JPH08206498A - Catalyst for purifying exhaust gas and manufacture thereof - Google Patents

Catalyst for purifying exhaust gas and manufacture thereof

Info

Publication number
JPH08206498A
JPH08206498A JP7017667A JP1766795A JPH08206498A JP H08206498 A JPH08206498 A JP H08206498A JP 7017667 A JP7017667 A JP 7017667A JP 1766795 A JP1766795 A JP 1766795A JP H08206498 A JPH08206498 A JP H08206498A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
catalyst
mesopore
alumina crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7017667A
Other languages
Japanese (ja)
Other versions
JP3766984B2 (en
Inventor
Akihide Takami
明秀 高見
Takashi Takemoto
崇 竹本
Tomoji Ichikawa
智士 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP01766795A priority Critical patent/JP3766984B2/en
Publication of JPH08206498A publication Critical patent/JPH08206498A/en
Application granted granted Critical
Publication of JP3766984B2 publication Critical patent/JP3766984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To exhibit a high NOX purification ratio even in an oxygen excessive atmosphere and to enhance the heat resistance by making a secondary aggregate particle comprising an aggregate of powder of alumina crystal carry noble metals as catalyst metals. CONSTITUTION: In a secondary aggregate particle 1 of powders 2 of alumina crystal, there are recesses or pockets, where crystal particles are combined, forming a mesopore 3. Surface electric potential at the mesopore is high so that a noble metal 4 can be easily carried by the mesopore. And, the mesopore 3 is an area, into which NOX in exhaust gas or HC, which serves as a reducing agent when NOX is decomposed, can be easily taken. Therefore, oxidation decomposition of HC in exhaust gas due to catalytic action of the noble metal 4 and following reducing decomposition of NOX can be effected efficiently. And, the powders 2 are thermally stable in comparison with zeolite, so that even if they are exposed to exhaust gas at a high temperature for a long period of time, NOX purifying performance is not deteriorated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス浄化用触媒に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst.

【0002】[0002]

【従来の技術】内燃機関、特に自動車の内燃機関の排気
ガスを浄化するための触媒として、アルミナに貴金属
(Pt、Rh、Pd等)を担持させてなる三元触媒が知
られている。また、この三元触媒を触媒担体にコーティ
ングし、該触媒層の上に800〜1000℃×1〜5時
間の加熱処理を施したCeO2 とアルミナとの混合物を
コーティングしたものも知られている(特開昭62−7
1541号公報参照)。上記CeO2 はO2 ストレージ
効果を有し、触媒性能の向上のために使用されている。
また、上記CeO2 は高温に加熱されるとシンタリング
を起こして劣化するために予め上記加熱処理が施されて
いるものである。
2. Description of the Related Art As a catalyst for purifying exhaust gas from an internal combustion engine, particularly an internal combustion engine of an automobile, a three-way catalyst in which a noble metal (Pt, Rh, Pd, etc.) is supported on alumina is known. It is also known that a catalyst carrier is coated with this three-way catalyst, and a mixture of CeO 2 and alumina, which has been heat-treated at 800 to 1000 ° C. for 1 to 5 hours, is coated on the catalyst layer. (JP-A-62-7
1541). The CeO 2 has an O 2 storage effect and is used for improving the catalytic performance.
Further, the CeO 2 causes sintering and deteriorates when heated to a high temperature, so that the heat treatment is performed in advance.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記三元触媒
は、理論空燃比付近では排気ガス中のHC(炭化水
素)、CO(一酸化炭素)及びNOx(窒素酸化物)を
効率良く浄化するものの、酸素過剰雰囲気(リーン)に
なるとNOx浄化率が大きく低下する。これに対して、
ゼオライトに貴金属その他の遷移金属を担持させてなる
NOx用触媒が開発されており、このものでは上記酸素
過剰雰囲気でもNOxを浄化することができる。しか
し、ゼオライトは上記アルミナに比べて一般に高価であ
るとともに、耐熱性が低く、高温になると急激に構造破
壊を起こし所期の機能を発揮しなくなる。
However, the above three-way catalyst efficiently purifies HC (hydrocarbon), CO (carbon monoxide) and NOx (nitrogen oxide) in the exhaust gas near the stoichiometric air-fuel ratio. However, the NOx purification rate significantly decreases in an oxygen excess atmosphere (lean). On the contrary,
A NOx catalyst has been developed in which a noble metal or other transition metal is supported on zeolite. With this catalyst, NOx can be purified even in the above oxygen excess atmosphere. However, zeolite is generally more expensive than the above-mentioned alumina, has low heat resistance, and suddenly causes structural destruction at high temperatures to fail to exhibit its intended function.

【0004】[0004]

【課題を解決するための手段及び作用】本発明者は、上
記アルミナを酸素過剰雰囲気でのNOxの浄化に利用す
べく種々の実験・検討を行なったところ、アルミナに所
定の加熱処理を行なうと、高いNOx浄化率を示すこと
を見出だし、本発明を完成するに至ったものである。以
下、各請求項に係る発明について具体的に説明する。
Means and Actions for Solving the Problems The present inventor has conducted various experiments and studies to utilize the above-mentioned alumina for purification of NOx in an oxygen-excess atmosphere, and found that the alumina was subjected to a predetermined heat treatment. It has been found that a high NOx purification rate is exhibited, and the present invention has been completed. Hereinafter, the invention according to each claim will be specifically described.

【0005】<請求項1に係る発明>この発明は、アル
ミナ結晶粉末が凝集してなる2次凝集粒子に触媒金属と
して貴金属が担持されていることを特徴とする排気ガス
浄化用触媒である。
<Invention of Claim 1> The present invention is an exhaust gas purifying catalyst, characterized in that a noble metal is supported as a catalytic metal on secondary agglomerated particles formed by agglomeration of alumina crystal powder.

【0006】当該発明においては、アルミナ結晶粉末に
貴金属を担持させた場合に比べて酸素過剰雰囲気でのN
Ox浄化率が高くなる。その理由としては次のことが考
えられる。
In the present invention, compared with the case where the noble metal is supported on the alumina crystal powder, N in the oxygen excess atmosphere is increased.
Ox purification rate increases. The reason is considered as follows.

【0007】すなわち、上記アルミナ結晶粉末の2次凝
集粒子には、結晶粒子同士が結合した部分が凹部ないし
はポケットになって、メゾポアが形成されている。この
メゾポア部位は表面電位が高くなっており、このため、
該部位には上記貴金属が担持され易くなる。また、この
メゾポアは排気ガス中のNOxや該NOxの分解の際の
還元剤となるHCが取り込まれ易い部位でもある。そし
て、このようなメゾポアに貴金属が担持されているか
ら、該貴金属の触媒作用によって排気ガス中のHCの酸
化分解と、それに伴うNOxの還元分解とが効率良く進
行するものと考えられる。
That is, in the secondary agglomerated particles of the alumina crystal powder, the portions where the crystal particles are bonded to each other form recesses or pockets to form mesopores. The surface potential of this mesopore site is high, so
The noble metal is easily supported on the portion. In addition, the mesopores are also sites where NOx in the exhaust gas and HC that serves as a reducing agent when decomposing the NOx are easily taken in. Since the noble metal is supported on such mesopores, it is considered that the catalytic action of the noble metal efficiently promotes the oxidative decomposition of HC in the exhaust gas and the accompanying reduction decomposition of NOx.

【0008】そうして、上記アルミナ結晶粒子はゼオセ
イトに比べて熱的に安定であり、このため、高温の排気
ガスに長時間さらされてもNOx浄化性能が低下するこ
とは少ない。
As a result, the above-mentioned alumina crystal particles are more thermally stable than Zeoseit, and therefore, even if they are exposed to high-temperature exhaust gas for a long time, the NOx purification performance does not deteriorate.

【0009】上記アルミナ2次凝集粒子の比表面積は1
00m2 /g以上(例えば100〜350m2 /g)が
好適である。比表面積が大きい方が貴金属の担持、ガス
の吸着に有利になるからである。また、上記貴金属とし
ては、Pt、Rh、Pd、Irなど適宜のものを採用す
ることができ、1種類の貴金属を担持させても、2種類
以上の貴金属を組み合わせて担持させてもよい。
The specific surface area of the secondary agglomerated particles of alumina is 1
It is preferably 00 m 2 / g or more (for example, 100 to 350 m 2 / g). This is because a larger specific surface area is more advantageous for supporting precious metals and adsorbing gas. Further, as the above-mentioned noble metal, Pt, Rh, Pd, Ir or any other suitable substance may be adopted, and one kind of noble metal may be carried, or two or more kinds of noble metals may be carried in combination.

【0010】<請求項2に係る発明>この発明は、上記
請求項1に記載されている排気ガス浄化用触媒におい
て、上記2次凝集粒子の細孔分布において細孔容積が最
も大きいメゾポア径が3〜13nmであることを特徴と
する排気ガス浄化用触媒である。
<Invention of Claim 2> In the exhaust gas-purifying catalyst according to Claim 1, the present invention has a mesopore diameter having the largest pore volume in the pore distribution of the secondary agglomerated particles. The exhaust gas purifying catalyst is characterized by having a thickness of 3 to 13 nm.

【0011】上記2次凝集粒子のメゾポアは、上述の如
く貴金属の担持や、NOxないしはHCの取り込みに重
要な役割を果たす部位であり、このメゾポア径が3nm
未満になると、NOxないしはHCの取り込みに不利に
なり、13nmを越える大きなものになると、表面電位
がそれほど高くならずNOxないしはHCの選択的な取
り込みに不利になるとともに貴金属の担持にも不利にな
る。
The mesopores of the secondary agglomerated particles are sites that play an important role in supporting the precious metal and taking in NOx or HC as described above, and the mesopore diameter is 3 nm.
When it is less than the above range, it is disadvantageous for the uptake of NOx or HC, and when it is larger than 13 nm, the surface potential is not so high and it is disadvantageous for the selective uptake of NOx or HC and is also disadvantageous for supporting the noble metal. .

【0012】<請求項3に係る発明>この発明は、上記
請求項1に記載されている排気ガス浄化用触媒におい
て、上記2次凝集粒子の細孔分布において細孔容積が最
も大きいメゾポア径が6〜10nmであることを特徴と
する排気ガス浄化用触媒である。
<Invention of Claim 3> In the exhaust gas purifying catalyst according to claim 1, the present invention has a mesopore diameter having the largest pore volume in the pore distribution of the secondary aggregated particles. The exhaust gas purifying catalyst is characterized by having a thickness of 6 to 10 nm.

【0013】当該発明において、上記2次凝集粒子のメ
ゾポア径を6〜10nmとするのは上記貴金属の担持
や、NOxないしはHCの取り込みにさらに有利になる
ためである。
In the present invention, the reason why the mesopore diameter of the secondary agglomerated particles is 6 to 10 nm is because it is more advantageous for supporting the precious metal and taking in NOx or HC.

【0014】<請求項4に係る発明>この発明は、上記
請求項1乃至請求項3の各発明の排気ガス浄化用触媒を
製造する方法であって、アルミナ結晶粉末に加熱処理を
行なうことによって該アルミナ結晶粉末を凝集させて2
次凝集粒子を形成し、上記2次凝集粒子に貴金属を触媒
金属として担持させることを特徴とする。
<Invention of Claim 4> The present invention is a method for producing the exhaust gas purifying catalyst of each of the inventions of claims 1 to 3, wherein the alumina crystal powder is subjected to heat treatment. The alumina crystal powder is agglomerated to produce 2
The secondary agglomerated particles are formed, and the secondary agglomerated particles are loaded with a noble metal as a catalytic metal.

【0015】当該発明においては、アルミナ結晶粉末の
2次凝集粒子を形成した後、これに貴金属を担持させる
から、該貴金属が2次凝集粒子のメゾポア部位に担持さ
れ易くなる。
In the present invention, since the noble metal is supported on the secondary aggregated particles of the alumina crystal powder, the noble metal is easily supported on the mesopore portion of the secondary aggregated particles.

【0016】上記アルミナ結晶粉末の凝集(シンタリン
グ)には、加熱の手段を用いるが、この加熱は大気圧下
で行なっても、減圧下で行なっても、あるいは加圧下で
行なってもよい。雰囲気圧が低くなるほど加熱温度を高
くする必要がある。また、不純物の混入を避けるために
不活性雰囲気で上記加熱を行なうこともできるが、窒素
ガス雰囲気では窒化アルミニウムができ易くなるため、
例えばアルゴンガスなど他のガスを用いることが好適で
ある。
A heating means is used for the agglomeration (sintering) of the alumina crystal powder. This heating may be carried out under atmospheric pressure, under reduced pressure, or under pressure. The lower the atmospheric pressure, the higher the heating temperature needs to be. Further, the above heating can be performed in an inert atmosphere to avoid mixing of impurities, but aluminum nitride is easily formed in a nitrogen gas atmosphere,
For example, it is suitable to use other gas such as argon gas.

【0017】また、上記アルミナ結晶粉末の凝集には、
アルミナの蒸発−凝縮という過程が寄与するが、Mg、
Y、Fe、Ti等をごく微量含ませておくと、アルミナ
の融点が下がり、2次凝集粒子の形成に有利になる。
In addition, for agglomeration of the above-mentioned alumina crystal powder,
The process of evaporation-condensation of alumina contributes, but Mg,
The inclusion of a very small amount of Y, Fe, Ti, etc. lowers the melting point of alumina, which is advantageous for the formation of secondary agglomerated particles.

【0018】<請求項5に係る発明>この発明は、上記
請求項4に記載されている排気ガス浄化用触媒の製造方
法において、上記加熱処理が、アルミナ結晶粉末を大気
圧において700〜1000℃の温度に1時間以上保持
するものであることを特徴とする排気ガス浄化用触媒の
製造方法である。
<Invention of Claim 5> The present invention is the method for producing an exhaust gas purifying catalyst as set forth in claim 4, wherein the heat treatment is carried out by heating the alumina crystal powder to 700 to 1000 ° C. at atmospheric pressure. The method for producing an exhaust gas purifying catalyst is characterized in that the above temperature is maintained for 1 hour or more.

【0019】上記加熱処理を大気圧下で行なうことは該
加熱処理のための設備を簡易なものにする上で有利にな
るが、その場合の加熱温度が700℃未満であれば、加
熱時間を長くしてもアルミナ結晶粉末の凝集が進みにく
く、メゾポア径が例えば上記請求項2ないしは請求項3
の各発明のような狙いとする大きさになるまで2次凝集
粒子を成長させることが難しくなる。一方、上記加熱温
度が1000℃を越える高温になると、アルミナ結晶粉
末の凝集が進み過ぎ易く所期のメゾポアを得ることが難
しくなる。好ましい温度は800〜1000℃である。
Performing the above heat treatment under atmospheric pressure is advantageous in simplifying the equipment for the heat treatment, but if the heating temperature in that case is less than 700 ° C., the heating time is shortened. Agglomeration of alumina crystal powder does not easily proceed even if the length is increased, and the mesopore diameter is, for example, the above-mentioned claim 2 to claim 3.
It becomes difficult to grow the secondary agglomerated particles until the target size is reached as in each of the above inventions. On the other hand, when the heating temperature is higher than 1000 ° C., the agglomeration of the alumina crystal powder tends to proceed excessively, and it becomes difficult to obtain the desired mesopores. The preferred temperature is 800 to 1000 ° C.

【0020】上記加熱時間が短すぎる場合にはアルミナ
結晶粉末の凝集が充分に進まないため、該加熱時間は1
時間以上とすることが望ましいが、加熱が長時間に及ぶ
ことは加熱温度が高い場合は別としてそれほど問題にな
らない。
If the heating time is too short, the agglomeration of the alumina crystal powder does not proceed sufficiently, so the heating time is 1
It is desirable that the heating time be longer than that, but the heating for a long time does not matter so much when the heating temperature is high.

【0021】[0021]

【発明の効果】請求項1に係る発明によれば、アルミナ
結晶粉末が凝集してなる2次凝集粒子に触媒金属として
貴金属を担持させたから、触媒の耐熱性を高めながら、
酸素過剰雰囲気でのNOx浄化率を高いものにすること
ができ、しかもコスト的に有利になる。
According to the invention of claim 1, since the noble metal is supported as the catalytic metal on the secondary agglomerated particles formed by agglomeration of the alumina crystal powder, the heat resistance of the catalyst is increased,
It is possible to increase the NOx purification rate in an oxygen-excess atmosphere, which is advantageous in terms of cost.

【0022】請求項2に係る発明によれば、上記2次凝
集粒子の細孔分布において細孔容積が最も大きいメゾポ
ア径を3〜13nmにしたから、貴金属の担持や、NO
xないしはHCの取り込みに有利になり、NOx浄化率
を高めることができる。
According to the invention of claim 2, the mesopore diameter having the largest pore volume in the pore distribution of the secondary agglomerated particles is set to 3 to 13 nm.
It is advantageous for the uptake of x or HC, and the NOx purification rate can be increased.

【0023】請求項3に係る発明によれば、上記2次凝
集粒子の細孔分布において細孔容積が最も大きいメゾポ
ア径を6〜10nmにしたから、NOx浄化率の向上に
さらに有利になる。
According to the third aspect of the invention, the mesopore diameter having the largest pore volume in the pore distribution of the secondary agglomerated particles is set to 6 to 10 nm, which is further advantageous in improving the NOx purification rate.

【0024】請求項4に係る発明によれば、アルミナ結
晶粉末に加熱処理を行なうことによって該アルミナ結晶
粉末を凝集させて2次凝集粒子を形成し、該2次凝集粒
子に貴金属を触媒金属として担持させるようにしたか
ら、該貴金属を2次凝集粒子のメゾポア部位に担持させ
ることができ、上記請求項1乃至請求項3の各発明の排
気ガス浄化用触媒を製造することができる。
According to the invention of claim 4, heat treatment is applied to the alumina crystal powder to agglomerate the alumina crystal powder to form secondary agglomerated particles, and the noble metal is used as a catalyst metal in the secondary agglomerated particles. Since the noble metal is supported, the noble metal can be supported on the mesopore portion of the secondary agglomerated particles, and the exhaust gas purifying catalyst according to each of the first to third aspects of the invention can be manufactured.

【0025】請求項5に係る発明によれば、アルミナ結
晶粉末を大気圧において700〜1000℃の温度に1
時間以上加熱保持するようにしたから、簡易な加熱設備
で所期のメゾポア径を有するアルミナ2次凝集粒子を得
ることができるようになり、上記請求項1乃至請求項3
の各発明の排気ガス浄化用触媒を製造する上で有利にな
る。
According to the invention of claim 5, the alumina crystal powder is heated to a temperature of 700 to 1000 ° C.
Since the heating and holding is carried out for more than a time, it becomes possible to obtain the alumina secondary agglomerated particles having the desired mesopore diameter with a simple heating facility.
It is advantageous in producing the exhaust gas purifying catalyst of each of the inventions.

【0026】[0026]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0027】<触媒の調製> −アルミナ結晶粉末の製造− この製造にはゾルゲル法を採用した。すなわち、所定量
のアルミニウムアルコキシドAl(OR)3 をジメチル
プロパノール(エタノールその他のアルコールでもよ
い)に溶解し、80〜150℃の所定温度に加熱した
後、これに所定量のイオン交換水を加えることによって
アルミニウムの水酸化物を生成し、この水酸化物を50
0℃で焼成することによってアルミナ結晶粉末を得た。
反応式は以下の通りである。
<Preparation of Catalyst> -Production of Alumina Crystal Powder-A sol-gel method was adopted for this production. That is, a predetermined amount of aluminum alkoxide Al (OR) 3 is dissolved in dimethylpropanol (or other alcohol such as ethanol), heated to a predetermined temperature of 80 to 150 ° C., and then a predetermined amount of ion-exchanged water is added thereto. To produce aluminum hydroxide, which is
Alumina crystal powder was obtained by firing at 0 ° C.
The reaction formula is as follows.

【0028】 Al(OR)3 +H2 O→AlO(OH)+3ROH AlO(OH)+H2 O→Al(OH)3 2Al(OH)3 →Al2 3 +3H2 Al (OR) 3 + H 2 O → AlO (OH) + 3ROH AlO (OH) + H 2 O → Al (OH) 3 2Al (OH) 3 → Al 2 O 3 + 3H 2 O

【0029】なお、他の方法によって化学的にAl(O
H)3 を合成し、これを焼成するようにしてもよい。
Note that Al (O
H) 3 may be synthesized and then fired.

【0030】−アルミナ結晶粉末の凝集− 上記アルミナ結晶粉末に900℃で50時間の加熱処理
を行なうことにより、アルミナ2次凝集粒子を得た。こ
の2次凝集粒子の比表面積は100m2 /g以上であ
り、また、細孔分布を調べたところ、メゾポア径が5〜
10nmのものの細孔容積が最も大きかった。
-Agglomeration of Alumina Crystal Powder-Alumina secondary agglomerated particles were obtained by heating the alumina crystal powder at 900 ° C. for 50 hours. The specific surface area of the secondary agglomerated particles is 100 m 2 / g or more, and when the pore distribution was examined, the mesopore diameter was 5 to 5.
The pore volume of 10 nm was the largest.

【0031】−貴金属の担持− 上記アルミナ2次凝集粒子をコージェライト製のハニカ
ム状モノリス担体(400セル/inch2 )にウォッシュ
コートし乾燥及び焼成を行なった後、このモノリス担体
を塩化白金酸・塩化ロジウム混合水溶液に浸漬し、引き
上げて乾燥及び焼成を行なうことにより、求めるハニカ
ム触媒を得た。ここに、Pt及びRhの担持量の合計は
担体1リットル当たり4.5gとし、このPt及びRh
の担持量の重量比率は75:1とした。
-Supporting Noble Metals-The above-mentioned secondary aggregated particles of alumina are wash-coated on a honeycomb-shaped monolithic carrier (400 cells / inch 2 ) made of cordierite, dried and calcined. The desired honeycomb catalyst was obtained by immersing in a mixed aqueous solution of rhodium chloride, pulling it up, and drying and firing. The total amount of Pt and Rh supported is 4.5 g per liter of the carrier.
The weight ratio of the supported amount of was 1: 1.

【0032】得られた触媒のアルミナ2次凝集粒子は図
1にモデル的に示されている。すなわち、同図におい
て、1はアルミナ2次凝集粒子であり、数個のアルミナ
結晶粒子2が凝集結合し、メゾポア3の部位に貴金属4
が担持されている。
The secondary agglomerated particles of the obtained catalyst are shown as a model in FIG. That is, in the figure, 1 is an alumina secondary agglomerated particle, several alumina crystal particles 2 are agglomerated and bonded, and noble metal 4 is added to the mesopore 3 site.
Is carried.

【0033】<触媒の評価>上記触媒の評価は、上記触
媒調製方法によって調製した実施例のハニカム触媒と、
上述の凝集処理(加熱処理)を行なっていないアルミナ
結晶粉末を用いた比較例のハニカム触媒とのNOx浄化
性能を比較することによって行なった。比較例の触媒に
ついても、上記貴金属の担持処理については実施例と同
様の条件及び方法によって行なった。
<Evaluation of Catalyst> The above catalyst was evaluated by using the honeycomb catalyst of the example prepared by the above catalyst preparation method.
It was carried out by comparing the NOx purification performance with the honeycomb catalyst of the comparative example using the alumina crystal powder which was not subjected to the above-mentioned agglomeration treatment (heat treatment). With respect to the catalyst of the comparative example, the supporting treatment of the above-mentioned noble metal was performed under the same conditions and methods as those of the examples.

【0034】NOx浄化性能の比較試験は、上記実施例
及び比較例の各触媒を模擬ガス流通装置に組み込み、模
擬ガスを触媒に流しながら該ガス温度を常温から350
℃まで上昇させた後、該温度から常温まで降温させてい
き、該降温時のNOx浄化率を各温度で測定する、とい
うものである。模擬ガスの組成及び空間速度は次の通り
である。
In the NOx purification performance comparison test, the catalysts of the above-mentioned examples and comparative examples were installed in a simulated gas flow apparatus, and the simulated gas was flown through the catalyst, and the gas temperature was changed from room temperature to 350.
After raising the temperature to 0 ° C., the temperature is lowered from that temperature to room temperature, and the NOx purification rate at the time of the temperature reduction is measured at each temperature. The composition and space velocity of the simulated gas are as follows.

【0035】−模擬ガスの組成− HC;4000ppm,NOx;250ppm,CO;
0.15%,O2 ;7.5%,H2 ;650ppm,N
2 バランス −空間速度− SV=55000h-1
-Composition of simulated gas-HC: 4000 ppm, NOx; 250 ppm, CO;
0.15%, O 2 ; 7.5%, H 2 ; 650 ppm, N
2 Balance-Space velocity-SV = 55000h -1

【0036】結果は図2に示されている。同図によれ
ば、実施例の触媒では比較例の触媒よりもNOx浄化率
が高くなっており、アルミナ結晶粉末を凝集させてから
貴金属を担持させることがNOx浄化率を高めることに
有効であることがわかる。
The results are shown in FIG. According to the figure, the catalyst of the example has a higher NOx purification rate than the catalyst of the comparative example, and it is effective to agglomerate the alumina crystal powder and then carry the noble metal on the NOx purification rate. I understand.

【0037】図3は上記実施例の触媒及び比較例の触媒
について、それぞれエージング処理(850℃×50時
間)を行なった後に、先の場合と同様の条件及び方法で
NOx浄化性能を調べた結果である。
FIG. 3 shows the results of investigating the NOx purification performance under the same conditions and methods as in the above case after aging treatment (850 ° C. × 50 hours) for the catalyst of the above-mentioned example and the catalyst of the comparative example. Is.

【0038】同図によれば、触媒にエージング処理を施
した場合でも、実施例のようにアルミナ結晶粉末を凝集
させてから貴金属を担持させることがNOx浄化率を高
めることに有効であることがわかる。
According to the figure, even when the catalyst is aged, it is effective to increase the NOx purification rate by aggregating the alumina crystal powder and then supporting the noble metal as in the example. Recognize.

【0039】<メゾポア径とNOx浄化率との関係>そ
こで、上記アルミナ2次凝集粒子のメゾポア径として最
適な範囲を策定するために、上記アルミナ結晶粉末を種
々の温度で加熱処理し、その細孔分布において最も大き
い細孔容積を示すメゾポア径が互いに異なる数種類のア
ルミナ2次凝集粒子を製造した。そして、これらを用い
て先に説明した貴金属担持処理によって貴金属を担持さ
せてなるハニカム触媒を調製した。これらのハニカム触
媒のPt及びRh担持量の合計は4.5g/Lであり、
Pt担持量とRh担持量との重量比率は75:1であ
る。
<Relationship between Mesopore Diameter and NOx Purification Rate> In order to determine the optimum range for the mesopore diameter of the secondary alumina agglomerated particles, the alumina crystal powder is heat-treated at various temperatures, Several types of secondary alumina agglomerated particles having different mesopore diameters showing the largest pore volume in the pore distribution were manufactured. Then, using these, a honeycomb catalyst supporting a noble metal by the above-described noble metal supporting treatment was prepared. The total amount of Pt and Rh supported on these honeycomb catalysts was 4.5 g / L,
The weight ratio of the amount of Pt carried to the amount of Rh carried was 75: 1.

【0040】そうして、これらメゾポア径の異なる各ハ
ニカム触媒の最大NOx浄化率を調べたところ、図4に
示す結果が得られた。使用した模擬ガスは次の通りであ
り、空間速度は55000h-1である。
Then, when the maximum NOx purification rates of the respective honeycomb catalysts having different mesopore diameters were examined, the results shown in FIG. 4 were obtained. The simulated gas used is as follows and the space velocity is 55000 h -1 .

【0041】HC;4000ppmC,NOx;250
ppm,O2 ;7.5%
HC: 4000 ppm C, NOx: 250
ppm, O 2 ; 7.5%

【0042】図4によれば、メゾポア径が3〜13nm
のときにNOx浄化率が高くなること、そして、メゾポ
ア径は5〜11nm、特に6〜10nmが好ましいこと
がわかる。
According to FIG. 4, the mesopore diameter is 3 to 13 nm.
It can be seen that the NOx purification rate becomes high when, and the mesopore diameter is preferably 5 to 11 nm, particularly preferably 6 to 10 nm.

【0043】<アルミナ結晶粉末の凝集処理温度と細孔
容積との関係について>上記アルミナ結晶粉末の加熱温
度と細孔容積との関係について調べた。当該加熱は大気
中で行ない、加熱時間は50時間とした。その結果、当
該アルミナの全細孔容積については図5に、細孔径5〜
10nmの細孔容積については図6に、細孔径5nm以
下の細孔容積については図7にそれぞれ示す通りになっ
た。
<Regarding Relation between Aggregation Treatment Temperature of Alumina Crystal Powder and Pore Volume> The relation between the heating temperature of the alumina crystal powder and the pore volume was examined. The heating was performed in the atmosphere, and the heating time was 50 hours. As a result, the total pore volume of the alumina is shown in FIG.
The pore volume of 10 nm is shown in FIG. 6, and the pore volume of 5 nm or less is shown in FIG.

【0044】図5によれば、全細孔容積は、加熱温度を
高めていくと900℃までは増えていき、それよりも加
熱温度が高くなると逆に減少している。全細孔容積の増
大はアルミナ結晶粉末の凝集によるメゾポアの形成によ
るものであり、全細孔容積の減少はアルミナ結晶粉末の
凝集が進み過ぎた結果と考えられる。
According to FIG. 5, the total pore volume increases up to 900 ° C. as the heating temperature rises, and conversely decreases at higher heating temperatures. The increase in the total pore volume is due to the formation of mesopores due to the aggregation of the alumina crystal powder, and the decrease in the total pore volume is considered to be the result of excessive aggregation of the alumina crystal powder.

【0045】図6によれば、細孔径5〜10nmの細孔
容積は、加熱温度700℃においてフレッシュ(加熱処
理なし)のものよりも大きくなっており、また、110
0℃においては未処理のものよりも小さくなっている。
また、図7によれば、加熱温度が高くなるにつれて5n
m以下の細孔がへっているが、これはアルミナ結晶粉末
が凝集していった結果である。
According to FIG. 6, the pore volume having a pore diameter of 5 to 10 nm is larger than that of fresh (without heat treatment) at a heating temperature of 700 ° C., and 110
At 0 ° C, it is smaller than that of untreated one.
Further, according to FIG. 7, as the heating temperature increases, 5n
The pores of m or less are dented, which is a result of the aggregation of the alumina crystal powder.

【0046】以上の図5〜図7に示される結果から、径
が5〜10nmのメゾポアを多く有するアルミナ2次凝
集粒子を製造するには、アルミナ結晶粉末の加熱温度を
700〜1000℃にすればよいこと、好ましい加熱温
度は800〜1000℃であることがわかる。
From the above results shown in FIGS. 5 to 7, in order to produce secondary alumina agglomerated particles having a large amount of mesopores having a diameter of 5 to 10 nm, the heating temperature of the alumina crystal powder is set to 700 to 1000 ° C. It can be seen that the preferable heating temperature is 800 to 1000 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミナ2次凝集粒子を示す図FIG. 1 is a diagram showing secondary agglomerated particles of alumina.

【図2】実施例と比較例の触媒のNOx浄化特性を比較
したグラフ図
FIG. 2 is a graph diagram comparing NOx purification characteristics of catalysts of Examples and Comparative Examples.

【図3】実施例と比較例の触媒についてエージング後の
NOx浄化特性を比較したグラフ図
FIG. 3 is a graph chart comparing the NOx purification characteristics after aging for the catalysts of the example and the comparative example.

【図4】アルミナ2次凝集粒子のメゾポア径と最大NO
x浄化率との関係を示すグラフ図
FIG. 4 Mesopore diameter and maximum NO of secondary agglomerated particles of alumina
x Graph showing the relationship with the purification rate

【図5】アルミナ結晶粉末の加熱温度と全細孔容積との
関係を示すグラフ図
FIG. 5 is a graph showing the relationship between the heating temperature of alumina crystal powder and the total pore volume.

【図6】アルミナ結晶粉末の加熱温度と径5〜10nm
の細孔容積との関係を示すグラフ図
FIG. 6: Heating temperature of alumina crystal powder and diameter 5-10 nm
Graph showing the relationship between the pore volume and

【図7】アルミナ結晶粉末の加熱温度と径5nm以下の
細孔容積との関係を示すグラフ図
FIG. 7 is a graph showing the relationship between the heating temperature of alumina crystal powder and the volume of pores having a diameter of 5 nm or less.

【符号の説明】[Explanation of symbols]

1 アルミナ2次凝集粒子 2 アルミナ結晶粒子 3 メゾポア 4 貴金属 1 Alumina Secondary Aggregated Particle 2 Alumina Crystal Particle 3 Mesopore 4 Noble Metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/94 B01J 21/04 ZAB A 23/42 A // B01J 23/38 ZAB A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/94 B01J 21/04 ZAB A 23/42 A // B01J 23/38 ZAB A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ結晶粉末が凝集してなる2次凝
集粒子に触媒金属として貴金属が担持されていることを
特徴とする排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst, wherein a noble metal is supported as a catalytic metal on secondary agglomerated particles formed by agglomeration of alumina crystal powder.
【請求項2】 請求項1に記載されている排気ガス浄化
用触媒において、 上記2次凝集粒子の細孔分布において細孔容積が最も大
きいメゾポア径が3〜13nmであることを特徴とする
排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the mesopore diameter having the largest pore volume in the pore distribution of the secondary agglomerated particles is 3 to 13 nm. Gas purification catalyst.
【請求項3】 請求項1に記載されている排気ガス浄化
用触媒において、 上記2次凝集粒子の細孔分布において細孔容積が最も大
きいメゾポア径が6〜10nmであることを特徴とする
排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the mesopore diameter having the largest pore volume in the pore distribution of the secondary agglomerated particles is 6 to 10 nm. Gas purification catalyst.
【請求項4】 アルミナ結晶粉末に加熱処理を行なうこ
とによって該アルミナ結晶粉末を凝集させて2次凝集粒
子を形成し、 上記2次凝集粒子に貴金属を触媒金属として担持させる
ことを特徴とする排気ガス浄化用触媒の製造方法。
4. Exhaust gas, characterized in that the alumina crystal powder is subjected to a heat treatment to aggregate the alumina crystal powder to form secondary aggregate particles, and the secondary aggregate particles carry a noble metal as a catalyst metal. Method for producing gas purification catalyst.
【請求項5】 請求項4に記載されている排気ガス浄化
用触媒の製造方法において、 上記加熱処理が、アルミナ結晶粉末を大気圧において7
00〜1000℃の温度に1時間以上保持するものであ
ることを特徴とする排気ガス浄化用触媒の製造方法。
5. The method for producing an exhaust gas purifying catalyst according to claim 4, wherein the heat treatment is performed by applying alumina crystal powder to an atmospheric pressure of 7
A method for producing an exhaust gas purifying catalyst, characterized by holding at a temperature of 00 to 1000 ° C. for 1 hour or more.
JP01766795A 1995-02-06 1995-02-06 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP3766984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01766795A JP3766984B2 (en) 1995-02-06 1995-02-06 Exhaust gas purification catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01766795A JP3766984B2 (en) 1995-02-06 1995-02-06 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08206498A true JPH08206498A (en) 1996-08-13
JP3766984B2 JP3766984B2 (en) 2006-04-19

Family

ID=11950215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01766795A Expired - Fee Related JP3766984B2 (en) 1995-02-06 1995-02-06 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3766984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092852A (en) * 2009-10-29 2011-05-12 Asahi Kasei Corp Composite monolithic catalyst for cleaning exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092852A (en) * 2009-10-29 2011-05-12 Asahi Kasei Corp Composite monolithic catalyst for cleaning exhaust gas

Also Published As

Publication number Publication date
JP3766984B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2003126694A (en) Catalyst for cleaning exhaust gas
JPS6034737A (en) Production of catalyst for treating exhaust gas of internal combustion engine
US7745371B2 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
WO2005077532A1 (en) Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder
JP2005262201A (en) Exhaust gas-cleaning catalyst and method for manufacturing the same
WO2006049042A1 (en) Exhaust gas purification catalyst
JP2008073654A (en) Gas purification process, gas purification apparatus, and gas purification catalyst
JPH08229404A (en) Exhaust gas purifying catalyst and apparatus
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
JP3251009B2 (en) Exhaust gas purification catalyst
JP2003265958A (en) Exhaust gas cleaning catalyst
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP3766984B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0232934B2 (en)
JP4209053B2 (en) Oxide containing praseodymium oxide and method for producing the same
JP3622211B2 (en) Methane oxidation method
JP3609859B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS63178848A (en) Catalyst for purifying exhaust gas
JP3221706B2 (en) Nitrogen oxide removal catalyst and exhaust gas purification method using the same
JP5692594B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees