sample for measuring the concentration distribution of elements in a solid, a region containing the same element of known concentration is formed in the same plane of the solid containing the element of unknown concentration. Is.

【0008】また、固体中元素の濃度分布を測定する方
法であって、濃度既知の膜を溶解し、その溶液を化学質
量分析により測定して標準とし、その後濃度未知の領域
を質量分析により測定するようにしたものである。
[0008] A method for measuring the concentration distribution of elements in a solid, in which a film of known concentration is dissolved, the solution is measured by chemical mass spectrometry as a standard, and then the region of unknown concentration is measured by mass spectrometry. It is something that is done.

【0009】[0009]

【作用】この発明によれば、二次イオン質量分析(SI
MS)で元素の濃度分布を測定する際に、単一の試料で
標準試料と測定用試料の両方が測定できるため、相対感
度係数(RSF)の変動が極めて小さく抑えられる。従
って、上記問題点を解決できるのである。
According to the present invention, the secondary ion mass spectrometry (SI
When measuring the element concentration distribution by MS), both the standard sample and the measurement sample can be measured with a single sample, so that the fluctuation of the relative sensitivity coefficient (RSF) can be suppressed to an extremely small value. Therefore, the above problems can be solved.

【0010】また、この発明によれば、標準試料を化学
分析によって定量分析するようにしたので二次イオン質
量分析(SIMS)によって真の値により近い濃度分布
を、求めることができる。
Further, according to the present invention, since the standard sample is quantitatively analyzed by the chemical analysis, the concentration distribution closer to the true value can be obtained by the secondary ion mass spectrometry (SIMS).

【0011】[0011]

【実施例】以下、この発明の実施例を図面を参照しなが
ら詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1(a)は、この発明の第1の実施例を
示す測定用試料の工程断面図である。
FIG. 1A is a process sectional view of a measurement sample showing a first embodiment of the present invention.

【0013】(1)に示す101は、シリコン基板であり
イオン注入等により不純物元素が導入される。この基板
は、イオン注入条件や、その後の熱処理条件等によるプ
ロファイルの変化を測定し解析しようとするものであ
る。そこで、(2)に示すように基板に実際に半導体装置
を製造するプロセス条件と同じ条件の処理を施す。全て
の処理を終了した後、(3)のBで示される通りシリコン
基板と同一材料であるポリシリコン102を所定の膜厚
例えば50〜1000nm形成する。そして、(4)に示
すとおりこのポリシリコン102に前記不純物元素と同
一の元素を所定の条件でイオン注入する。
Reference numeral 101 shown in (1) is a silicon substrate into which an impurity element is introduced by ion implantation or the like. This substrate is intended to measure and analyze changes in profile due to ion implantation conditions and subsequent heat treatment conditions. Therefore, as shown in (2), the substrate is processed under the same process conditions as those for actually manufacturing a semiconductor device. After all the processes are completed, as shown by B in (3), polysilicon 102, which is the same material as the silicon substrate, is formed to have a predetermined film thickness, for example, 50 to 1000 nm. Then, as shown in (4), the same element as the impurity element is ion-implanted into the polysilicon 102 under predetermined conditions.

【0014】こうして形成された測定用試料を、二次イ
オン質量分析(SIMS)によって不純物元素の濃度分
布を測定した結果を、図1(b)に示す。同図に於い
て、104は標準の不純物元素のプロファイルである。
また103は、実際に測定したい不純物元素のプロファ
イルである。ここで、標準となる104の不純物元素の
ドーズ量とポリシリコン102の膜厚が事前にわかって
いるので、そのドーズ量と膜厚方向の情報から103の
不純物元素のプロファイルが求められる。同一箇所を、
試料の深さ方向に一回測定するのみで、標準と濃度分布
未知の部分の両方のプロファイルが求められるので、相
対感度係数(RSF)の変動はない。
FIG. 1B shows the result of measuring the concentration distribution of the impurity element in the measurement sample thus formed by secondary ion mass spectrometry (SIMS). In the figure, reference numeral 104 is a standard impurity element profile.
Further, 103 is a profile of the impurity element to be actually measured. Here, since the standard 104 dose of the impurity element and the film thickness of the polysilicon 102 are known in advance, the profile of the 103 impurity element can be obtained from the dose and the information in the film thickness direction. The same place,
There is no change in the relative sensitivity coefficient (RSF), since the profile of both the standard and the part where the concentration distribution is unknown can be obtained by measuring only once in the depth direction of the sample.

【0015】図2(a)は、この発明の第2の実施例を
示す測定用試料の工程断面図である。(1)に示す201
は、シリコン基板でありイオン注入等により不純物元素
が導入される。この基板は、イオン注入条件や、その後
の熱処理条件等によるプロファイルの変化を測定し解析
しようとするものである。そこで、(2)に示すように基
板に実際に半導体装置を製造するプロセス条件と同じ条
件の処理を施す。全ての処理を終了した後、(3)の20
2で示される通りシリコン基板と同一材料であるポリシ
リコンを所定の膜厚例えば50〜1000nmCVD法
等で形成する。この膜形成時に、前記不純物と同じ元素
がドープされる様なガスを導入することにより、所定濃
度の不純物元素が均一に含まれる、内部標準としてのB
部が形成される。また202は、その他の材料例えば、
CVD法によるアモルファス・シリコン層、MBEによ
るエピタキシャル・シリコン層等でも良い。
FIG. 2A is a process sectional view of a measurement sample showing a second embodiment of the present invention. 201 shown in (1)
Is a silicon substrate into which an impurity element is introduced by ion implantation or the like. This substrate is intended to measure and analyze changes in profile due to ion implantation conditions and subsequent heat treatment conditions. Therefore, as shown in (2), the substrate is processed under the same process conditions as those for actually manufacturing a semiconductor device. After completing all the processing, 20 of (3)
As shown by 2, the polysilicon, which is the same material as the silicon substrate, is formed with a predetermined film thickness, for example, 50 to 1000 nm by CVD. At the time of forming this film, by introducing a gas into which the same element as the impurity is doped, B as an internal standard containing an impurity element of a predetermined concentration uniformly is introduced.
Parts are formed. 202 is another material, for example,
An amorphous silicon layer formed by the CVD method, an epitaxial silicon layer formed by MBE, or the like may be used.

【0016】こうして形成された測定用試料を、二次イ
オン質量分析(SIMS)によって不純物元素の濃度分
布を測定した結果を、図2(b)に示す。同図に於い
て、204は標準の不純物元素のプロファイルである。
また203は、実際に測定したい不純物元素のプロファ
イルである。ここで、標準となる202の不純物元素は
一定であり202の膜厚が事前にわかっているので、そ
の濃度と膜厚方向の情報から201の不純物元素のプロ
ファイルが求められる。同一箇所を、試料の深さ方向に
一回測定するのみで、標準と濃度分布未知の部分の両方
のプロファイルが求められるので、相対感度係数(RS
F)の変動はない。
FIG. 2B shows the result of measuring the concentration distribution of the impurity element in the measurement sample thus formed by secondary ion mass spectrometry (SIMS). In the figure, reference numeral 204 is a standard impurity element profile.
Further, 203 is a profile of the impurity element to be actually measured. Here, since the impurity element 202 serving as a standard is constant and the film thickness of 202 is known in advance, the profile of the impurity element 201 can be obtained from the concentration and information in the film thickness direction. Since the profile of both the standard and the part where the concentration distribution is unknown can be obtained only by measuring the same location once in the depth direction of the sample, the relative sensitivity coefficient (RS
There is no change in F).

【0017】図3(a)は、この発明の第3の実施例を
示す測定用基板の平面図であり、300はシリコン基板
である。図に示されるように、フォトリソグラフィーに
より同一基板内に2種類の異なる領域を形成する。この
実施例では、領域301と302である。一方の領域を
標準用領域、もう一方を測定用領域とする。301領域
が測定用領域の場合、302領域を公知のフォトリソグ
ラフィー法によりレジスト・パターンで覆い、301領
域に選択的に不純物元素を、イオン注入等によって導入
する。レジスト・パターンを除去した後、基板に実際に
半導体装置を製造するプロセス条件と同じ条件の処理を
施す。全ての処理を終了した後、今度は301領域をレ
ジスト・パターンで覆い、302領域に選択的に301
領域と同じ不純物元素を所定の条件でイオン注入する。
レジスト・パターンを除去した後、前記基板から301
領域と302領域の双方を含む測定用試料を切り出す。
FIG. 3 (a) is a plan view of a measuring substrate showing a third embodiment of the present invention, and 300 is a silicon substrate. As shown in the figure, two types of different regions are formed in the same substrate by photolithography. In this example, areas 301 and 302. One area is a standard area and the other is a measurement area. When the region 301 is a measurement region, the region 302 is covered with a resist pattern by a known photolithography method, and the impurity element is selectively introduced into the region 301 by ion implantation or the like. After removing the resist pattern, the substrate is processed under the same process conditions as those for actually manufacturing a semiconductor device. After all the processing is completed, the 301 area is covered with a resist pattern, and the 302 area is selectively exposed to the 301 area.
The same impurity element as the region is ion-implanted under predetermined conditions.
301 after removing the resist pattern
A measurement sample including both the region and the 302 region is cut out.

【0018】こうして形成された測定用試料を、二次イ
オン質量分析(SIMS)装置の試料ホルダーにセット
する。301、302領域のどちらか一方を測定した
後、試料位置をずらして、他方を測定する。こうして不
純物元素の濃度分布を測定した結果を、図3(b)に示
す。同図に於いて、(あ)は標準の不純物元素のプロフ
ァイルである。また(い)は、実際に測定したい不純物
元素のプロファイルである。標準である302領域の測
定結果に対して、ドーズ量で規格化した相対感度係数
(RSF)を求め、301領域の測定結果に適用すれ
ば、301領域のプロファイルを求めることが出来る。
このように、試料位置をずらすだけで測定できるため、
上述した実施例1、2と同等の精度の測定が可能とな
る。
The measurement sample thus formed is set in the sample holder of the secondary ion mass spectrometry (SIMS) device. After measuring either one of the 301 and 302 regions, the sample position is shifted and the other is measured. The result of measuring the concentration distribution of the impurity element in this manner is shown in FIG. In the figure, (a) is a profile of a standard impurity element. Further, (I) is a profile of the impurity element to be actually measured. If the relative sensitivity coefficient (RSF) normalized by the dose amount is obtained with respect to the measurement result of the 302 area which is the standard and applied to the measurement result of the 301 area, the profile of the 301 area can be obtained.
In this way, it is possible to measure just by shifting the sample position,
It is possible to perform the measurement with the same accuracy as in the first and second embodiments described above.

【0019】図4(a)は、この発明の第4の実施例を
示す測定用基板の平面図であり、400はシリコン基板
である。図に示されるように、第3の実施例と同様に同
一基板を401領域と、402領域を形成する。実施例
3と同じ手法により、402領域をレジスト・パターン
で覆い、401領域のみ選択的に不純物元素を、イオン
注入等により導入する。レジスト・パターンを除去した
後、基板に、実際に半導体装置を製造するプロセス条件
と同じ条件の処理を施す。全ての処理を終了した後、基
板全面にマスクとなる酸化膜をCVD法等で被着する。
次に,401領域をレジスト・パターンで覆い、そのパ
ターンをマスクに酸化膜を選択的に除去する。401領
域のレジスト・パターンを除去した後、露出した402
領域上に、実施例2の202と同様の手法で、所定濃度
の不純物元素が均一に含まれた、内部標準としての40
2領域層を形成する。通常この402領域層の厚さは1
00nm程度であり、基板と同じ材料からなる。最後
に、401領域上の酸化膜を除去した後、前記基板から
401領域と402領域の双方を含む測定用試料を切り
出す。なお、この実施例では、マスクとして酸化膜を取
り上げたが、窒化膜等基板に対してエッチングの選択比
のとれる材料であればよい。またマスクの形成法も、公
知のスパッタリング等でも良い。
FIG. 4A is a plan view of a measuring substrate showing a fourth embodiment of the present invention, and 400 is a silicon substrate. As shown in the drawing, similar to the third embodiment, the same substrate is formed with 401 region and 402 region. By the same method as in Example 3, the 402 region is covered with a resist pattern, and the impurity element is selectively introduced into only the 401 region by ion implantation or the like. After removing the resist pattern, the substrate is processed under the same process conditions as those for actually manufacturing a semiconductor device. After completing all the processes, an oxide film serving as a mask is deposited on the entire surface of the substrate by the CVD method or the like.
Next, the 401 region is covered with a resist pattern, and the oxide film is selectively removed using the pattern as a mask. Exposed 402 after removing the resist pattern in the region 401
By a method similar to 202 of the second embodiment, the impurity element of a predetermined concentration was uniformly contained in the region and 40 as an internal standard.
A two-region layer is formed. Usually the thickness of this 402 region layer is 1
It is about 00 nm and is made of the same material as the substrate. Finally, after removing the oxide film on the 401 region, a measurement sample including both the 401 region and the 402 region is cut out from the substrate. In this embodiment, the oxide film is taken as the mask, but any material such as a nitride film which has a selective etching ratio with respect to the substrate may be used. The mask may be formed by known sputtering or the like.

【0020】こうして形成された測定用試料を、二次イ
オン質量分析(SIMS)装置の試料ホルダーにセット
する。401、402領域のどちらか一方を測定した
後、試料位置をずらして、他方を測定する。こうして不
純物元素の濃度分布を測定した結果を、図4(b)に示
す。同図に於いて、(う)は標準の不純物元素のプロフ
ァイルであり深さ方向にわたって一定である。また
(え)は、実際に測定したい不純物元素のプロファイル
である。標準である402領域層の測定結果に対して、
ドーズ量で規格化した相対感度係数(RSF)を求め、
401領域の測定結果に適用すれば、401領域のプロ
ファイルを求めることが出来る。このように、試料位置
をずらすだけで測定できるため、上述した実施例1、2
と同等の精度の測定が可能となる。
The measurement sample thus formed is set in a sample holder of a secondary ion mass spectrometry (SIMS) device. After measuring one of the 401 and 402 regions, the sample position is shifted and the other is measured. The result of measuring the concentration distribution of the impurity element in this manner is shown in FIG. In the figure, (u) is a profile of a standard impurity element, which is constant over the depth direction. Further, (E) is the profile of the impurity element to be actually measured. For the measurement result of the standard 402 area layer,
Calculate the relative sensitivity coefficient (RSF) normalized by the dose amount,
If applied to the measurement result of the 401 area, the profile of the 401 area can be obtained. In this way, measurement can be performed simply by shifting the sample position.
It is possible to measure with the same accuracy as.

【0021】図5乃至図9に、この発明の第5の実施例
を示す。この例では、上述した実施例とは異なり標準用
の試料部分を、化学分析によって測定する。実施例1、
2と同様に、不純物元素を含む測定用の試料の上部に、
同じ不純物を含む標準用の層を積層させ、SIMS分析
用試料を形成する。同時に不純物を含まない測定用試料
と同質の材料上にSIMS分析用試料の標準用の層と同
一不純物濃度を含む化学分析用の標準用の層を形成す
る。SIMS分析用試料では、この標準用の層は測定し
たい試料と同一の材料でなければならなかったが、この
実施例に於いて、化学分析用の標準用の層では特に材料
を限定しない。しかし、化学分析の際、溶剤に対する溶
解度が測定したい試料と異なる材料が望ましい。
5 to 9 show a fifth embodiment of the present invention. In this example, unlike the above-described example, the standard sample portion is measured by chemical analysis. Example 1,
Similar to 2, above the measurement sample containing the impurity element,
Layers for standards containing the same impurities are stacked to form a sample for SIMS analysis. At the same time, a standard layer for chemical analysis containing the same impurity concentration as the standard layer of the SIMS analysis sample is formed on the same material as the measurement sample containing no impurities. In the sample for SIMS analysis, the standard layer had to be the same material as the sample to be measured, but in this example, the material for the standard layer for chemical analysis is not particularly limited. However, in chemical analysis, a material whose solubility in a solvent is different from that of the sample to be measured is desirable.

【0022】次に、化学分析用の標準用の層を、溶剤に
溶かし化学分析により不純物元素の濃度を測定する。こ
の化学分析で得られた定量値がSIMS分析用試料の標
準用の層の不純物濃度そのものであるのでその値を用い
て、二次イオン質量分析(SIMS)により標準用の層
を有するSIMS測定用試料の測定したい試料部分の元
素の濃度分布を求めることが出来る。
Next, the standard layer for chemical analysis is dissolved in a solvent and the concentration of the impurity element is measured by chemical analysis. Since the quantitative value obtained by this chemical analysis is the impurity concentration itself of the standard layer of the sample for SIMS analysis, the value is used for SIMS measurement having a standard layer by secondary ion mass spectrometry (SIMS). The concentration distribution of the element in the sample portion of the sample to be measured can be obtained.

【0023】図5は、この発明の第5の実施例を示す測
定用試料の工程断面図である。(1)に示す500は、シ
リコン基板であり、イオン注入等により不純物元素が導
入されていない。(2)の501で示される通り、シリコ
ン基板上にシリコン酸化膜501を所定の膜厚、例えば
50〜1000nmCVD法等で形成する。ここでは、
酸化膜を例にとったが、窒化膜など別の膜でも良いし、
形成方法も特に問わない。この膜には前記不純物元素と
同じ元素が導入される。導入した元素の量が分かれば、
導入方法は問わない。
FIG. 5 is a process sectional view of a measurement sample showing a fifth embodiment of the present invention. Reference numeral 500 shown in (1) is a silicon substrate in which an impurity element is not introduced by ion implantation or the like. As indicated by 501 in (2), a silicon oxide film 501 is formed on a silicon substrate by a predetermined film thickness, for example, a CVD method of 50 to 1000 nm. here,
Although the oxide film is used as an example, another film such as a nitride film may be used,
The forming method is also not particularly limited. The same element as the impurity element is introduced into this film. If you know the amount of introduced elements,
The method of introduction does not matter.

【0024】すなわち、イオン注入でも良いし、膜形成
時に同時にドープする方法でも良い。こうして得られた
標準層を溶剤にとかし化学分析を行う。化学分析の方法
としては、誘導結合型発光分析(ICP−AES)や、
誘導結合型質量分析(ICP−MS)またラザフォード
後方散乱(RBS)、中性子放射化分析等が挙げられ
る。ここで、標準層は膜厚と面積が分かっているので、
化学分析の測定値から単位体積、もしくは単位面積あた
りの濃度を求めることが出来る。
That is, ion implantation may be used, or a method of simultaneously doping at the time of film formation may be used. The standard layer thus obtained is dissolved in a solvent for chemical analysis. As the method of chemical analysis, inductively coupled emission spectrometry (ICP-AES),
Inductively coupled mass spectrometry (ICP-MS), Rutherford backscattering (RBS), neutron activation analysis and the like can be mentioned. Here, since the thickness and area of the standard layer are known,
The concentration per unit volume or unit area can be determined from the measured value of chemical analysis.

【0025】次に、二次イオン質量分析(SIMS)に
より標準用の層を有するSIMS分析用試料を測定し、
不純物の相対強度分布を求める。この相対強度に、化学
分析で求めた濃度の値をSIMS分析用試料の標準用の
層の不純物濃度に適応すれば、実際の不純物の分布を求
めることが出来る。つまり、絶対定量が可能となる。
Next, a sample for SIMS analysis having a standard layer is measured by secondary ion mass spectrometry (SIMS),
Obtain the relative intensity distribution of impurities. If the concentration value obtained by the chemical analysis is applied to this relative intensity as the impurity concentration of the standard layer of the SIMS analysis sample, the actual impurity distribution can be obtained. That is, absolute quantification is possible.

【0026】不純物種としてボロンを用いた場合のイオ
ン注入量は、実験結果によれば、2.5E13ions
/cm2↑以上で、精度の高い分析結果が得られる。そ
の実験結果を、図6に示す。これは、標準層をフッ化水
素(HF)と硝酸で溶解し、その溶解液を誘導結合型質
量分析(ICP−MS)で分析したものである。
According to the experimental results, the ion implantation amount when boron is used as the impurity species is 2.5E13ions.
/ Cm2 ↑ or more, highly accurate analysis results can be obtained. The experimental results are shown in FIG. In this, the standard layer was dissolved with hydrogen fluoride (HF) and nitric acid, and the solution was analyzed by inductively coupled mass spectrometry (ICP-MS).

【0027】不純物種としてリンを用いた場合のイオン
注入量は、実験結果によれば、1.0E15ions/
cm2↑以上で、精度の高い分析結果が得られる。その
実験結果を図7に示す。これは、ボロンの場合と同様
に、溶解液を得てから誘導結合型発光分析(ICP−A
ES)で分析したものである。
According to the experimental results, the ion implantation amount when phosphorus is used as the impurity species is 1.0E15ions /
If the value is cm2 ↑ or higher, highly accurate analysis results can be obtained. The experimental results are shown in FIG. This is the same as in the case of boron, after obtaining a solution, inductively coupled emission spectrometry (ICP-A
ES).

【0028】不純物種としてヒ素を用いた場合のイオン
注入量は、実験結果によれば、2.5E13〜5.0E1
4ions/cm2↑の範囲のドーズ量が低いときで
は、ボロンやリンと同様に溶解液を得てから誘導結合型
質量分析(ICP−MS)で分析すると精度の高い分析
結果が得られる。その実験結果を、図8に示す。ドーズ
量が1.0E16以上でドーズが高い場合は、ラザフォ
ード後方散乱(RBS)、中性子放射化分析によって分
析すると精度の高い分析結果が得られる。その結果を図
9に示す。
According to the experimental results, the ion implantation amount when arsenic is used as the impurity species is 2.5E13 to 5.0E1.
When the dose amount in the range of 4 ions / cm 2 ↑ is low, a highly accurate analysis result can be obtained by obtaining a solution similarly to boron or phosphorus and then analyzing by inductively coupled mass spectrometry (ICP-MS). The experimental results are shown in FIG. When the dose amount is 1.0E16 or more and the dose amount is high, highly accurate analysis results can be obtained by Rutherford backscattering (RBS) and neutron activation analysis. The result is shown in FIG.

【0029】以上の実施例では、シリコンを例に取って
説明したが、この発明は半導体材料の他にも金属、絶縁
体、結晶体、高分子などのいずれの固体材料にも適応が
可能である。
In the above embodiments, description has been made by taking silicon as an example, but the present invention can be applied to any solid material such as metal, insulator, crystal and polymer in addition to semiconductor material. is there.

【0030】また、実際に測定したい不純物元素のプロ
ファイルを測定する方法として、二次イオン質量分析
(SIMS)を挙げたが、他の固体試料測定方法にも応
用が可能である。例えば、広がり抵抗分析(SRA)や
イオン・プローブ、電子プローブ、光プローブなどにも
適応できる。
As a method of actually measuring the profile of the impurity element to be measured, secondary ion mass spectrometry (SIMS) has been described, but it can be applied to other solid sample measuring methods. For example, it can be applied to spread resistance analysis (SRA), ion probe, electronic probe, optical probe and the like.

【0031】[0031]

【発明の効果】この発明の第1の実施例によれば、作成
した試料の元素濃度分布を二次イオン質量分析(SIM
S)で分析するに際し、完全に同一の分析条件で測定す
ることができる。しかも、標準用の不純物層から実際に
測定したい基板濃度までを、一回の測定で行える。従っ
て、従来の標準試料測定時の分析条件と、実際に測定し
たい基板の分析条件との不一致を完全になくすことがで
き、二次イオン質量分析(SIMS)による測定精度が
大幅に向上すると言う効果がある。
According to the first embodiment of the present invention, the element concentration distribution of the prepared sample is analyzed by secondary ion mass spectrometry (SIM).
When performing the analysis in S), the measurement can be performed under completely the same analysis conditions. In addition, the standard impurity layer to the substrate concentration to be actually measured can be measured in one time. Therefore, it is possible to completely eliminate the discrepancy between the analysis conditions of the conventional standard sample measurement and the analysis conditions of the substrate to be actually measured, and the measurement accuracy by secondary ion mass spectrometry (SIMS) is significantly improved. There is.

【0032】この発明の第2の実施例によれば、不純物
濃度が一定であるためプロファイルのある実施例1の場
合より積分値の誤差が少ないため、実施例1の効果に加
え実際に測定したい基板濃度のピーク値の精度の向上が
期待できる。
According to the second embodiment of the present invention, since the impurity concentration is constant, the error in the integrated value is smaller than in the case of the first embodiment having a profile. Therefore, in addition to the effect of the first embodiment, it is desired to actually measure. It is expected that the accuracy of the peak value of the substrate concentration will be improved.

【0033】この発明の第3の実施例によれば、標準領
域の測定と実際に測定したい基板濃度の測定とを、一次
ビームの条件を変えることなく試料位置をずらすのみで
行えるので第1の実施例と同等の測定精度向上が期待で
きる。また試料の種類によっては表面の荒れが問題とな
るが、測定領域が違うので、深さ方向の分解能の一致が
はかれる。
According to the third embodiment of the present invention, the measurement of the standard region and the measurement of the substrate concentration to be actually measured can be performed by merely shifting the sample position without changing the conditions of the primary beam. It is expected that the measurement accuracy will be improved to the same level as in the embodiment. In addition, the surface roughness becomes a problem depending on the type of sample, but since the measurement area is different, the resolution in the depth direction can be matched.

【0034】この発明の第4に実施例によれば、第3の
実施例の効果に加え(SRA)などの電気的測定に於い
ても全ての測定条件を変えることなく、標準領域の測定
と実際に測定したい基板濃度の測定とを行えるという効
果を有する。
According to the fourth embodiment of the present invention, in addition to the effect of the third embodiment, even in the electrical measurement such as (SRA), the measurement in the standard area can be performed without changing all the measurement conditions. This has an effect that the substrate concentration to be actually measured can be measured.

【0035】この発明の第5の実施例によれば、標準用
の不純物濃度の測定を、化学分析で絶対定量できるた
め、従来のように、イオン注入時のイオン電流の計測値
と、実際に注入されたイオンの数とのずれをなくし、よ
り真の値により近い測定が可能になる。
According to the fifth embodiment of the present invention, the standard impurity concentration can be measured absolutely by chemical analysis. Therefore, as in the conventional case, the measured value of the ion current at the time of ion implantation and the actual measurement By eliminating the deviation from the number of implanted ions, it becomes possible to measure closer to the true value.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す図FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す図FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】この発明の第3の実施例を示す図FIG. 3 is a diagram showing a third embodiment of the present invention.

【図4】この発明の第4の実施例を示す図FIG. 4 is a diagram showing a fourth embodiment of the present invention.

【図5】この発明の第5の実施例を示す図FIG. 5 is a diagram showing a fifth embodiment of the present invention.

【図6】この発明の第5の実施例を示す図FIG. 6 is a diagram showing a fifth embodiment of the present invention.

【図7】この発明の第5の実施例を示す図FIG. 7 is a diagram showing a fifth embodiment of the present invention.

【図8】この発明の第5の実施例を示す図FIG. 8 is a diagram showing a fifth embodiment of the present invention.

【図9】この発明の第5の実施例を示す図FIG. 9 is a diagram showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101、201、300、400、500・・・シリコ
ン基板 102、202、・・・・・・・・・・・・・・ポリシ
リコン 301、401、・・・・・・・・・・・・・・測定用
領域 302、402、・・・・・・・・・・・・・・標準用
領域
101, 201, 300, 400, 500 ... Silicon substrate 102, 202, ... Polysilicon 301, 401 ,. ..Measurement areas 302, 402, ..... standard area

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 固体中元素の濃度分布の測定方法に於い
て、単一の測定試料内に同一の元素で濃度未知の領域と
濃度既知の領域とを形成し、両者を質量分析により測定
することにより、濃度既知の領域を標準として、濃度未
知の領域の元素濃度分布を求めることを特徴とする固体
中元素の濃度分布の測定方法。
1. In a method for measuring the concentration distribution of elements in a solid, a region of unknown concentration and a region of known concentration are formed with the same element in a single measurement sample, and both are measured by mass spectrometry. Thus, the method for measuring the concentration distribution of elements in a solid is characterized in that the concentration distribution of elements in a region where the concentration is unknown is obtained using the region where the concentration is known as a standard.
【請求項2】 固体中元素の濃度分布の測定用試料であ
って、濃度未知の元素が含まれる固体上に、濃度既知の
同一元素が含まれた前記固体と同一材料の膜が形成され
ていることを特徴とする固体中元素の濃度分布の測定用
試料。
2. A sample for measuring the concentration distribution of elements in a solid, wherein a film of the same material as the solid containing the same element of known concentration is formed on a solid containing an element of unknown concentration. A sample for measuring the concentration distribution of elements in a solid, which is characterized in that
【請求項3】 前記濃度未知の元素が含まれる固体上に
形成され、前記濃度既知の同一元素が含まれた前記固体
と同一材料の膜が、イオン注入によって元素導入されて
いることを特徴とする請求項2記載の測定用試料。
3. A film formed on a solid containing the element whose concentration is unknown and made of the same material as that of the solid containing the same element having a known concentration, wherein the element is introduced by ion implantation. The measurement sample according to claim 2.
【請求項4】 前記濃度未知の元素が含まれる固体上に
形成され、前記濃度既知の同一元素が含まれた前記固体
と同一材料の膜が、深さ方向にわたって濃度一定である
ことを特徴とする請求項2記載の測定用試料。
4. A film of the same material as the solid, which is formed on a solid containing the element of unknown concentration and contains the same element of known concentration, has a constant concentration in the depth direction. The measurement sample according to claim 2.
【請求項5】 固体中元素の濃度分布の測定用試料であ
って、濃度未知の元素が含まれる固体の同一面内に、濃
度既知の同一元素が含まれた前記固体と同一材料の領域
を有することを特徴とする固体中元素の濃度分布の測定
試料。
5. A sample for measuring the concentration distribution of elements in a solid, wherein a region of the same material as the solid containing the same element of known concentration is provided in the same plane of the solid containing the element of unknown concentration. A sample for measuring the concentration distribution of elements in a solid, characterized by having.
【請求項6】 前記濃度未知の元素が含まれる固体の同
一面内に形成され、前記濃度既知の同一元素が含まれた
領域が、イオン注入によって元素導入されていることを
特徴とする請求項5記載の測定用試料。
6. A region formed in the same plane of a solid containing an element of unknown concentration and containing the same element of known concentration, wherein the element is introduced by ion implantation. The measurement sample according to 5.
【請求項7】 前記濃度未知の元素が含まれる固体の同
一面内に形成され、前記濃度既知の同一元素が含まれた
領域が、深さ方向にわたって濃度一定であることを特徴
とする請求項5記載の測定用試料。
7. The region formed in the same plane of the solid containing the element of unknown concentration and containing the same element of known concentration has a constant concentration in the depth direction. The measurement sample according to 5.
【請求項8】 固体中元素の濃度分布を測定する方法で
あって、濃度既知の膜を溶解し、その溶液を化学質量分
析により測定して標準とし、その後濃度未知の領域を質
量分析により測定することを特徴とする固体中元素の濃
度分布の測定方法。
8. A method for measuring the concentration distribution of elements in a solid, which comprises dissolving a film having a known concentration, measuring the solution by chemical mass spectrometry as a standard, and then measuring the region of unknown concentration by mass spectrometry. A method for measuring the concentration distribution of an element in a solid, comprising:
【請求項9】 請求項8記載の固体中元素の濃度分布の
測定方法に於いて、前記元素がボロンである場合、前記
濃度既知の膜中のボロン濃度が単位面積あたり2.5E
13/cm2↑以上であることを特徴とする固体中元素
の濃度分布の測定方法。
9. The method for measuring the concentration distribution of an element in a solid according to claim 8, wherein when the element is boron, the boron concentration in the film of known concentration is 2.5E per unit area.
13 / cm 2 ↑ or more, a method for measuring the concentration distribution of elements in a solid.
【請求項10】 請求項8記載の固体中元素の濃度分布
の測定方法に於いて、前記元素がリンである場合、前記
濃度既知の膜中のリン濃度が単位面積あたり1.0E1
5/cm2↑以上であることを特徴とする固体中元素の
濃度分布の測定方法。
10. The method for measuring the concentration distribution of an element in a solid according to claim 8, wherein when the element is phosphorus, the phosphorus concentration in the film whose concentration is known is 1.0E1 per unit area.
A method for measuring the concentration distribution of elements in a solid, which is 5 / cm 2 ↑ or more.
【請求項11】 請求項8記載の固体中元素の濃度分布
の測定方法に於いて、前記元素がヒ素である場合、前記
濃度既知の膜中のヒ素濃度が単位面積あたり2.5E1
3〜1.0E14/cm2↑の範囲であることを特徴と
する固体中元素の濃度分布の測定方法。
11. The method for measuring the concentration distribution of an element in a solid according to claim 8, wherein when the element is arsenic, the arsenic concentration in the film whose concentration is known is 2.5E1 per unit area.
A method for measuring the concentration distribution of elements in a solid, which is in the range of 3 to 1.0E14 / cm2 ↑.
【請求項12】 固体中のヒ素の濃度分布を測定する方
法であって、ヒ素濃度が1.0E16ions/cm2
↑以上の、標準用の膜が形成されている試料を用いて化
学分析法で前記標準用膜の濃度を定量分析し、濃度未知
の試料を質量分析によって測定し前記定量分析の結果を
もとに濃度分布を求めることを特徴とする固体中ヒ素の
濃度分布の測定方法。
12. A method for measuring the concentration distribution of arsenic in a solid, wherein the arsenic concentration is 1.0E16ions / cm2.
↑ Above, the concentration of the standard membrane is quantitatively analyzed by the chemical analysis method using the sample on which the standard membrane is formed, and the sample of unknown concentration is measured by mass spectrometry. A method for measuring the concentration distribution of arsenic in a solid, characterized in that the concentration distribution is obtained.
JP30427595A 1994-11-22 1995-11-22 Method for measuring concentration distribution of element in solid and sample for measurement Expired - Fee Related JP3439584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30427595A JP3439584B2 (en) 1994-11-22 1995-11-22 Method for measuring concentration distribution of element in solid and sample for measurement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-288083 1994-11-22
JP28808394 1994-11-22
JP30427595A JP3439584B2 (en) 1994-11-22 1995-11-22 Method for measuring concentration distribution of element in solid and sample for measurement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002320015A Division JP2003194747A (en) 1994-11-22 2002-11-01 Method of measuring concentration distribution of element in solid

Publications (2)

Publication Number Publication Date
JPH08210998A true JPH08210998A (en) 1996-08-20
JP3439584B2 JP3439584B2 (en) 2003-08-25

Family

ID=26557006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30427595A Expired - Fee Related JP3439584B2 (en) 1994-11-22 1995-11-22 Method for measuring concentration distribution of element in solid and sample for measurement

Country Status (1)

Country Link
JP (1) JP3439584B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318064A (en) * 2000-05-09 2001-11-16 Agere Systems Guardian Corp Calibration method for quantitative analysis of element
WO2004003531A1 (en) * 2002-06-28 2004-01-08 Canon Kabushiki Kaisha Probe support and method of analyzing the probe support
JP2008244231A (en) * 2007-03-28 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Ion implantation amount measuring method and ion implantation amount estimating method
JP2010032485A (en) * 2008-07-01 2010-02-12 Sii Nanotechnology Inc X-ray analyzer and x-ray analysis method
JP2010112821A (en) * 2008-11-06 2010-05-20 Fujitsu Ltd Depth calibration sample for secondary ion mass spectrometry, production method of the same and secondary ion mass spectrometry
JP2014006124A (en) * 2012-06-22 2014-01-16 Fujitsu Ltd Secondary ion mass analysis method and standard sample

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318064A (en) * 2000-05-09 2001-11-16 Agere Systems Guardian Corp Calibration method for quantitative analysis of element
WO2004003531A1 (en) * 2002-06-28 2004-01-08 Canon Kabushiki Kaisha Probe support and method of analyzing the probe support
US7208276B2 (en) 2002-06-28 2007-04-24 Canon Kabushiki Kaisha Probe carrier and method for analyzing the probe carrier
JP2008244231A (en) * 2007-03-28 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Ion implantation amount measuring method and ion implantation amount estimating method
JP2010032485A (en) * 2008-07-01 2010-02-12 Sii Nanotechnology Inc X-ray analyzer and x-ray analysis method
JP2010112821A (en) * 2008-11-06 2010-05-20 Fujitsu Ltd Depth calibration sample for secondary ion mass spectrometry, production method of the same and secondary ion mass spectrometry
JP2014006124A (en) * 2012-06-22 2014-01-16 Fujitsu Ltd Secondary ion mass analysis method and standard sample

Also Published As

Publication number Publication date
JP3439584B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
US6673640B2 (en) Method of manufacturing semiconductor device for evaluation capable of evaluating crystal defect using in-line test by avoiding using preferential etching process
JP3439584B2 (en) Method for measuring concentration distribution of element in solid and sample for measurement
US6130542A (en) Method for quantitating impurity concentration in a semiconductor device
US4978627A (en) Method of detecting the width of lightly doped drain regions
EP0390312B1 (en) A method of fabricating a field-effect transistor and determining the lightly doped drain width
JP2003194747A (en) Method of measuring concentration distribution of element in solid
JP4083878B2 (en) Impurity measurement method
JPH1123498A (en) Secondary ion mass spectrometry
CN113066735B (en) Method for realizing high-resistance high-precision resistor
US6221726B1 (en) Process for fabricating device structures for real-time process control of silicon doping
JP2956627B2 (en) Impurity concentration analysis method
KR0140443B1 (en) Measuring method of amount of ion in ion implantation processor
JP3287317B2 (en) How to make an analysis sample
US6677168B1 (en) Analysis of ion implant dosage
US6436724B1 (en) Method of monitoring the temperature of a rapid thermal anneal process in semiconductor manufacturing and a test wafer for use in this method
JPH04340741A (en) Ion implantation amount measuring method, forming method of silicon crystal for ion implantation amount measurement and manufacture of semiconductor device
JP2917937B2 (en) Method for analyzing impurity concentration distribution of semiconductor device
US3976377A (en) Method of obtaining the distribution profile of electrically active ions implanted in a semiconductor
JP2002181746A (en) Quantitative analysis method and auxiliary sample and standard sample thereof
JPH04111337A (en) Method for measuring concentration distribution in impurity layer formed on surface of semiconductor
JPH05206051A (en) Ion implantation monitor method
JPH0298955A (en) Manufacture of semiconductor device
JPH0886725A (en) Method and device for in-depth analysis of element diffused in semiconductor wafer
US20090140717A1 (en) Structures and methods for measuring beam angle in an ion implanter
JPH0798288A (en) Sample for secondary ion mass spectrometry, manufacture thereof and mass spectrometry using the sample

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees