JPH08208386A - Device for pulling up compound semiconductor single crystal - Google Patents

Device for pulling up compound semiconductor single crystal

Info

Publication number
JPH08208386A
JPH08208386A JP7018299A JP1829995A JPH08208386A JP H08208386 A JPH08208386 A JP H08208386A JP 7018299 A JP7018299 A JP 7018299A JP 1829995 A JP1829995 A JP 1829995A JP H08208386 A JPH08208386 A JP H08208386A
Authority
JP
Japan
Prior art keywords
closed container
single crystal
vapor pressure
pressure control
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7018299A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shiraki
弘幸 白木
Hirokazu Takahashi
浩和 高橋
Makoto Kikuchi
誠 菊池
Koichi Sasa
紘一 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7018299A priority Critical patent/JPH08208386A/en
Publication of JPH08208386A publication Critical patent/JPH08208386A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a device for pulling up a compd. semiconductor single crystal with which the precision control of a vapor pressure is made possible by suppressing the reaction of a high melting metallic material and a high-dissociation pressure component without deterioration of the hermeticity of a hermetic vessel, thereby preventing the deterioration of the material and preventing the deterioration in the purity of the high-dissociation pressure component. CONSTITUTION: This device has the hermetic vessel 1, a crucible 13 which is installed in the hermetic vessel 1 and in which a raw material melt 28 is stored, a pulling-up mechanism 24 which pulls up a seed crystal, heating means 15a, 15b which heat the crucible 13 together with the hermetic vessel 1, a vapor pressure control section 21 which controls the pressure of the high-dissociation pressure component in the hermetic vessel 1 and a temp. control means which controls the temp. of the vapor pressure control section 21. The hermetic vessel 1 and the vapor pressure control section 21 consist of carbon formed with a ceramic coating layer 5b of a high-purity III-V compd. on its inner peripheral surface and/or the high melting metal. Ceramic inside walls 31 to 33, 21c consisting of the high-purity III-V compd. are arranged in proximity to the inner side of the hermetic vessel 1 and the vapor pressure control section 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー素子、IC基
板等として用いられるGaAsなどのIII−V族化合
物半導体単結晶の育成に用いて好適な化合物半導体単結
晶引上装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor single crystal pulling apparatus suitable for growing a III-V group compound semiconductor single crystal such as GaAs used as a laser element, an IC substrate or the like.

【0002】[0002]

【従来の技術】従来、レーザー素子、IC基板等として
用いられるGaAs等のIII−V族化合物半導体単結
晶を育成するには、例えば、図6に示すような単結晶引
上装置が用いられている。(例えば、日本特許1490
669号、特願平2−332781号等参照) この装置は、III−V族化合物半導体単結晶をチョク
ラルスキー法(CZ法)により製造するためのもので、
図6において、符号1は内部空間が気密的に封止されか
つ該内部空間内に高解離圧成分が封入されて化合物半導
体単結晶の育成を行う密閉容器であり、この密閉容器1
は容器上部2と容器下部3とにより分割可能に構成され
ている。
2. Description of the Related Art Conventionally, for growing a III-V group compound semiconductor single crystal such as GaAs used as a laser device, an IC substrate, etc., a single crystal pulling apparatus as shown in FIG. 6 has been used. There is. (For example, Japanese Patent 1490
No. 669, Japanese Patent Application No. 2-332781, etc.) This apparatus is for producing a III-V group compound semiconductor single crystal by the Czochralski method (CZ method),
In FIG. 6, reference numeral 1 is a closed container for hermetically sealing the internal space and enclosing a high dissociation pressure component in the internal space for growing a compound semiconductor single crystal.
Is configured to be separable by a container upper part 2 and a container lower part 3.

【0003】前記容器上部2は、例えば、Mo,W,N
b等の金属及びこれらの合金のいずれか1種以上により
構成されている。また、容器下部3は、例えば、Mo,
W,Nb等の金属及びこれらの合金のいずれか1種以上
により構成された材料底板部4と、カーボン等からなる
筒体5aの内壁面に厚み250μm程度の高純度かつ緻
密なBN(PBN),AlN等のIII−V族化合物か
らなるコーティング層5bが形成された側壁部5とから
構成されている。これら容器上部2と容器下部3との接
合部6及び容器下部における底板部4と筒体5aとの接
合部(図示せず)にはシール材7が介装され、該容器下
部3の押し上げ下軸8には応力緩衝機構9が付設され、
接合部6にかかる応力を適性値に保つ構成となってい
る。
The upper part 2 of the container is made of, for example, Mo, W, N.
It is composed of a metal such as b and one or more of these alloys. The lower part 3 of the container is, for example, Mo,
A material bottom plate 4 made of a metal such as W or Nb and one or more of these alloys, and a highly pure and dense BN (PBN) having a thickness of about 250 μm on the inner wall surface of the tubular body 5a made of carbon or the like. , AlN and the like, and a side wall portion 5 on which a coating layer 5b made of a III-V group compound is formed. A seal member 7 is interposed at a joint portion 6 between the container upper portion 2 and the container lower portion 3 and a joint portion (not shown) between the bottom plate portion 4 and the cylindrical body 5a at the container lower portion, and the container lower portion 3 is pushed up. A stress buffer mechanism 9 is attached to the shaft 8,
The structure is such that the stress applied to the joint 6 is maintained at an appropriate value.

【0004】一方、前記密閉容器1の内部には、サセプ
タ11に支持され原料融液を貯留するルツボ13が配置
され、このルツボ13は下軸14により回転されるとと
もに、ヒーター15a,15bにより密閉容器1ととも
に加熱されるようになっている。さらに、容器上部2の
天板部には、密閉容器1内の高解離圧成分の量を制御す
る蒸気圧制御部21が設けられ、該蒸気圧制御部21に
は、その内壁面21aの温度を密閉容器1の内壁で最も
低く且つ適切な一定温度に制御する温度制御ヒータ21
bが設けられ、この温度制御ヒータ21bが蒸気圧制御
部21の内壁面21aの温度を密閉容器1の内壁で最も
低く且つ適切な一定温度に制御することにより、ここに
凝縮する高解離圧成分の圧力を調整し、密閉容器1内の
高解離圧成分の圧力を制御し、育成される化合物半導体
単結晶22の組成を制御するようになっている。
On the other hand, a crucible 13 which is supported by the susceptor 11 and stores the raw material melt is arranged inside the closed container 1. The crucible 13 is rotated by a lower shaft 14 and is closed by heaters 15a and 15b. It is designed to be heated together with the container 1. Further, a vapor pressure control unit 21 for controlling the amount of the high dissociation pressure component in the closed container 1 is provided on the top plate portion of the container upper portion 2, and the vapor pressure control unit 21 has a temperature of the inner wall surface 21a thereof. Temperature control heater 21 for controlling the temperature of the inner wall of the closed container 1 to the lowest and appropriate constant temperature.
b is provided, and the temperature control heater 21b controls the temperature of the inner wall surface 21a of the vapor pressure control unit 21 to be the lowest and appropriate constant temperature on the inner wall of the closed container 1, so that the high dissociation pressure component condensed there. Is adjusted to control the pressure of the high dissociation pressure component in the closed container 1 to control the composition of the grown compound semiconductor single crystal 22.

【0005】また、密閉容器1の天板部を貫通して、単
結晶22の成長部を観察するためのビューロット23が
設けられ、引上軸24および下軸14の各貫通部には、
23等の液体シール剤を満たした回転シール25がそ
れぞれ設けられている。そして、上記構成全体が外部容
器26内に密封状態で収納されている。
A view lot 23 for observing the growing portion of the single crystal 22 is provided through the top plate of the closed container 1, and the pull-up shaft 24 and the lower shaft 14 each have a penetrating portion.
A rotary seal 25 filled with a liquid sealant such as B 2 O 3 is provided. The entire configuration described above is housed in the outer container 26 in a sealed state.

【0006】次に、上記の装置を用いてGaAs単結晶
を育成する方法について説明する。この場合、高解離圧
成分はAsであり、他の原料成分はGa(融点:29.
78℃)である。まず、ルツボ13内にGa原料を貯留
し、密閉容器1の底板部4に所定量のAsを載置する。
そして外部容器26内全体を真空排気した後、押し上げ
下軸8を上昇させて密閉容器1を封止する。次いで、密
閉容器1の底板部4を除く内壁をヒーター15aで加熱
した後、密閉容器1の底板部4をヒーター15bにより
徐々に加熱し、底板部4に載置してあるAsを加熱して
昇華させるとともに、このルツボ13を密閉容器1とと
もに1200〜1300℃程度に加熱し、溶融状態のG
a原料に昇華したAsを吸収させ、ルツボ13内でGa
As融液28を合成する。
Next, a method for growing a GaAs single crystal using the above apparatus will be described. In this case, the high dissociation pressure component is As and the other raw material components are Ga (melting point: 29.
78 ° C.). First, a Ga raw material is stored in the crucible 13 and a predetermined amount of As is placed on the bottom plate portion 4 of the closed container 1.
Then, after the entire inside of the outer container 26 is evacuated, the lower shaft 8 is pushed up and the closed container 1 is sealed. Next, after heating the inner wall of the closed container 1 excluding the bottom plate part 4 with the heater 15a, the bottom plate part 4 of the closed container 1 is gradually heated with the heater 15b to heat As placed on the bottom plate part 4. While being sublimated, the crucible 13 is heated together with the closed container 1 to about 1200 to 1300 ° C.
a. As sublimated As is absorbed into the crucible 13 and Ga
The As melt 28 is synthesized.

【0007】合成作業の間、外部容器26内にArガ
ス、N2ガス等の不活性ガスを導入し、密閉容器1内外
の圧力バランスをとる。合成が終了した時点で、密閉容
器1内の温度分布を、蒸気圧制御部21が他の部分より
低くかつ所定の温度になるように制御し、昇華したAs
が蒸気圧制御部21のみに凝縮27して密閉容器1内の
他の部分には凝縮しないようにする。GaAs融液28
の合成が完了したら、引上軸24の下端の種結晶(図示
せず)をGaAs融液28に浸漬し、引上軸24を回転
させながら引き上げつつ、ヒーター15aおよび15b
の温度を徐々に下げながら単結晶22を育成する。
During the synthesis work, an inert gas such as Ar gas or N 2 gas is introduced into the outer container 26 to balance the pressure inside and outside the closed container 1. At the time of completion of the synthesis, the temperature distribution in the closed container 1 is controlled by the vapor pressure control unit 21 to be lower than the other parts and at a predetermined temperature, and the As sublimated As.
Is condensed 27 only in the vapor pressure control unit 21 and is not condensed in other parts in the closed container 1. GaAs melt 28
After completion of the above synthesis, the seed crystal (not shown) at the lower end of the pull-up shaft 24 is immersed in the GaAs melt 28, and the pull-up shaft 24 is rotated and pulled up while the heaters 15a and 15b are being pulled up.
The single crystal 22 is grown while gradually lowering the temperature.

【0008】なお、原料Asの量は、GaAs融液28
合成に必要な量以上とし、GaAs融液28合成終了後
に蒸気圧制御部21中に凝縮している過剰分のAsによ
り密閉容器1内を成長プロセスの間、一定圧力のAsガ
スで満たすようにする。また、蒸気圧制御部21は、結
晶成長中に失われるAsの量も考慮して、結晶成長が終
了するまでAs固体を収納しておける容積および構造と
なっている。
The amount of the raw material As is the GaAs melt 28
The amount required for the synthesis is set to be more than that required, and after the synthesis of the GaAs melt 28 is completed, the closed container 1 is filled with As gas at a constant pressure during the growth process by the excess As condensed in the vapor pressure control unit 21. To do. Further, the vapor pressure control unit 21 has a volume and a structure that can store As solids until the crystal growth is completed, in consideration of the amount of As lost during crystal growth.

【0009】[0009]

【発明が解決しようとする課題】ところで、上記の単結
晶引上装置では、単結晶22を育成する際の密閉容器1
内の温度が高く、密閉容器1内に封入されたAsガスの
分子運動もかなり激しいものとなる。したがって、この
Asガスにより密閉容器1のPBN層5bが侵食されて
孔が明いてしまい、密閉容器1の寿命が短くなるという
問題点があった。PBN層5bに孔が明いた場合、As
ガスはこの孔を通って筒体5aを容易に通過し、密閉容
器1外に漏れるという問題点が生じる。そこで、PBN
層5bの厚みを増加させることも考えられたが、筒体5
aを構成するカーボンとPBN層5bとの熱膨張率が異
なるために、厚みを増加した場合、昇温時及び降温時の
熱的ストレスにより該PBN層5bが割れてしまうとい
う新たな問題が生じる。
By the way, in the above single crystal pulling apparatus, the closed container 1 for growing the single crystal 22 is used.
The internal temperature is high, and the molecular motion of the As gas sealed in the closed container 1 is also extremely vigorous. Therefore, there is a problem in that the PBN layer 5b of the closed container 1 is eroded by the As gas and holes are formed, and the life of the closed container 1 is shortened. If holes are formed in the PBN layer 5b, As
The gas easily passes through the cylindrical body 5a through this hole and leaks to the outside of the closed container 1. So PBN
Although it was considered to increase the thickness of the layer 5b,
Since the carbon constituting the a and the PBN layer 5b have different thermal expansion coefficients, when the thickness is increased, a new problem arises in that the PBN layer 5b is cracked due to thermal stress during temperature increase and temperature decrease. .

【0010】さらに、密閉容器1または蒸気圧制御部2
1のうち高融点金属材料で構成された部分は高温中でA
sガスに曝されるために、内側よりAsガスと反応し、
種々の砒化物及び固溶体を生じることとなる。この様な
反応は、広い温度範囲で生じ、材料を変質させて、機械
的強度及び寸法精度の劣化につながる。また、蒸気圧制
御部21を高融点金属で構成した場合、この部分に凝縮
しているAsは長時間高温状態に保持されるので、金属
壁素材との相互拡散を起し、Asの純度を変えてしまう
という問題点が生じる。この場合、蒸気圧制御部21の
温度を一定に保持してもAs自体の蒸気圧が徐々に変化
するので、単結晶の組成制御を精密に行うことができな
くなる。
Further, the closed container 1 or the vapor pressure control unit 2
The part made of refractory metal material of No. 1 is A at high temperature.
Because it is exposed to s gas, it reacts with As gas from the inside,
This will produce various arsenides and solid solutions. Such a reaction occurs in a wide temperature range and deteriorates the material, leading to deterioration in mechanical strength and dimensional accuracy. Further, when the vapor pressure control unit 21 is made of a refractory metal, As condensed in this portion is kept in a high temperature state for a long time, so that it causes mutual diffusion with the metal wall material, thereby increasing the purity of As. The problem of changing it arises. In this case, even if the temperature of the vapor pressure control unit 21 is kept constant, the vapor pressure of As itself gradually changes, so that the composition of the single crystal cannot be precisely controlled.

【0011】本発明は上記事情に鑑みてなされたもの
で、密閉容器のPBN層が侵食されて孔が明き気密性が
劣化するおそれがなく、また、高融点金属材料と高解離
圧成分との反応を抑制し材料の劣化を防ぎ、かつ、高解
離圧成分の純度劣化を防止するとともに蒸気圧の精密制
御を可能にし、したがって、密閉容器の信頼性を高め、
長寿命とすることができる化合物半導体単結晶引上装置
を提供することを目的としている。
The present invention has been made in view of the above circumstances, and there is no possibility that the PBN layer of a closed container is eroded to open holes and deteriorate airtightness, and a high melting point metal material and a high dissociation pressure component are used. The reaction of is suppressed to prevent the deterioration of the material, and the deterioration of the purity of the high dissociation pressure component is prevented, and the precise control of the vapor pressure is enabled. Therefore, the reliability of the closed container is improved,
It is an object of the present invention to provide a compound semiconductor single crystal pulling apparatus that can have a long life.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次のような化合物半導体単結晶引上装置を
採用した。すなわち、請求項1記載の化合物半導体単結
晶引上装置は、内部空間が気密的に封止されかつ該内部
空間内に高解離圧成分が封入される開閉可能な密閉容器
と、該密閉容器の内部に回転自在に設けられ原料融液を
貯留するルツボと、前記原料融液に種結晶を浸漬して単
結晶を引き上げる引上機構と、該ルツボを前記密閉容器
とともに加熱する加熱手段と、内部空間が前記密閉容器
の内部空間と連通され該密閉容器内の高解離圧成分の圧
力を制御する蒸気圧制御部と、この蒸気圧制御部の温度
を制御するための温度制御手段とを具備し、前記ルツボ
内の原料融液から化合物半導体単結晶を引き上げる化合
物半導体単結晶引上装置において、前記密閉容器及び蒸
気圧制御部は、少なくともその内周面に高純度のIII
−V族化合物からなるセラミックコーティング層が形成
されたカーボン、および/または高融点金属により構成
されるとともに、該密閉容器及び蒸気圧制御部の内側に
近接して高純度のIII−V族化合物からなるセラミッ
ク内壁を配置したものである。
In order to solve the above problems, the present invention employs the following compound semiconductor single crystal pulling apparatus. That is, the compound semiconductor single crystal pulling-up apparatus according to claim 1, wherein the internal space is hermetically sealed, and a high dissociation pressure component is sealed in the internal space, which can be opened and closed, and the closed container of the closed container. A crucible rotatably provided inside for storing a raw material melt, a pulling mechanism for immersing a seed crystal in the raw material melt to pull up a single crystal, a heating means for heating the crucible together with the closed container, and A vapor pressure control unit for controlling the pressure of the high dissociation pressure component in the closed container, the space being in communication with the internal space of the closed container; and a temperature control unit for controlling the temperature of the vapor pressure control unit. In the compound semiconductor single crystal pulling apparatus for pulling a compound semiconductor single crystal from a raw material melt in the crucible, the closed container and the vapor pressure control unit have high purity III at least on the inner peripheral surface thereof.
A high purity group III-V compound which is made of carbon and / or a high melting point metal on which a ceramic coating layer made of a group V compound is formed, and which is close to the inside of the closed container and the vapor pressure control unit. The ceramic inner wall is arranged.

【0013】請求項2記載の化合物半導体単結晶引上装
置は、請求項1記載の化合物半導体単結晶引上装置にお
いて、前記セラミックコーティング層とセラミック内壁
との間隔を0.5〜3mmとしたものである。
A compound semiconductor single crystal pulling apparatus according to a second aspect is the compound semiconductor single crystal pulling apparatus according to the first aspect, in which the interval between the ceramic coating layer and the ceramic inner wall is 0.5 to 3 mm. Is.

【0014】[0014]

【作用】本発明の請求項1記載の化合物半導体単結晶引
上装置では、前記密閉容器及び蒸気圧制御部を、少なく
ともその内周面に高純度のIII−V族化合物からなる
セラミックコーティング層が形成されたカーボン、およ
び/または高融点金属により構成するとともに、該密閉
容器及び蒸気圧制御部の内側に近接して高純度のIII
−V族化合物からなるセラミック内壁を配置したことに
より、密閉容器の内周面のセラミックコーティング層は
激しく対流する高解離圧成分の攻撃から保護され、該内
周面上に形成されたセラミックコーティング層が侵食さ
れて孔が明く等の不具合が発生する危険性がなくなり、
高解離圧成分が外部に漏れる危険性もなくなる。これに
より、密閉容器の信頼性が高まり、長寿命となる。
In the apparatus for pulling up a compound semiconductor single crystal according to claim 1 of the present invention, the closed vessel and the vapor pressure control section are provided with a ceramic coating layer made of a high-purity III-V group compound on at least the inner peripheral surface thereof. It is made of formed carbon and / or a high melting point metal, and is of high purity III close to the inside of the closed container and the vapor pressure control unit.
-By arranging the ceramic inner wall made of a group V compound, the ceramic coating layer on the inner peripheral surface of the closed container is protected from the attack of the components of high dissociation pressure that violently convection, and the ceramic coating layer formed on the inner peripheral surface. Eliminates the risk of problems such as erosion of the
There is also no risk of the high dissociation pressure component leaking to the outside. As a result, the reliability of the hermetically sealed container is increased and the life is extended.

【0015】また、高融点金属により構成された前記密
閉容器及び蒸気圧制御部各部材の表面への高解離圧成分
の浸透及び該表面との反応を抑制する。前記蒸気圧制御
部においては内部の温度が均一になるように制御されて
いるため、高解離圧成分の凝縮の大部分はセラミック内
壁の内側で起こり、該蒸気圧制御部の表面と高解離圧成
分との相互拡散は、セラミック内壁により阻止される。
Further, it is possible to suppress the permeation of the high dissociation pressure component into the surfaces of the closed container and the vapor pressure control section members made of a high melting point metal and the reaction with the surfaces. In the vapor pressure control unit, since the internal temperature is controlled to be uniform, most of the condensation of the high dissociation pressure component occurs inside the ceramic inner wall, and the surface of the vapor pressure control unit and the high dissociation pressure are controlled. Interdiffusion with the components is prevented by the ceramic inner wall.

【0016】請求項2記載の化合物半導体単結晶引上装
置では、前記セラミックコーティング層とセラミック内
壁との間隔を0.5〜3mmとしたことにより、この隙
間では、たとえ温度分布があったとしても、この温度差
に起因する対流は生じない。これにより、高解離圧成分
のセラミックコーティング層に対する衝撃力が緩和さ
れ、これらセラミックコーティング層の侵食による穿孔
等を防ぐ。
In the apparatus for pulling up a compound semiconductor single crystal according to the second aspect, the gap between the ceramic coating layer and the ceramic inner wall is 0.5 to 3 mm, so that even if there is a temperature distribution in this gap. However, convection due to this temperature difference does not occur. As a result, the impact force of the high dissociation pressure component on the ceramic coating layer is relaxed, and perforation due to erosion of these ceramic coating layers is prevented.

【0017】[0017]

【実施例】図1は本発明の一実施例の化合物半導体単結
晶引上装置を示す断面図、図2はその要部を示す部分拡
大断面図である。なお、この単結晶引上装置は従来の単
結晶引上装置を改良したものであり、図5と同一の構成
要素には同一の符号が付してある。
1 is a sectional view showing an apparatus for pulling up a compound semiconductor single crystal according to an embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view showing an essential part thereof. The single crystal pulling apparatus is an improvement of the conventional single crystal pulling apparatus, and the same components as those in FIG. 5 are designated by the same reference numerals.

【0018】図1において、31は密閉容器1の高純度
かつ緻密なPBN(熱分解窒素化ホウ素)からなるセラ
ミックコーティング層(以下,単にコーティング層と略
称する)5bの内側に近接して配置された、円筒状のP
BNからなる厚み1mmのセラミック筒(セラミック内
壁)であり、コーティング層5bとの隙間tが0.5〜
3mmの範囲となる様にその外径が設定されている。こ
の隙間の大きさは小さい方がよいが、前記コーティング
層5b及びセラミック筒31の加工精度、熱膨張係数の
違いを考慮して決定される。このセラミック筒31は、
グラファイト製の円筒形の型の外側に、熱CVD法によ
りPBNを厚く積層させ、その後、型を抜き取ることに
より作製される。
In FIG. 1, reference numeral 31 is arranged close to the inside of a ceramic coating layer (hereinafter, simply referred to as a coating layer) 5b made of high-purity and dense PBN (pyrolytic boron nitride) of the closed container 1. And cylindrical P
It is a ceramic cylinder (ceramic inner wall) made of BN and having a thickness of 1 mm, and the gap t with the coating layer 5b is 0.5 to.
The outer diameter is set so as to be in the range of 3 mm. The size of this gap is preferably as small as possible, but is determined in consideration of the processing accuracy of the coating layer 5b and the ceramic cylinder 31 and the difference in the coefficient of thermal expansion. This ceramic tube 31
It is manufactured by stacking PBN thickly on the outside of a graphite cylindrical mold by a thermal CVD method and then extracting the mold.

【0019】また、密閉容器1の上部フランジ2、下部
フランジ4及び蒸気圧制御部21はMo(モリブデン)
等の高融点金属で構成されており、前記上部フランジ2
及び下部フランジ4各々の内側に近接してPBN内壁
(セラミック内壁)32及びPBN底板(セラミック内
壁)33が配設され、また、蒸気圧制御部21の内側に
近接してPBN内円筒(セラミック内壁)21cが配設
されている。これらの部材はいずれも肉厚1mmのPB
Nむく材により構成され、前記上部フランジ2、下部フ
ランジ4及び蒸気圧制御部21各々の内壁との隙間は
0.5〜3mmとなるように、設定されている。この隙
間は、小さい方がよいが、これらの部材とAsガス(高
解離圧成分)との反応による寸法変化、熱膨張係数の違
い等を考慮して設定される。
The upper flange 2, the lower flange 4 and the vapor pressure controller 21 of the closed container 1 are made of Mo (molybdenum).
The upper flange 2 is made of a refractory metal such as
Also, a PBN inner wall (ceramic inner wall) 32 and a PBN bottom plate (ceramic inner wall) 33 are arranged close to the inside of each of the lower flanges 4, and a PBN inner cylinder (ceramic inner wall) is arranged near the inside of the vapor pressure control unit 21. ) 21c is provided. All of these members are PB with a wall thickness of 1 mm.
The upper flange 2, the lower flange 4 and the inner wall of each of the vapor pressure control portions 21 are made of N-peel material and are set to have a clearance of 0.5 to 3 mm. This gap is preferably small, but is set in consideration of dimensional changes due to the reaction of these members with As gas (high dissociation pressure component), differences in thermal expansion coefficient, and the like.

【0020】この単結晶引上装置では、密閉容器1のコ
ーティング層5bの内側に近接してセラミック筒31を
配置したことにより、密閉容器1の内周面のコーティン
グ層5bはセラミック筒31により保護される。セラミ
ック筒31は、高い運動エネルギーを有するAsガスに
侵食されて小さな孔が発生する。一方、密閉容器1の内
周面のコーティング層5bとセラミック筒31とは、充
分近接して配置されていることにより、この間に挟まれ
たAsガスは対流が抑制され、コーティング層5bには
浸食による孔が生じるおそれがない。また、セラミック
筒31に生じる孔は気密性を損じることはないが、より
重要である密閉容器1の気密性を保持する。以上によ
り、密閉容器1の信頼性が大幅に高まり長寿命となるの
で、Asガスが密閉容器1外に漏れる危険性もなくな
る。
In this apparatus for pulling a single crystal, the ceramic cylinder 31 is arranged close to the inside of the coating layer 5b of the closed container 1, so that the coating layer 5b on the inner peripheral surface of the closed container 1 is protected by the ceramic cylinder 31. To be done. The ceramic cylinder 31 is eroded by As gas having high kinetic energy to generate a small hole. On the other hand, since the coating layer 5b on the inner peripheral surface of the closed container 1 and the ceramic cylinder 31 are arranged sufficiently close to each other, the As gas sandwiched therebetween is suppressed from convection, and the coating layer 5b is eroded. There is no risk of holes being created by Further, the holes formed in the ceramic cylinder 31 do not impair the airtightness, but retain the more important airtightness of the closed container 1. As described above, the reliability of the closed container 1 is significantly increased and the life is extended, so that there is no risk of As gas leaking out of the closed container 1.

【0021】また、密閉容器1の上部フランジ2、下部
フランジ4及び蒸気圧制御部21を構成するMo等の高
融点金属とAsガスとの反応は、PBN内壁32を配置
したことでAsガスの供給が拡散を主体としたものとな
り、該PBN内壁32が無い場合と比べてその反応が抑
制され、その分該高融点金属の劣化を遅延させることが
できる。
Further, the reaction between the upper flange 2, the lower flange 4 of the closed container 1 and the high melting point metal such as Mo which constitutes the vapor pressure control section 21 and As gas is caused by the arrangement of the PBN inner wall 32. The supply is mainly based on diffusion, and the reaction is suppressed as compared with the case where the PBN inner wall 32 is not provided, and the deterioration of the refractory metal can be delayed by that amount.

【0022】本実施例では、蒸気圧制御部21を高融点
金属により構成しているので、この内周部に配置したP
BN内壁32は重要な働きをする。すなわち、Asガス
の凝縮は蒸気圧制御部21の内周部とPBN内壁32と
の間の隙間にも生じるが、この隙間が埋まってしまった
場合には、それ以上の凝縮はPBN内壁32の内側に生
じる。この部分に凝縮したAsは、高融点金属とPBN
内壁32により隔てられているので、相互拡散によりA
sが汚染されることはない。このようにして凝縮したほ
とんどのAsは、蒸気圧制御部21の温度に対して一定
の蒸気圧を付与することができる。
In this embodiment, since the vapor pressure control section 21 is made of a high melting point metal, the P arranged on the inner peripheral portion of the vapor pressure control section 21.
The BN inner wall 32 plays an important role. That is, the condensation of As gas also occurs in the gap between the inner peripheral portion of the vapor pressure control unit 21 and the PBN inner wall 32, but if this gap is filled, further condensation will occur in the PBN inner wall 32. It occurs inside. As condensed in this part is the refractory metal and PBN.
Since they are separated by the inner wall 32, A due to mutual diffusion
s is not contaminated. Most of the As condensed in this way can give a constant vapor pressure to the temperature of the vapor pressure control unit 21.

【0023】なお、この単結晶引上装置では、密閉容器
1のPBN層5bの内側に近接してPBN筒31を配置
した構成としたが、密閉容器1は内周面に高純度のII
I−V族化合物からなるセラミックコーティング層を形
成し、該セラミックコーティング層の内側に近接して高
純度のIII−V族化合物からなるセラミックス筒を配
置したものであればよく、上記構成にかかわらず様々な
構成を採ることが可能である。
In this single crystal pulling apparatus, the PBN cylinder 31 is arranged close to the inside of the PBN layer 5b of the closed container 1, but the closed container 1 has a high purity II on the inner peripheral surface.
It is sufficient that a ceramic coating layer made of a IV compound is formed, and a ceramic cylinder made of a high-purity III-V compound is arranged in the vicinity of the inside of the ceramic coating layer, regardless of the above configuration. Various configurations are possible.

【0024】例えば、図3に示すように、筒体5aのP
BN層5bの内側に近接して高純度かつ緻密なAlN
(窒化アルミニウム)筒41を配置した構成としてもよ
く、あるいは図4に示すように、筒体5aの内周面42
に高純度かつ緻密なAlN層43を形成し、このAlN
層43の内側に近接してAlN筒41を配置した構成と
してもよい。
For example, as shown in FIG. 3, P of the cylindrical body 5a is
High-purity and dense AlN close to the inside of the BN layer 5b
The (aluminum nitride) cylinder 41 may be arranged, or, as shown in FIG. 4, the inner peripheral surface 42 of the cylinder 5a.
A highly pure and dense AlN layer 43 is formed on the
The AlN cylinder 41 may be arranged close to the inside of the layer 43.

【0025】また、上記各実施例においてはGaAs単
結晶を育成するものとしたが、対象とする化合物半導体
単結晶は高解離圧成分が含まれる単結晶であればよく、
III−V族化合物半導体単結晶に限定されない。さら
に、本実施例のセラミック筒31を、高解離圧成分を密
封する他の化合物半導体処理装置、例えば、ブリッジマ
ン法による縦型半導体単結晶育成装置、熱処理装置等に
適用することもできる。
In each of the above embodiments, the GaAs single crystal was grown, but the compound semiconductor single crystal of interest may be a single crystal containing a high dissociation pressure component,
The present invention is not limited to the III-V group compound semiconductor single crystal. Furthermore, the ceramic cylinder 31 of the present embodiment can be applied to other compound semiconductor processing apparatus for sealing high dissociation pressure components, for example, vertical semiconductor single crystal growing apparatus by the Bridgman method, heat treatment apparatus and the like.

【0026】[0026]

【発明の効果】以上説明したように、本発明の請求項1
記載の化合物半導体単結晶引上装置によれば、密閉容器
及び蒸気圧制御部は、少なくともその内周面に高純度の
III−V族化合物からなるセラミックコーティング層
が形成されたカーボン、および/または高融点金属によ
り構成されるとともに、該密閉容器及び蒸気圧制御部の
内側に近接して高純度のIII−V族化合物からなるセ
ラミック内壁を配置したので、密閉容器の内周面のセラ
ミックコーティング層を激しく対流する高解離圧成分の
攻撃から保護することができ、該内周面上に形成された
セラミックコーティング層が侵食されて孔が明く等の不
具合が発生する危険性がなくなり、高解離圧成分が外部
に漏れる危険性もなくなる。したがって、密閉容器の信
頼性を高め、長寿命とすることができる。
As described above, according to the first aspect of the present invention.
According to the described compound semiconductor single crystal pulling apparatus, the hermetically sealed container and the vapor pressure control unit have carbon on which a ceramic coating layer made of a high-purity III-V group compound is formed on at least the inner peripheral surface thereof, and / or Since a ceramic inner wall made of a high-melting metal and arranged close to the inside of the closed container and the vapor pressure control section and made of a high-purity III-V group compound, the ceramic coating layer on the inner peripheral surface of the closed container. Can be protected from the attack of high dissociation pressure components that violently convection, eliminating the risk of problems such as erosion of the ceramic coating layer formed on the inner peripheral surface and the formation of holes, resulting in high dissociation. There is also no risk of the pressure component leaking to the outside. Therefore, the reliability of the closed container can be improved and the life can be extended.

【0027】また、カーボンまたは高融点金属のいずれ
かの材料により構成された前記密閉容器及び蒸気圧制御
部各々の表面への高解離圧成分の浸透及び該表面との反
応を抑制し、前記蒸気圧制御部の表面と高解離圧成分凝
縮固体との相互拡散を阻止することができる。
Further, the permeation of the high dissociation pressure component into and the reaction with the surface of each of the closed vessel and the vapor pressure control section made of a material of carbon or a refractory metal is suppressed to suppress the vapor. It is possible to prevent mutual diffusion between the surface of the pressure control unit and the condensed solid of high dissociation pressure component.

【0028】請求項2記載の化合物半導体単結晶引上装
置は、前記セラミックコーティング層とセラミック内壁
との間隔を0.5〜3mmとしたので、この隙間におい
ては、たとえ温度分布があったとしても、この温度差に
起因する対流を阻止することができ、高解離圧成分のセ
ラミックコーティング層に対する衝撃力を緩和し、これ
らセラミック層の侵食による穿孔等を防止することがで
きる。
In the compound semiconductor single crystal pulling up apparatus according to the second aspect, the gap between the ceramic coating layer and the ceramic inner wall is 0.5 to 3 mm. Therefore, even if there is a temperature distribution in this gap. It is possible to prevent convection due to this temperature difference, reduce the impact force of the high dissociation pressure component on the ceramic coating layer, and prevent perforation and the like due to erosion of these ceramic layers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の化合物半導体単結晶引上装
置を示す断面図である。
FIG. 1 is a cross-sectional view showing a compound semiconductor single crystal pulling apparatus of one embodiment of the present invention.

【図2】本発明の一実施例の化合物半導体単結晶引上装
置の要部を示す部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view showing a main part of a compound semiconductor single crystal pulling apparatus according to an embodiment of the present invention.

【図3】本発明の一実施例の化合物半導体単結晶引上装
置の変形例を示す断面図である。
FIG. 3 is a cross-sectional view showing a modified example of the compound semiconductor single crystal pulling apparatus of one embodiment of the present invention.

【図4】本発明の一実施例の化合物半導体単結晶引上装
置の他の変形例を示す断面図である。
FIG. 4 is a cross-sectional view showing another modified example of the compound semiconductor single crystal pulling apparatus of one embodiment of the present invention.

【図5】従来の化合物半導体単結晶引上装置を示す断面
図である。
FIG. 5 is a cross-sectional view showing a conventional compound semiconductor single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 容器上部 3 容器下部 4 底板部 5 側壁部 5a 筒体 5b PBNコーティング層 6 接合部 7 シール材 8 押し上げ下軸 9 応力緩衝機構 11 サセプタ 13 ルツボ 14 下軸 15a,15b ヒーター 21 蒸気圧制御部 21a 内壁面 21b 温度制御ヒータ 22 化合物半導体単結晶 23 ビューロット 24 引上軸 25 回転シール 26 外部容器 27 高解離圧成分の凝縮固体 31 セラミック筒(セラミック内壁) 32 PBN内壁(セラミック内壁) 33 PBN底板(セラミック内壁) 41 AlN(窒化アルミニウム)筒 42 内周面 43 AlN層 t 隙間 1 Closed Container 2 Upper Container 3 Lower Container 4 Bottom Plate 5 Side Wall 5a Cylindrical 5b PBN Coating Layer 6 Joint 7 Sealing Material 8 Push Down Lower Shaft 9 Stress Buffer Mechanism 11 Susceptor 13 Crucible 14 Lower Shaft 15a, 15b Heater 21 Steam Pressure Control part 21a Inner wall surface 21b Temperature control heater 22 Compound semiconductor single crystal 23 Viewlot 24 Pulling shaft 25 Rotating seal 26 Outer container 27 Condensed solid of high dissociation pressure component 31 Ceramic cylinder (ceramic inner wall) 32 PBN inner wall (ceramic inner wall) 33 PBN bottom plate (ceramic inner wall) 41 AlN (aluminum nitride) cylinder 42 inner peripheral surface 43 AlN layer t gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々 紘一 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Sasa 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Corporation Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部空間が気密的に封止されかつ該内部
空間内に高解離圧成分が封入される開閉可能な密閉容器
と、該密閉容器の内部に回転自在に設けられ原料融液を
貯留するルツボと、前記原料融液に種結晶を浸漬して単
結晶を引き上げる引上機構と、該ルツボを前記密閉容器
とともに加熱する加熱手段と、内部空間が前記密閉容器
の内部空間と連通され該密閉容器内の高解離圧成分の圧
力を制御する蒸気圧制御部と、この蒸気圧制御部の温度
を制御するための温度制御手段とを具備し、前記ルツボ
内の原料融液から化合物半導体単結晶を引き上げる化合
物半導体単結晶引上装置において、 前記密閉容器及び蒸気圧制御部は、少なくともその内周
面に高純度のIII−V族化合物からなるセラミックコ
ーティング層が形成されたカーボン、および/または高
融点金属により構成されるとともに、該密閉容器及び蒸
気圧制御部の内側に近接して高純度のIII−V族化合
物からなるセラミック内壁を配置したことを特徴とする
化合物半導体単結晶引上装置。
1. An openable and closable closed container in which an internal space is hermetically sealed and a high dissociation pressure component is sealed in the internal space, and a raw material melt rotatably provided inside the closed container. A crucible to be stored, a pulling mechanism for immersing a seed crystal in the raw material melt to pull up a single crystal, a heating means for heating the crucible together with the closed container, and an internal space communicating with the internal space of the closed container. A vapor pressure control unit for controlling the pressure of the high dissociation pressure component in the closed container, and a temperature control means for controlling the temperature of the vapor pressure control unit are provided, and the compound semiconductor is removed from the raw material melt in the crucible. In a compound semiconductor single crystal pulling apparatus for pulling a single crystal, the closed container and the vapor pressure control unit have carbon on which a ceramic coating layer made of a high-purity III-V compound is formed on at least the inner peripheral surface thereof. And / or a high melting point metal, and a ceramic inner wall made of a high-purity III-V group compound is arranged close to the inside of the closed container and the vapor pressure control section. Lifting device.
【請求項2】 前記セラミックコーティング層とセラミ
ック内壁との間隔を0.5〜3mmとしたことを特徴と
する請求項1記載の化合物半導体単結晶引上装置。
2. The compound semiconductor single crystal pulling apparatus according to claim 1, wherein the interval between the ceramic coating layer and the ceramic inner wall is 0.5 to 3 mm.
JP7018299A 1995-02-06 1995-02-06 Device for pulling up compound semiconductor single crystal Withdrawn JPH08208386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7018299A JPH08208386A (en) 1995-02-06 1995-02-06 Device for pulling up compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7018299A JPH08208386A (en) 1995-02-06 1995-02-06 Device for pulling up compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH08208386A true JPH08208386A (en) 1996-08-13

Family

ID=11967739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7018299A Withdrawn JPH08208386A (en) 1995-02-06 1995-02-06 Device for pulling up compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH08208386A (en)

Similar Documents

Publication Publication Date Title
EP1587971B1 (en) Method for producing large, single-crystals of aluminum nitride
US6136093A (en) Method of making GaN single crystal and apparatus for making GaN single crystal
US5132145A (en) Method of making composite material crucible for use in a device for making single crystals
US20020170490A1 (en) Method and apparatus for growing aluminum nitride monocrystals
US20130239882A1 (en) Coated crucible and method of making a coated crucible
JP4108782B2 (en) Apparatus and method for forming single crystal silicon carbide on a nucleus
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
US5167759A (en) Production process of single crystals
JP2000219595A (en) Crucible, crystal growth device and crystal growth method
EP2554720B1 (en) Method for synthesizing group ii-vi compound semiconductor polycrystals
WO2004055249A1 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JPH08208386A (en) Device for pulling up compound semiconductor single crystal
JP3725268B2 (en) Single crystal manufacturing method
JP2979770B2 (en) Single crystal manufacturing equipment
JP5454558B2 (en) Crystal manufacturing method
JP3881052B2 (en) Single crystal manufacturing equipment
US20030070612A1 (en) Vented susceptor
JP4678212B2 (en) Group III nitride single crystal growth method
JP2800713B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
WO2007144955A1 (en) Single crystal of nitride of group iii element and method of growing the same
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JP3170577B2 (en) Processing equipment for high dissociation pressure compounds
JP2992539B2 (en) Processing equipment for high dissociation pressure compounds
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507