JPH08209237A - Production of high tensile strength steel excellent in weldability and acoustic anisotropy - Google Patents

Production of high tensile strength steel excellent in weldability and acoustic anisotropy

Info

Publication number
JPH08209237A
JPH08209237A JP1461695A JP1461695A JPH08209237A JP H08209237 A JPH08209237 A JP H08209237A JP 1461695 A JP1461695 A JP 1461695A JP 1461695 A JP1461695 A JP 1461695A JP H08209237 A JPH08209237 A JP H08209237A
Authority
JP
Japan
Prior art keywords
less
effective
steel
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1461695A
Other languages
Japanese (ja)
Inventor
Hisafumi Maeda
尚史 前田
Toshimichi Omori
俊道 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1461695A priority Critical patent/JPH08209237A/en
Publication of JPH08209237A publication Critical patent/JPH08209237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: To provide a method for producing a heat treated 60kgf/mm<2> class steel in which the prevention of low temp. cracking or the like at the time of the execution of welding and the acoustic anisotropy are simultaneously improved. CONSTITUTION: At the time of subjecting a steel having a compsn. contg., by weight, 0.04 to 0.1% C, 0.01 to 0.4% Si, 0.5 to 1.6% Mn, <=0.015% P, <=0.01% S, 0.01 to 0.3% Mo, 0.005 to 0.05% Nb, <0.005% Ti, <0.0003% B, and in which Pcm=C+Si/30+Mn/20+Cu/20+Ni/30+Cr/20+Mo/15+V/10+5B is regulated to <=0.2 to hot rolling, as for a steel in which, the solid solution Nb content obtd. by log(Nb)×(C+12/14N)=2.26-6770/(Tsl+273.15) deg.C (Tsl: heating temp.) is defined as the effective Nb content, Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14, X (constituted of the effective Nb and V content)=625 (the effective Nb)+250V+210Ceq satisfies x>=40+t ((t) denotes plate thickness mm), after heating to 1000-1250 deg.C, hot rolling is finished at the temp. of Tft=-530C+100 Mn+15Mo+2250Nb+100V+770( deg.C) or above, and it is directly hardened from the Ar3 transformation point or above and is tempered at the Ac1 transformation point or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接性と音響異方性に
優れた調質型60kgf/mm2 級鋼の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tempered 60 kgf / mm 2 grade steel excellent in weldability and acoustic anisotropy.

【0002】[0002]

【従来の技術】橋梁、タンク等の溶接構造物に高張力鋼
を用いた場合、脆性破壊防止の観点から溶接時の予熱が
必要とされ施工能率の低下を招いていた。この問題を解
決するため特開平3−219012号公報、特開平62
−214124号公報によれば、TMCP(Thermo Mech
anical Controlled Process ) 技術を利用することによ
り溶接性に優れた60キロ級高張力鋼が提案されてい
る。前者は、重量比にて、C:0.03〜0.10%,
Si:0.05〜0.60%,Mn:0.60〜2.0
0%,P:0.030%以下,S:0.020%以下,
Mo:0.10〜0.50%を含み,C+Si/30+
Mn/20+Ni/50+Cr/20+Cu/20+M
o/15+V/10+5Bで規定されるPcmが0.1
6〜0.21%の鋼を直接焼き入れ或いは再加熱焼き入
れし、さらにAC3〜AC1変態点の二相域温度で加熱保持
した後、空冷以上の冷却速度で再焼入れし、その後45
0℃〜600℃の温度域で焼戻しすることにより、引張
り強さ(TS)が60kgf/mm2 以上で溶接時に予
熱を必要としない鋼を開示している。後者は、C:0.
02〜0.15%,Si:0.40〜0.80%,M
n:0.80〜1.60%,V:0.005〜0.10
%,Nb:0.005〜0.10%,Al:0.05%
以下、P:0.020%以下、S:0.015%以下を
含む鋼を、950〜1200℃に加熱し、オーステナイ
ト再結晶域に続く未再結晶域において圧下率30%以上
の圧延をおこなった後、5℃以上の冷却速度で強制冷却
しさらに200〜400℃の温度範囲で焼戻し処理を施
すことにより溶接性に優れた引張り強さ60kgf/m
2 以上の鋼を開示している。
2. Description of the Related Art When high-strength steel is used for welded structures such as bridges and tanks, preheating during welding is required from the viewpoint of preventing brittle fracture, resulting in a decrease in work efficiency. In order to solve this problem, JP-A-3-219012 and JP-A-621902
According to JP-A-214124, TMCP (Thermo Mech
A high-strength 60 kg steel with excellent weldability has been proposed by utilizing an anical controlled process) technology. The former is C: 0.03 to 0.10% in weight ratio,
Si: 0.05 to 0.60%, Mn: 0.60 to 2.0
0%, P: 0.030% or less, S: 0.020% or less,
Mo: 0.10 to 0.50% inclusive, C + Si / 30 +
Mn / 20 + Ni / 50 + Cr / 20 + Cu / 20 + M
Pcm defined by o / 15 + V / 10 + 5B is 0.1
6-0.21% steel is directly quenched or reheat-quenched, further heated and held at the two-phase region temperature of the AC3 to AC1 transformation point, then re-quenched at a cooling rate of air cooling or higher, then 45
Disclosed is a steel having a tensile strength (TS) of 60 kgf / mm 2 or more and requiring no preheating during welding by tempering in a temperature range of 0 ° C to 600 ° C. The latter is C: 0.
02-0.15%, Si: 0.40-0.80%, M
n: 0.80 to 1.60%, V: 0.005 to 0.10.
%, Nb: 0.005 to 0.10%, Al: 0.05%
Hereinafter, steel containing P: 0.020% or less and S: 0.015% or less is heated to 950 to 1200 ° C., and rolling is performed at a reduction rate of 30% or more in an unrecrystallized region subsequent to the austenite recrystallized region. After that, it is forcibly cooled at a cooling rate of 5 ° C. or more and further tempered in a temperature range of 200 to 400 ° C. to obtain excellent weldability and a tensile strength of 60 kgf / m.
Steels of m 2 or more are disclosed.

【0003】一方,溶接構造物の継手部分においては、
斜角探傷法にて超音波探傷検査がおこなわれるのが一般
的であるが、音響異方性の大きなTMCP鋼板では、圧
延集合組織の形成により圧延方向に平行な方向(L方
向)と垂直な方向(C方向)の音速に差が生じる場合が
ある。このため実際には欠陥のない部分に欠陥が検出さ
れたり、溶接欠陥の正確な検出が困難であるといった問
題を生じ、不必要な範囲にわたる補修をおこない、施工
費用が膨大となるケースがある。この問題を解決するた
めに、特開昭63−235431号公報、特開平2−3
05918号公報では音響異方性の小さな鋼板の製造方
法が開示されている。前者では、C:0.05%以上
0.18%未満、Si:0.05%以上0.5%未満,
Mn:0.70%以上1.8%未満,Al:0.005
%以上0.1%未満,Nb:0.003%以上0.03
0%未満,N:0.006%未満を含有し,C+Mn/
6が0.36%以下の鋼を100℃以上1200℃以下
に加熱し、オーステナイト再結晶域で全圧下率の50%
以上の圧延を加え、圧延仕上げ温度を850℃以上と
し、Ar3−50℃以上より5℃/s以上15℃/s未満
の冷却速度にて400℃以上680℃以下の温度域まで
冷却することにより音響異方性の小さな鋼板の製造方法
が提案されている。後者では、C:0.01〜0.20
%、Si:0.05〜0,60%,Mn:0.5〜2.
5%,sol Al:0.005〜0.10%を含む鋼、あ
るいは上記成分にさらに、Cu:0.01〜0.20
%,Ni:0.10〜5.0%,Cr:0.05〜1.
0%,Mo:0.08〜1.0%,Nb:0.005〜
0.1%,V:0.01〜0.1%,Ti:0.007
〜0.15%,B:0.0005〜0.010%のうち
少なくとも1種または2種以上を含む鋼の熱間圧延に際
し、(Ar3点+200℃)〜Ar3点での累積圧下率を4
0%以上、最終パス圧下率5%以上とし、かつ圧延仕上
げ温度を(Ar3点+100℃)〜Ar3点の範囲とするこ
とにより、音響異方性の小さなTMCP鋼板の製造方法
が記載されている。
On the other hand, in the joint portion of the welded structure,
Ultrasonic flaw detection is generally performed by the oblique angle flaw detection method. However, in a TMCP steel sheet having a large acoustic anisotropy, the formation of a rolling texture causes a perpendicular (L direction) direction parallel to the rolling direction. There may be a difference in sound velocity in the direction (C direction). For this reason, there are cases in which a defect is actually detected in a defect-free portion, and it is difficult to accurately detect a welding defect, and repair is performed in an unnecessary range, resulting in a huge construction cost. In order to solve this problem, JP-A-63-235431 and JP-A-2-3
Japanese Patent No. 05918 discloses a method of manufacturing a steel sheet having small acoustic anisotropy. In the former, C: 0.05% or more and less than 0.18%, Si: 0.05% or more and less than 0.5%,
Mn: 0.70% or more and less than 1.8%, Al: 0.005
% To less than 0.1%, Nb: 0.003% to 0.03
Less than 0%, N: less than 0.006% contained, C + Mn /
6 is 0.36% or less steel is heated to 100 ℃ or more and 1200 ℃ or less, 50% of the total reduction in the austenite recrystallization region
By adding the above-mentioned rolling to a rolling finishing temperature of 850 ° C. or higher and cooling to a temperature range of 400 ° C. or higher and 680 ° C. or lower at a cooling rate of 5 ° C./s or higher and lower than 15 ° C./s from Ar3-50 ° C. or higher. A method of manufacturing a steel sheet having a small acoustic anisotropy has been proposed. In the latter case, C: 0.01 to 0.20
%, Si: 0.05-0.60%, Mn: 0.5-2.
Steel containing 5%, sol Al: 0.005 to 0.10%, or Cu: 0.01 to 0.20 in addition to the above components.
%, Ni: 0.10 to 5.0%, Cr: 0.05 to 1.
0%, Mo: 0.08 to 1.0%, Nb: 0.005
0.1%, V: 0.01 to 0.1%, Ti: 0.007
~ 0.15%, B: 0.0005 to 0.010%, at the time of hot rolling of steel containing at least one kind or two or more kinds, the cumulative rolling reduction ratio at (Ar3 point + 200 ° C) to Ar3 point is 4
A method for producing a TMCP steel sheet having a small acoustic anisotropy is described by setting the rolling reduction temperature to 0% or more, the final pass rolling reduction of 5% or more, and the rolling finishing temperature in the range of (Ar3 point + 100 ° C.) to Ar3 point. .

【0004】[0004]

【発明が解決しようとする課題】以上述べてきたよう
に、溶接施工時の低温割れ等の防止が可能な60キロ級
高張力鋼及び母材の音響異方性を改善する鋼材の製造方
法に関する提案は個別になされているが、建築分野等で
要望が強いにもかかわらず両者の特性を兼ね備えた鋼
材、特に60キロ級高張力鋼の製造方法はいまだ提案さ
れていない。本発明の目的は、溶接性と音響異方性との
両者の特性に優れた調質型60kgf/mm2 級鋼の製
造方法を提供することである。
As described above, the present invention relates to a 60 kg class high-strength steel capable of preventing cold cracking during welding and a method of manufacturing a steel material for improving the acoustic anisotropy of the base material. Although proposals have been made individually, a method for producing a steel material having both properties, particularly a 60 kg class high-strength steel, has not yet been proposed despite strong demands in the field of construction and the like. An object of the present invention is to provide a method for producing a tempered 60 kgf / mm 2 grade steel which is excellent in both properties of weldability and acoustic anisotropy.

【0005】[0005]

【課題を解決するための手段】本発明は、重量%で、
C:0.04〜0.1%、Si:0.01〜0.4%、
Mn:0.5〜1.6%、P:0.015%以下、S:
0.01%以下、Mo:0.01〜0.3%、Nb:
0.005〜0.05%、V:0.1%以下、Al:
0.01〜0.08%、N:0.0005〜0.008
%、Ti<0.005%、B<0.0003%を含み、
さらに必要によりCu:0.5%以下、Ni:1.5%
以下、Cr:0.5%以下の1種又は2種以上を含み、
Pcm値が0.2以下、X≧40+tなる関係を満た
し、残部が鉄および不可避不純物よりなる鋼材を、10
00℃以上1250℃以下の温度に加熱後、Tft=−5
30C+100Mn+15Mo+2250(有効Nb)
+100V+770(℃)で与えられる温度以上で熱間
圧延を終了した後、少なくともAr3 変態点以上より直
接焼き入れし、その後Ac1 変態点以下の温度にて焼戻
しをおこなうことを特徴とする溶接性と音響異方性に優
れた高張力鋼の製造方法である。
The present invention, in weight percent, comprises:
C: 0.04 to 0.1%, Si: 0.01 to 0.4%,
Mn: 0.5 to 1.6%, P: 0.015% or less, S:
0.01% or less, Mo: 0.01 to 0.3%, Nb:
0.005-0.05%, V: 0.1% or less, Al:
0.01-0.08%, N: 0.0005-0.008
%, Ti <0.005%, B <0.0003%,
If necessary, Cu: 0.5% or less, Ni: 1.5%
Hereinafter, Cr: 0.5% or less, including one or more,
A steel material having a Pcm value of 0.2 or less and X ≧ 40 + t, the balance of which is iron and inevitable impurities, is 10
After heating to a temperature of 00 ° C to 1250 ° C, Tft = -5
30C + 100Mn + 15Mo + 2250 (effective Nb)
Weldability and acoustic characteristics, characterized in that after hot rolling is completed above the temperature given by + 100V + 770 (° C), it is directly quenched from at least the Ar3 transformation point and then tempered at a temperature below the Ac1 transformation point. This is a method for producing high-strength steel having excellent anisotropy.

【0006】ただし、Pcm=C+Si/30+Mn/
20+Cu/20+Ni/30+Cr/20+Mo/1
5+V/10+5Bで定義され、有効Nb量は、100
0〜1250℃の温度範囲に設定された加熱温度Tslを
用いて、 log(Nb)×(C+12/14N)=2.2
6−6770/(Tsl+273.15)の関係より計算
される固溶Nb量を示し、Ceq=C+Mn/6+Si
/24+Ni/40+Cr/5+Mo/4+V/14で
定義され、X=625(有効Nb)+250V+210
Ceq,tは鋼板の板厚(mm)を示す。
However, Pcm = C + Si / 30 + Mn /
20 + Cu / 20 + Ni / 30 + Cr / 20 + Mo / 1
5 + V / 10 + 5B, effective Nb amount is 100
Using the heating temperature Tsl set in the temperature range of 0 to 1250 ° C., log (Nb) × (C + 12 / 14N) = 2.2
6-6770 / (Tsl + 273.15) shows the amount of solid solution Nb calculated from the relationship, Ceq = C + Mn / 6 + Si
/ 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14, X = 625 (effective Nb) + 250V + 210
Ceq, t represents the plate thickness (mm) of the steel plate.

【0007】[0007]

【作用】以下に本発明での構成要件の限定理由等につい
て説明する。 C:0.04〜0.1% Cは強度を高めるのに有効な元素であるが、0.1%を
越えると溶接性を損ない、0.04%未満では強度不足
となる。
The reasons for limiting the constituent features of the present invention will be described below. C: 0.04 to 0.1% C is an element effective in increasing the strength, but if it exceeds 0.1%, the weldability is impaired, and if it is less than 0.04%, the strength becomes insufficient.

【0008】Si:0.01〜0.4% Siは脱酸および強度向上に有効な元素であるが、0.
4%を越えると溶接性を損ない、0.01%未満では強
度不足となる。
Si: 0.01 to 0.4% Si is an element effective in deoxidizing and improving strength, but
If it exceeds 4%, the weldability is impaired, and if it is less than 0.01%, the strength becomes insufficient.

【0009】Mn:0.5〜1.6% Mnは母材強度および母材靱性のために添加する。しか
し,1.6%を越えると溶接性および靱性が劣化し、
0.5%未満では強度不足となる。
Mn: 0.5 to 1.6% Mn is added for the strength and toughness of the base material. However, if it exceeds 1.6%, the weldability and toughness deteriorate,
If it is less than 0.5%, the strength is insufficient.

【0010】P,S:P≦0.015%,S≦0.01
% P,Sはいずれも不純物元素であり、健全な母材および
溶接継手を得るためにPは0.015%以下、好ましく
は0.01%以下に、Sは0.01%以下に規制される
ことが望ましい。
P, S: P ≦ 0.015%, S ≦ 0.01
% P and S are both impurity elements, and P is regulated to 0.015% or less, preferably 0.01% or less, and S is regulated to 0.01% or less in order to obtain a sound base metal and a welded joint. Is desirable.

【0011】Mo:0.01〜0.3% Moは0.01%以上の添加により母材強度向上に寄与
する。しかし、0.3%を越えると溶接性及び靱性を損
ねる。
Mo: 0.01-0.3% Mo contributes to the improvement of the base metal strength by adding 0.01% or more. However, if it exceeds 0.3%, the weldability and toughness are impaired.

【0012】Nb:0.005〜0.05% Nbは母材強度と溶接継手強度向上のために添加され
る。0.005%未満ではその効果が失われ、0.05
%を越えると溶接継手靱性が損なわれる。
Nb: 0.005 to 0.05% Nb is added to improve the strength of the base metal and the strength of the welded joint. If less than 0.005%, the effect is lost, 0.05
%, The weld joint toughness is impaired.

【0013】鋼中のNb炭窒化物の固溶温度は、Nb,
C,N,含有量に対して、 log(Nb)×(C+12/
14N)=2.26−6770/(T+273.15)
より求まるが、上記のNb添加範囲でNb炭窒化物の固
溶温度は加熱温度Tslより高くなる場合が有り得る。後
述の計算式:X=625(有効Nb)+250V+21
0Ceqにおいて,有効Nbの項は焼戻し後のNbの析
出硬化に伴う母材強度の上昇分を示すものであり,有効
Nbとは熱間圧延前の加熱段階で固溶したNbを指す。
従って,この計算式による限定を用いるに当たり,Nb
炭窒化物の固溶温度と圧延加熱温度Tslの関係を考慮
し,Nb炭窒化物の固溶温度が加熱温度Tslより高い場
合には,C,N含有量から求まる固溶Nb量を有効Nb
量として計算式に用いることとする。
The solid solution temperature of Nb carbonitride in steel is Nb,
Log (Nb) × (C + 12 /
14N) = 2.26-6770 / (T + 273.15)
Although determined more, the solid solution temperature of Nb carbonitride may be higher than the heating temperature Tsl in the above Nb addition range. Calculation formula described later: X = 625 (effective Nb) + 250V + 21
At 0 Ceq, the term of effective Nb indicates the amount of increase in the base metal strength due to the precipitation hardening of Nb after tempering, and the effective Nb refers to Nb dissolved in the heating stage before hot rolling.
Therefore, in using the limitation by this calculation formula, Nb
Considering the relationship between the solid solution temperature of carbonitride and the rolling heating temperature Tsl, when the solid solution temperature of Nb carbonitride is higher than the heating temperature Tsl, the amount of the dissolved Nb obtained from the C and N contents is determined as the effective Nb.
The quantity will be used in the calculation formula.

【0014】なお、Nb炭窒化物の固溶温度が加熱温度
Tslより低い場合は、鋼中に含有するNbは全て固溶す
るため、Nb含有量と固溶Nb量(有効Nb量)は同義
となる。
When the solid solution temperature of Nb carbonitride is lower than the heating temperature Tsl, all the Nb contained in the steel dissolves, so the Nb content and the solid solution Nb amount (effective Nb amount) are synonymous. Becomes

【0015】V:0.1%以下 Vは析出効果による母材強度向上に有効な元素である
が、含有量が0.1%を越えると溶接性を阻害する。
V: 0.1% or less V is an element effective for improving the strength of the base material due to the precipitation effect, but if the content exceeds 0.1%, the weldability is impaired.

【0016】なお,本発明範囲内でのV炭窒化物の固溶
温度は,通常の熱間圧延で採用される加熱温度よりも低
く,従って上述のNbの項で述べた配慮は不要である。 Cu,Ni,Cr:Cu≦0.5%,Ni≦1.5%,
Cr≦0.5% Cu,Ni,Crは必ずしも必須な元素ではない。しか
し、Cu,Crは母材強度および溶接継手強度向上のた
めに、Niは母材強度、靱性及び継手強度を共に向上さ
せるために上記範囲で添加しても差し支えない。特にM
nの一部をこれらの元素に置き換えることで靱性の向上
や偏析の低減などをすることができる。
The solid solution temperature of V carbonitrides within the scope of the present invention is lower than the heating temperature adopted in ordinary hot rolling, and therefore the consideration described in the item of Nb above is unnecessary. . Cu, Ni, Cr: Cu ≦ 0.5%, Ni ≦ 1.5%,
Cr ≦ 0.5% Cu, Ni and Cr are not necessarily essential elements. However, Cu and Cr may be added within the above ranges in order to improve the base material strength and weld joint strength, and Ni in order to improve both the base material strength, toughness and joint strength. Especially M
By replacing a part of n with these elements, it is possible to improve toughness and reduce segregation.

【0017】Ti,B:Ti<0.005%,B<0.
0003% Tiはミクロ組織の細粒化を通じて母材および溶接継手
の靭性を改善する効果を有する。また、B添加鋼では、
焼入れ性に有効に働くBを確保するためしばしば積極的
に添加される。しかし、本発明では、溶接熱影響部の硬
化が懸念されるBは添加せずに母材強度を確保し、特に
熱影響部粗粒域の硬度低減により溶接継手靭性を達成す
るため、Tiを添加する必然性はない。本発明ではむし
ろTi添加による母材性能の不安定さを懸念し、不純物
元素として0.005%未満に規制する。特に、後述す
るN含有量の3.4倍を下回ることが望ましい。
Ti, B: Ti <0.005%, B <0.
0003% Ti has the effect of improving the toughness of the base material and the welded joint through the refinement of the microstructure. In addition, in the B-added steel,
It is often added positively in order to secure B that works effectively for hardenability. However, in the present invention, B, which may cause hardening of the weld heat affected zone, is not added to secure the base metal strength, and in particular to achieve weld joint toughness by reducing the hardness in the coarse grained zone of the heat affected zone, Ti is added. There is no need to add it. In the present invention, it is rather concerned about the instability of the base material performance due to the addition of Ti, so the content of the impurity element is limited to less than 0.005%. In particular, it is desirable that the N content is less than 3.4 times the content.

【0018】Bは上述の溶接熱影響部の硬さ低減のため
不純物元素として0.0003%未満に規制する。 Al:0.01〜0.08% Alは脱酸およびNと反応して析出物を生成することに
よりミクロ組織を微細化し、母材靭性および継手靱性の
向上に寄与する。0.01%未満の添加ではミクロ組織
の微細化が不十分となり、0.08%を越える添加では
母材靭性を損なう。
B is regulated to less than 0.0003% as an impurity element in order to reduce the hardness of the above-mentioned welding heat affected zone. Al: 0.01 to 0.08% Al reacts with deoxidation and N to generate a precipitate, thereby refining the microstructure and contributing to the improvement of the base metal toughness and joint toughness. If it is added in an amount of less than 0.01%, the microstructure becomes insufficiently fine, and if it exceeds 0.08%, the toughness of the base material is impaired.

【0019】N:0.0005〜0.008% NはAlと反応して析出物を形成することによりミクロ
組織を微細化し、母材靭性、溶接継手靱性の向上、およ
び焼戻し時にNb,Vなどと反応し析出硬化に寄与す
る。0.0005%未満の添加では析出物の量が不足
し、0.008%を越える添加は母材靱性および溶接継
手靭性を損なう。
N: 0.0005 to 0.008% N reacts with Al to form a precipitate, thereby refining the microstructure to improve the base material toughness, weld joint toughness, Nb, V, etc. during tempering. Reacts with and contributes to precipitation hardening. If the addition amount is less than 0.0005%, the amount of precipitates becomes insufficient, and if the addition amount exceeds 0.008%, the base material toughness and the weld joint toughness are impaired.

【0020】Pcm(溶接割れ感受性指数):0.2%
以下 Pcmは溶接施工時の予熱温度の低減を図るため、溶接
性の指標である Pcm(=C+Si/30+Mn/20+Cu/20+
Ni/30+Cr/20+Mo/15+V/10+5
B)は、0.2%以下に抑える。
Pcm (welding crack susceptibility index): 0.2%
Hereinafter, Pcm is an index of weldability in order to reduce the preheating temperature during welding. Pcm (= C + Si / 30 + Mn / 20 + Cu / 20 +
Ni / 30 + Cr / 20 + Mo / 15 + V / 10 + 5
B) is suppressed to 0.2% or less.

【0021】X=625(有効Nb)+250V+21
0Ceq:X≧板厚(mm)+40 60kgf/mm2 級の引張り強さ(TS)を確保する
ために、焼入れ性の指標であるCeqおよび焼戻し処理
時の析出硬化に寄与する有効Nb,V含有量からなるX
=625(有効Nb)+250V+210Ceqの値
は、板厚(mm)+40以上とする。なお、ここでいう
引張り強さ60kgf/mm2 級とはJIS SM57
0QおよびJIS SPV490Qで代表される高張力
鋼を指し、板厚は15mm〜60mmの範囲である。
X = 625 (effective Nb) + 250V + 21
0Ceq: X ≧ plate thickness (mm) +40 60 kgf / mm2 In order to secure a tensile strength (TS) of class 2 , Ceq, which is an index of hardenability, and effective Nb, V content that contributes to precipitation hardening during tempering treatment. X consisting of quantity
The value of = 625 (effective Nb) + 250V + 210Ceq is equal to or more than the plate thickness (mm) +40. Incidentally, the tensile strength of 60 kgf / mm 2 grade here means JIS SM57.
0Q and high-strength steel represented by JIS SPV490Q, and the plate thickness is in the range of 15 mm to 60 mm.

【0022】熱間圧延時のスラブ加熱温度Tsl:100
0〜1250℃ 熱間圧延時のスラブ加熱温度Tslは、Nbの固溶を図る
ため、1000℃以上にする必要がある。しかし、加熱
温度Tslが1250℃を越えるとミクロ組織の粗大化に
より母材の靭性の劣化を招くので、上限を1250℃、
好ましくは1200℃とする。
Slab heating temperature during hot rolling Tsl: 100
The slab heating temperature Tsl in the 0 to 1250 ° C hot rolling needs to be 1000 ° C or more in order to form a solid solution of Nb. However, if the heating temperature Tsl exceeds 1250 ° C, the toughness of the base material deteriorates due to the coarsening of the microstructure, so the upper limit is 1250 ° C.
The temperature is preferably 1200 ° C.

【0023】直接焼入れ時の圧延仕上げ温度:Tft℃以
上 ただし、Tft=−530C+100Mn+15Mo+2
250(有効Nb)+100V+770 本発明において圧延仕上げ温度は音響異方性に大きな影
響を及ぼす。上記式より求まるTft℃よりも低くなると
音響異方性は増大する。従って圧延仕上の下限温度をT
ft℃とする。
Rolling finish temperature during direct quenching: Tft ° C or higher, where Tft = −530C + 100Mn + 15Mo + 2
250 (effective Nb) + 100V + 770 In the present invention, the rolling finishing temperature has a great influence on the acoustic anisotropy. The acoustic anisotropy increases when the temperature becomes lower than Tft ° C calculated from the above equation. Therefore, the lower limit temperature for rolling is T
ft ℃

【0024】直接焼入れ:Ar3変態点以上 熱間圧延終了後、鋼板は少なくともAr3変態点を上回
る温度から強制冷却により焼入れ処理を施すことが必要
である。圧延仕上げ温度(Tft℃)と焼入れ開始温度
(少なくともAr3変態点以上)との間に温度差を設
け、低降伏比化を図ることも可能である。
Direct quenching: Ar3 transformation point or higher After hot rolling is completed, the steel sheet must be quenched by forced cooling from a temperature at least above the Ar3 transformation point. It is also possible to reduce the yield ratio by providing a temperature difference between the rolling finish temperature (Tft ° C.) and the quenching start temperature (at least the Ar3 transformation point or higher).

【0025】[0025]

【実施例】表1及び表2を参照して本発明の種々の実施
例について説明する。表1の鋼種1〜23は本発明鋼種
であり、鋼種24〜28は成分組成の点で本発明の範囲
外となる比較鋼を示している。なお表中最右欄のTft
(℃)は、Tft=−530C+100Mn+15Mo+
2250Nb+100V+770で表される式より求め
た値を示している。次の欄は、X=625(有効Nb)
+250V+210Ceqで表される式より求めた値を
示している。次の欄は,t:板厚(mm)を示し、次の
欄は、Ceq=C+Mn/6+Si/24+Ni/40
+Cr/5+Mo/4+V/14で表される式より求め
た値を示している。次の欄はPcm=C+Si/30+
Mn/20+Cu/20+Ni/30+Cr/20+M
o/15+V/10+5Bで表される溶接割れ感受性指
数式より求めた値を示している。
EXAMPLES Various examples of the present invention will be described with reference to Tables 1 and 2. Steel types 1 to 23 in Table 1 are steel types of the present invention, and steel types 24 to 28 are comparative steels which are out of the scope of the present invention in terms of composition. In addition, Tft in the rightmost column in the table
(° C) is Tft = -530C + 100Mn + 15Mo +
The value obtained from the equation represented by 2250Nb + 100V + 770 is shown. The next column is X = 625 (valid Nb)
The value calculated from the equation represented by + 250V + 210Ceq is shown. The next column shows t: plate thickness (mm), and the next column shows Ceq = C + Mn / 6 + Si / 24 + Ni / 40.
The value calculated from the formula expressed by + Cr / 5 + Mo / 4 + V / 14 is shown. The next column is Pcm = C + Si / 30 +
Mn / 20 + Cu / 20 + Ni / 30 + Cr / 20 + M
The values obtained from the weld crack susceptibility index formula represented by o / 15 + V / 10 + 5B are shown.

【0026】実施例のうち、鋼種1〜18は、重量%
で、C:0.04〜0.1%、Si:0.01〜0.4
%、Mn:0.5〜1.6%、P:0.01%以下、
S:0.01%以下、Mo:0.01〜0.3%、N
b:0.005〜0.05%、V:0.1%以下、A
l:0.01〜0.08%、N:0.0005〜0.0
08%、Ti<0.005%、B<0.0003%を含
み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/30+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.2以下で、かつ、Ceq=C
+Mn/6+Si/24+Ni/40+Cr/5+Mo
/4+V/14で定義されるCeq値および、有効N
b、V含有量からなるX=625(有効Nb)+250
V+210Ceqが、X≧40+t(但し、tは鋼板の
板厚(mm)を示す)なる関係を満たしている。
In the examples, the steel types 1 to 18 are represented by weight%.
C: 0.04 to 0.1%, Si: 0.01 to 0.4
%, Mn: 0.5 to 1.6%, P: 0.01% or less,
S: 0.01% or less, Mo: 0.01 to 0.3%, N
b: 0.005-0.05%, V: 0.1% or less, A
1: 0.01 to 0.08%, N: 0.0005 to 0.0
08%, Ti <0.005%, B <0.0003% included, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
Pcm value defined by i / 30 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.2 or less, and Ceq = C
+ Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo
Ceq value defined by / 4 + V / 14 and effective N
b = V content X = 625 (effective Nb) +250
V + 210Ceq satisfies the relationship of X ≧ 40 + t (where t represents the plate thickness (mm) of the steel plate).

【0027】表1では添加されたNbは,全て固溶し,
有効Nbとなるものとする。鋼種1は,C含有量が0.
066%とやや低く、Nbの添加量も0.015%と低
いものの、MnとMoの含有量がそれぞれ1.49%,
0.19%と高めなので、X=625(有効Nb)+2
50V+210Ceqの値は88となる。
In Table 1, all of the added Nb is in solid solution,
It shall be effective Nb. Steel type 1 has a C content of 0.
Although the content of Mb and Mo is 1.49%,
Since it is as high as 0.19%, X = 625 (effective Nb) +2
The value of 50 V + 210 Ceq is 88.

【0028】鋼種2,3は,C含有量をかなり低めにし
ているが、Cu,Crを添加しているためにX=625
(有効Nb)+250V+210Ceqの値は93,1
03となる。
Steel types 2 and 3 have a fairly low C content, but since Cu and Cr are added, X = 625.
(Effective Nb) + 250V + 210Ceq is 93,1
It becomes 03.

【0029】鋼種4は,C含有量が0.066%とやや
低く、Nbの添加量も0.007%と低いものの、Mn
とMoの含有量がそれぞれ1.53%,0.20%と高
めであり、鋼種5,6になるにつれてNb含有量が0.
013%,0.019%と増加するので、X=625
(有効Nb)+250V+210Ceqの値は84,8
8,92となる。
Steel type 4 has a slightly low C content of 0.066% and a low Nb addition amount of 0.007%.
And Mo contents are as high as 1.53% and 0.20%, respectively, and the Nb content becomes 0.
Since it increases to 013% and 0.019%, X = 625
(Effective Nb) + 250V + 210Ceq value is 84,8
It becomes 8,92.

【0030】鋼種7は、C含有量が少ないためにX=6
25(有効Nb)+250V+210Ceqの値は81
となる。鋼種8,9は、C含有量が0.089%,0.
086%と高めであるが、Nb添加量が0.01%,
0.013%とやや少ないためにX=625(有効N
b)+250V+210Ceqの値は88となる。
Steel type 7 has a low C content, so X = 6.
The value of 25 (effective Nb) + 250V + 210Ceq is 81
Becomes Steel types 8 and 9 have a C content of 0.089%, 0.
Although it is as high as 086%, the amount of Nb added is 0.01%,
X = 625 (effective N
b) The value of + 250V + 210Ceq becomes 88.

【0031】鋼種10,11は、C、Nbの含有量がそ
れぞれ0.091%,0.086%および0.020
%,0.034%と高めなので、X=625(有効N
b)+250V+210Ceqの値はそれぞれ93,1
01となる。
Steel types 10 and 11 have C and Nb contents of 0.091%, 0.086% and 0.020, respectively.
%, 0.034%, so X = 625 (effective N
b) The value of + 250V + 210Ceq is 93,1 respectively.
It becomes 01.

【0032】鋼種12から鋼種16は、Mn含有量が高
く、X=625(有効Nb)+250V+210Ceq
の値は98,100,105,103,99となる。鋼
種17は、C含有量が0.070%と低めであるが、N
b含有量が0.034%と高いためにX=625(有効
Nb)+250V+210Ceqの値は98となる。
Steel types 12 to 16 have a high Mn content, and X = 625 (effective Nb) + 250V + 210 Ceq.
The values of are 98, 100, 105, 103, 99. Steel type 17 has a low C content of 0.070%, but N
Since the b content is as high as 0.034%, the value of X = 625 (effective Nb) + 250V + 210Ceq is 98.

【0033】鋼種18は、C含有量が0.099%と上
限値ぎりぎりであるがMn含有量が1.29%であるの
でX=625(有効Nb)+250V+210Ceqの
値は102となる。
Steel type 18 has a C content of 0.099%, which is close to the upper limit, but has a Mn content of 1.29%, so that the value of X = 625 (effective Nb) + 250V + 210 Ceq is 102.

【0034】鋼種19〜23は、Cu,Ni,Crを含
有する場合であり、鋼種19についてはCr含有量が大
きいためにX=625(有効Nb)+250V+210
Ceqの値が104と高めである。
Steel grades 19 to 23 are cases containing Cu, Ni, and Cr, and since steel grade 19 has a large Cr content, X = 625 (effective Nb) + 250V + 210.
The value of Ceq is as high as 104.

【0035】比較例のうち鋼種24,26はNbを含ま
ず、鋼種25はC含有量が0.033%と少なすぎる。
鋼種27はC含有量が0.131%、鋼種28はCr含
有量が0.70%と高すぎるためPcm値が0.2を上
回る。
Among the comparative examples, the steel types 24 and 26 do not contain Nb, and the steel type 25 has a C content of 0.033%, which is too small.
Steel type 27 has a C content of 0.131%, and steel type 28 has a Cr content of 0.70%, which is too high, so the Pcm value exceeds 0.2.

【0036】次に表2を参照して実施例の効果について
説明する。表2は表1の鋼種を製造したものの性質を示
すものであり、いずれの鋼種においても60kgf/m
2級として優れた強度と靱性を示している。
Next, the effect of the embodiment will be described with reference to Table 2. Table 2 shows the properties of the manufactured steel types of Table 1, and 60 kgf / m for all the steel types.
It exhibits excellent strength and toughness as an m 2 grade.

【0037】次にJIS Z 3060で定義される音
響異方性について説明する。鋼種1〜23までの符号末
尾にあるa,bは上記の鋼種で圧延仕上げ温度を変化さ
せたものの結果を示している。
Next, the acoustic anisotropy defined by JIS Z 3060 will be described. The letters a and b at the end of the reference numerals of the steel types 1 to 23 show the results obtained by changing the rolling finishing temperature in the above steel types.

【0038】鋼種1aでは圧延仕上げ温度がTft=−5
30C+100Mn+15Mo+2250(有効Nb)
+100V+770℃以上である990℃としているた
め、圧延方向と平行な方向の音速(L)と圧延方向と垂
直な方向の音速(C)との比であるL/Cの値が1.0
00となる。鋼種1bでは圧延仕上温度がTft℃未満で
あるためにL/Cの値は1.023と大きくなってい
る。通常、音響異方性は1.02以下であれば良好とさ
れているので、鋼種1aは音響異方性に優れ、鋼種1b
は音響異方性に劣る。以下、鋼種2〜18についても同
様に符号末尾aでは圧延仕上げ温度がTft℃以上である
ために音響異方性優れるのに対し、符号末尾bでは圧延
仕上げ温度がTft℃未満であるために音響異方性に劣
る。鋼種11cについては鋼種11bよりも更に圧延仕
上り温度を低くした場合を示している。これによりL/
Cの値は更に大きくなり、音響異方性はさらに劣化す
る。
For steel type 1a, the rolling finishing temperature is Tft = -5.
30C + 100Mn + 15Mo + 2250 (effective Nb)
The value of L / C, which is the ratio of the sound velocity (L) in the direction parallel to the rolling direction and the sound velocity (C) in the direction perpendicular to the rolling direction, is 1.0 because the temperature is 990 ° C., which is + 100V + 770 ° C. or higher.
It becomes 00. In steel type 1b, the rolling finish temperature is lower than Tft ° C., so the L / C value is as large as 1.023. Since it is generally considered that the acoustic anisotropy is 1.02 or less, the steel type 1a is excellent in the acoustic anisotropy and the steel type 1b is
Is inferior in acoustic anisotropy. Similarly, for the steel types 2 to 18, the rolling finish temperature is Tft ° C. or more at the end of the symbol a and thus the acoustic anisotropy is excellent, while the rolling finish temperature at the end of the symbol b is less than Tft ° C. Inferior in anisotropy. Regarding the steel type 11c, the case where the rolling finish temperature is further lowered than that of the steel type 11b is shown. This gives L /
The value of C is further increased and the acoustic anisotropy is further deteriorated.

【0039】鋼種1xは熱間圧延時の加熱温度を100
0℃としたために,0.015%含有するNbのうち,
全ては固溶せず,有効Nb量は0.011%にとどま
る。これによりX=625(有効Nb)+250V+2
10CeqおよびTft=−530C+100Mn+15
Mo+2250(有効Nb)+100V+770の値も
各々86,907と低くなる。鋼種11xについても1
xと同様に,熱間圧延時の加熱温度を1000℃とした
ために,X値,Tft値は各々87,884と低くなる。
さらに鋼種18bでは熱間圧延時の加熱温度を1150
℃とした場合は,固溶Nb(有効Nb)量は0.031
%となるために,X値,Tft値は各々101,921と
低くなる。
The steel type 1x has a heating temperature of 100 during hot rolling.
Since it was set at 0 ° C, 0.015% of Nb contained,
All do not form a solid solution, and the effective Nb amount remains at 0.011%. As a result, X = 625 (effective Nb) + 250V + 2
10 Ceq and Tft = -530C + 100Mn + 15
The values of Mo + 2250 (effective Nb) + 100V + 770 are also low at 86 and 907, respectively. 1 for steel type 11x
Similar to x, since the heating temperature during hot rolling is set to 1000 ° C., the X value and Tft value are as low as 87 and 884, respectively.
Further, with steel type 18b, the heating temperature during hot rolling is 1150.
When the temperature is set to ℃, the amount of solute Nb (effective Nb) is 0.031
%, The X value and the Tft value are as low as 101 and 921, respectively.

【0040】一方溶接性に関しては、鋼種1〜23の全
てにおいて、Pcm値が0.2以下であるため、JIS
3158に規定される斜めy型溶接割れ試験(予熱温度
25℃)において割れは観察されず、またJIS310
1に規定される溶接熱影響部の最高硬さの値も290H
v以下と良好である。
On the other hand, regarding weldability, in all of the steel types 1 to 23, since the Pcm value is 0.2 or less, JIS
No crack was observed in the oblique y-type weld cracking test (preheating temperature 25 ° C.) specified in 3158, and JIS 310
The maximum hardness value of the weld heat affected zone specified in 1 is also 290H
It is as good as v or less.

【0041】比較例のうち、鋼種24〜26はCもしく
はNb含有量が本発明の範囲外であるため、強度不足で
ある。鋼種27ではC含有量が本発明の範囲外であるた
め、Pcm値が0.2よりも大きく、JIS3158に
規定される斜めy型溶接割れ試験(予熱温度25℃)に
おいて割れが観察され、またJIS3101に規定され
る溶接熱影響部の最高硬さの値も314Hvと大きい。
鋼種28ではCr含有量が本発明の範囲外であるため、
Pcm値が0.2よりも大きく、JIS3158に規定
される斜めy型溶接割れ試験(予熱温度25℃)におい
て割れが観察された。
Among the comparative examples, the steel types 24 to 26 have a C or Nb content outside the range of the present invention, and therefore have insufficient strength. In steel type 27, the C content is out of the range of the present invention, so the Pcm value is larger than 0.2, and cracks are observed in the oblique y-type weld cracking test (preheating temperature 25 ° C.) specified in JIS3158, and The maximum hardness value of the weld heat affected zone specified by JIS3101 is also large at 314 Hv.
In steel type 28, since the Cr content is outside the range of the present invention,
The Pcm value was larger than 0.2, and cracks were observed in the oblique y-type weld cracking test (preheating temperature 25 ° C.) specified in JIS3158.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】以上、本発明方法によれば,溶接施工時
の低温割れ等の防止が可能で溶接性を向上し、さらに音
響異方性の特性に優れた調質型60kgf/mm2 級鋼
を得ることができる。
Effect of the Invention] According to the present invention method, welding improved possible weldability prevention of cold cracking and the like during construction, better tempering type characteristics of the acoustic anisotropy 60 kgf / mm 2 class You can get steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.6%、
P:0.015%以下、S:0.01%以下、Mo:
0.01〜0.3%、Nb:0.005〜0.05%、
V:0.1%以下、Al:0.01〜0.08%、N:
0.0005〜0.008%、Ti<0.005%、B
<0.0003%を含み、Pcm値が0.2以下、X≧
40+tなる関係を満たし、残部が鉄および不可避不純
物よりなる鋼材を、1000℃以上1250℃以下の温
度に加熱後、Tft=−530C+100Mn+15Mo
+2250(有効Nb)+100V+770(℃)で与
えられる温度以上で熱間圧延を終了した後、少なくとも
Ar3 変態点以上より直接焼き入れし、その後Ac1変
態点以下の温度にて焼戻しをおこなうことを特徴とする
溶接性と音響異方性に優れた高張力鋼の製造方法。ただ
し、Pcm=C+Si/30+Mn/20+Cu/20
+Ni/30+Cr/20+Mo/15+V/10+5
Bで定義され、 有効Nb量は、1000〜1250℃の温度範囲に設定
された加熱温度Tslを用いて、 log(Nb)×(C+1
2/14N)=2.26−6770/(Tsl+273.
15)の関係より計算される固溶Nb量を示し、 Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5+Mo/4+V/14で定義され、 X=625(有効Nb)+250V+210Ceq,t
は鋼板の板厚(mm)を示す。
1. C: 0.04 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%,
P: 0.015% or less, S: 0.01% or less, Mo:
0.01-0.3%, Nb: 0.005-0.05%,
V: 0.1% or less, Al: 0.01 to 0.08%, N:
0.0005-0.008%, Ti <0.005%, B
<0.0003% included, Pcm value is 0.2 or less, X ≧
After heating a steel material satisfying the relation of 40 + t and the balance being iron and unavoidable impurities to a temperature of 1000 ° C. or higher and 1250 ° C. or lower, Tft = −530C + 100Mn + 15Mo
+2250 (effective Nb) + 100V +770 (° C) After the hot rolling is finished at a temperature above the temperature, it is directly quenched from at least the Ar3 transformation point, and then tempered at a temperature below the Ac1 transformation point. Method for producing high-strength steel with excellent weldability and acoustic anisotropy. However, Pcm = C + Si / 30 + Mn / 20 + Cu / 20
+ Ni / 30 + Cr / 20 + Mo / 15 + V / 10 + 5
The effective Nb amount is defined as B and the heating temperature Tsl set in the temperature range of 1000 to 1250 ° C. is used, and log (Nb) × (C + 1
2 / 14N) = 2.26-6770 / (Tsl + 273.
15) shows the amount of solid solution Nb calculated from the relationship of 15), Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr
/ 5 + Mo / 4 + V / 14, X = 625 (effective Nb) + 250V + 210Ceq, t
Indicates the plate thickness (mm) of the steel plate.
【請求項2】 重量%で、C:0.04〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.6%、
P:0.015%以下、S:0.01%以下、Mo:
0.01〜0.3%、Nb:0.005〜0.05%、
V:0.1%以下、Al:0.01〜0.08%、N:
0.0005〜0.008%、Ti<0.005%、B
<0.0003%を含み、さらにCu:0.5%以下、
Ni:1.5%以下、Cr:0.5%以下の1種又は2
種以上を含み、Pcm値が0.2以下、X≧40+tな
る関係を満たし、残部が鉄および不可避不純物よりなる
鋼材を、1000℃以上1250℃以下の温度に加熱
後、Tft=−530C+100Mn+15Mo+225
0(有効Nb)+100V+770(℃)で与えられる
温度以上で熱間圧延を終了した後、少なくともAr3 変
態点以上より直接焼き入れし、その後Ac1 変態点以下
の温度にて焼戻しをおこなうことを特徴とする溶接性と
音響異方性に優れた高張力鋼の製造方法。ただし、Pc
m=C+Si/30+Mn/20+Cu/20+Ni/
30+Cr/20+Mo/15+V/10+5Bで定義
され、 有効Nb量は、1000〜1250℃の温度範囲に設定
された加熱温度Tslを用いて、 log(Nb)×(C+1
2/14N)=2.26−6770/(Tsl+273.
15)の関係より計算される固溶Nb量を示し、 Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5+Mo/4+V/14で定義され、 X=625(有効Nb)+250V+210Ceq,t
は鋼板の板厚(mm)を示す。
2. C: 0.04 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%,
P: 0.015% or less, S: 0.01% or less, Mo:
0.01-0.3%, Nb: 0.005-0.05%,
V: 0.1% or less, Al: 0.01 to 0.08%, N:
0.0005-0.008%, Ti <0.005%, B
<Including 0.0003%, further Cu: 0.5% or less,
Ni: 1.5% or less, Cr: 0.5% or less, one or two
After heating a steel material containing at least 1000 kinds of materials and having a Pcm value of 0.2 or less and X ≧ 40 + t and the balance of iron and unavoidable impurities to a temperature of 1000 ° C. or more and 1250 ° C. or less, Tft = −530C + 100Mn + 15Mo + 225.
It is characterized in that after hot rolling is completed at a temperature higher than 0 (effective Nb) + 100V + 770 (° C.), it is directly quenched from at least the Ar3 transformation point and then tempered at a temperature below the Ac1 transformation point. Method for producing high-strength steel with excellent weldability and acoustic anisotropy. However, Pc
m = C + Si / 30 + Mn / 20 + Cu / 20 + Ni /
It is defined by 30 + Cr / 20 + Mo / 15 + V / 10 + 5B, and the effective Nb amount is log (Nb) × (C + 1) using the heating temperature Tsl set in the temperature range of 1000 to 1250 ° C.
2 / 14N) = 2.26-6770 / (Tsl + 273.
15) shows the amount of solid solution Nb calculated from the relationship of 15), Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr
/ 5 + Mo / 4 + V / 14, X = 625 (effective Nb) + 250V + 210Ceq, t
Indicates the plate thickness (mm) of the steel plate.
JP1461695A 1995-01-31 1995-01-31 Production of high tensile strength steel excellent in weldability and acoustic anisotropy Pending JPH08209237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1461695A JPH08209237A (en) 1995-01-31 1995-01-31 Production of high tensile strength steel excellent in weldability and acoustic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1461695A JPH08209237A (en) 1995-01-31 1995-01-31 Production of high tensile strength steel excellent in weldability and acoustic anisotropy

Publications (1)

Publication Number Publication Date
JPH08209237A true JPH08209237A (en) 1996-08-13

Family

ID=11866141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1461695A Pending JPH08209237A (en) 1995-01-31 1995-01-31 Production of high tensile strength steel excellent in weldability and acoustic anisotropy

Country Status (1)

Country Link
JP (1) JPH08209237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218801A1 (en) * 2007-10-26 2010-08-18 Baoshan Iron & Steel Co., Ltd. Steel plate with yield strength of 800mpa grade and low weld cracking sensitivity, and manufacture method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218801A1 (en) * 2007-10-26 2010-08-18 Baoshan Iron & Steel Co., Ltd. Steel plate with yield strength of 800mpa grade and low weld cracking sensitivity, and manufacture method thereof
EP2218801A4 (en) * 2007-10-26 2012-02-01 Baoshan Iron & Steel Steel plate with yield strength of 800mpa grade and low weld cracking sensitivity, and manufacture method thereof

Similar Documents

Publication Publication Date Title
JPH0794687B2 (en) Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JPH1017929A (en) Production of thick 600n class steel excellent in weldability and toughness in center part of plate thickness
JP2004107714A (en) High toughness and high yield point steel with excellent weldability and its producing method
JPH08209237A (en) Production of high tensile strength steel excellent in weldability and acoustic anisotropy
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JPH08232017A (en) Production of heat treated type 60kgf/mm2 class steel excellent in weldability and acoustic anisotropy
JPH09227937A (en) Manufacture of thick steel plate with high tensile strength
JP2001059142A (en) High strength steel plate excellent in strain aging resistance, and its manufacture
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH04110423A (en) Production of 80kgf/mm2 class steel plate having superior weldability and low yield ratio
JPH08176731A (en) High tensile steel and production thereof
JPH07173532A (en) Production of low yield ratio type fire resistant architectural steel excellent in weldability
JP2001226713A (en) Method for producing low yield ratio high tensile strength steel
JPH11172331A (en) Manufacture of steel excellent in weld cracking sensitivity and having low yield ratio and high tensile strength
JPH07242991A (en) High toughness chromium-molybdenum steel sheet excellent in weldability
JPH051323A (en) Production of high tensile strength steel excellent in weldability and brittle crack propagation arresting property
JPH07207336A (en) Production of refractory steel products for building structural purpose
JPH06264144A (en) Production of steel tube with low yield ratio for construction use by cold forming