JPH08204063A - Chip part and manufacture of the same - Google Patents

Chip part and manufacture of the same

Info

Publication number
JPH08204063A
JPH08204063A JP7011915A JP1191595A JPH08204063A JP H08204063 A JPH08204063 A JP H08204063A JP 7011915 A JP7011915 A JP 7011915A JP 1191595 A JP1191595 A JP 1191595A JP H08204063 A JPH08204063 A JP H08204063A
Authority
JP
Japan
Prior art keywords
substrate
resistor
wafer
chip
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7011915A
Other languages
Japanese (ja)
Other versions
JP3263554B2 (en
Inventor
Hisashi Shimizu
永 清水
Noriaki Sakamoto
則明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01191595A priority Critical patent/JP3263554B2/en
Publication of JPH08204063A publication Critical patent/JPH08204063A/en
Application granted granted Critical
Publication of JP3263554B2 publication Critical patent/JP3263554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To realize a low-price chip having excellent thermal conductivity and higher accuracy by utilizing a defective wafer substrate which has individually been scribed as a heat sink mounted on a hybrid IC and forming a chip on the defective wafer with an ordinary semiconductor technique. CONSTITUTION: A defective wafer 1 is prepared and an insulating layer 6 is formed as required to realize insulation resistance and desired resistance value. Resistor 8 and electrodes 7, 9 are formed on the rear surface or front surface, a resistor 8 formed in the shape of matrix in the wafer 1 is individually divided with scriber, this resistor chip 8 is mounted on the hybrid IC and is then wire- bonded. Thereby, a low price chip resistor can he formed with an ordinary process and moreover since the substrate itself has a small resistance value, it works as a heat sink when it is mounted on the metal substrate. Simultaneously, heat can be transmitted effectively to the substrate and change of resistance value due to the heat of resistor can also be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チップ部品およびその
製造方法に関し、特に安価で特性の優れたチップ部品に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip part and a manufacturing method thereof, and more particularly to an inexpensive chip part having excellent characteristics.

【0002】[0002]

【従来の技術】一般にチップ部品といえば、セラミツク
基板にスクリーン印刷等の技術により受動素子である、
抵抗体、コンデンサおよびコイル等が形成され、ハイブ
リッド基板に実装されている。例えば工業調査会発行の
IC化実装技術(1981年2版)等に詳しく述べられ
ている。
2. Description of the Related Art Generally speaking, a chip component is a passive element by a technique such as screen printing on a ceramic substrate.
Resistors, capacitors, coils, etc. are formed and mounted on the hybrid substrate. For example, it is described in detail in IC mounting technology (second edition in 1981) issued by the Industrial Research Council.

【0003】本願は、半導体素子や受動素子に適用され
るものであるが、一例としてチップ抵抗で説明する。一
般に抵抗は、ここに流れる電流により両端に電圧が生
じ、この電圧をピックアップして制御回路等を介してコ
ントロールされる回路にフィードバックし、回路を保護
したり、制御したりしている。
Although the present application is applied to a semiconductor element or a passive element, a chip resistor will be described as an example. In general, a resistance causes a voltage to be generated at both ends due to a current flowing therethrough, and this voltage is picked up and fed back to a controlled circuit via a control circuit or the like to protect or control the circuit.

【0004】例えば、特開昭63−128675号公報
は、抵抗体を出力トランジスタのエミッタ側に付け、こ
の抵抗体に流れる電流を検出して、この出力トランジス
タの保護をしている。前述のようにチップ抵抗と称する
ものは、一般にセラミツク基板等の絶縁性基板に実装し
てあり、抵抗体自身の温度特性、絶縁性基板の熱伝導率
等を考慮すると好ましいものでなく、本公報では、金属
基板に貼着されたCu配線自身を活用し、熱伝導率は金
属基板により、温度特性は、正の温度特性をコンペンセ
イトする素子を実装して補償したりしていた。
For example, in Japanese Patent Laid-Open No. 63-128675, a resistor is attached to the emitter side of an output transistor and the current flowing through the resistor is detected to protect the output transistor. As described above, what is called a chip resistor is generally mounted on an insulating substrate such as a ceramic substrate and is not preferable in consideration of the temperature characteristics of the resistor itself, the thermal conductivity of the insulating substrate, etc. Then, the Cu wiring adhered to the metal substrate is utilized, and the metal substrate is used for the thermal conductivity, and the temperature characteristic is compensated by mounting an element compensating the positive temperature characteristic.

【0005】従って損失を少なくするために極めて小さ
い抵抗値にする必要があり、ここでは前述したようにC
uであるために比較的狭い配置面積で抵抗値を小さくで
き、また金属基板であるが故に放熱性が良くその分余計
に電流を流すことができる。
Therefore, it is necessary to make the resistance value extremely small in order to reduce the loss. Here, as described above, C
Since it is u, it is possible to reduce the resistance value in a comparatively small arrangement area, and since it is a metal substrate, the heat dissipation is good and an extra current can be flowed accordingly.

【0006】[0006]

【発明が解決しようとする課題】前述のCu配線の一部
を抵抗体とする場合、Cu配線は、箔形状とするための
圧延工程で厚みのバラツキが有り、これを基板全面に貼
り付けてからエッチングして配線とするために、エッチ
ングのバラツキやサイドエッチングにより、精度の高い
ものが得られない問題があった。またCuの温度係数
は、約4000ppm程度と高く温度変化に対する抵抗
値の変動を例えばダイオード等で補正する必要があっ
た。
When a part of the above-mentioned Cu wiring is used as a resistor, the Cu wiring has a variation in thickness in the rolling process for forming a foil shape, and the Cu wiring is stuck on the entire surface of the substrate. Since the wiring is etched from the above, there is a problem that a highly accurate one cannot be obtained due to variations in etching and side etching. Further, the temperature coefficient of Cu is as high as about 4000 ppm, and it has been necessary to correct the variation of the resistance value due to the temperature change with, for example, a diode.

【0007】またセラミツク基板等の絶縁材料の基板上
に抵抗体を形成するチップ抵抗は、自動ダイボンド装置
等で簡単に実装する事が可能ではあるが、基板自身の熱
伝導率が小さく大電流を流した際に生ずる熱を外部に放
出しずらい問題があった。以上、前述した問題点、且つ
コスト的課題も含めて両者を解決できるものがなかっ
た。
A chip resistor for forming a resistor on a substrate made of an insulating material such as a ceramic substrate can be easily mounted by an automatic die bonder or the like, but the thermal conductivity of the substrate itself is small and a large current can be applied. There was a problem that it was difficult to release the heat generated when flowing it to the outside. As mentioned above, there is no solution that can solve both of the above-mentioned problems and cost problems.

【0008】[0008]

【課題を解決するための手段】本発明は前述の問題に鑑
みて成され、第1に、半導体基板に、不良品を使用する
ことで解決するものである。第2に、素子が実装されな
い半導体基板面には、半田となじむ電極を設け、ハイブ
リッド基板上に設けられた導電路と半田を介して固着す
ることで解決するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and firstly, the problem is solved by using a defective semiconductor substrate. Secondly, the problem is solved by providing an electrode compatible with solder on the surface of the semiconductor substrate on which the element is not mounted, and fixing the electrode to the conductive path provided on the hybrid substrate through the solder.

【0009】第3に、ウェハへの加工工程またはウェハ
での半導体プロセス工程にに於いて不良となったウェハ
を用意し、ウェハの表面又は裏面に素子を実装する事で
解決するものである。
Thirdly, the problem is solved by preparing a defective wafer in a wafer processing step or a semiconductor process step on the wafer and mounting an element on the front surface or the back surface of the wafer.

【0010】[0010]

【作用】第1に比較的熱伝導率の良いシリコンを受動素
子を実装する基板として着目し、且つコスト的にはウェ
ハの不良品に着目した。つまり個々にスクライブした不
良ウェハ基板をハイブリッドICの上に実装するヒート
シンクとして活用し、しかも通常の半導体技術を使って
不良ウェハの上にチップを形成することで、熱伝導率が
優れ、安価で精度の高いチップが実現できる。ここで熱
伝導率を、厚さ1mの板の両面に1Kの温度差が有ると
き、その板の面積1m2の面を通して流れる熱量で表し
たとき、アルミナは21、ガラスは約0.5から1、C
uは約400およびシリコンは168である(昭和63
年11月30日発行の理科年表より参照)。
First of all, attention was paid to silicon, which has a relatively high thermal conductivity, as a substrate for mounting a passive element, and attention was paid to defective wafers in terms of cost. In other words, by utilizing the individually scribed defective wafer substrates as a heat sink to be mounted on the hybrid IC, and forming chips on the defective wafers using ordinary semiconductor technology, the thermal conductivity is excellent, the cost is low, and the accuracy is high. Can achieve high chips. Here, when the thermal conductivity is expressed by the amount of heat flowing through the surface having an area of 1 m2 of the plate when there is a temperature difference of 1 K on both sides of the plate having a thickness of 1 m, alumina is 21 and glass is about 0.5 to 1 , C
u is about 400 and silicon is 168 (Showa 63).
(Refer to the science chronology issued on November 30, 2013).

【0011】第2に、シリコンウェハの裏面には、電極
が形成できるので、例えばCr−Ni−Au等の半田付
けが可能な電極を形成することにより、不良ウェハの上
に実装された受動素子をスクライブして個々に分割した
チップを通常のハイブリッド基板にオートダイボンダー
で簡単に実装できる。第3に、例えば、シリコン基板に
拡散領域等が形成されトランジスタ等が作り込まれてい
ても、素子の実装面に絶縁層を形成してから受動素子を
形成しているので、シリコン基板内に何が作り込まれて
いてもなんら問題なくチップ素子として形成可能であ
る。
Secondly, since an electrode can be formed on the back surface of the silicon wafer, a passive element mounted on the defective wafer is formed by forming a solderable electrode such as Cr-Ni-Au. Chips that are scribed and divided into individual chips can be easily mounted on a normal hybrid board with an auto die bonder. Third, for example, even if a diffusion region or the like is formed in a silicon substrate and a transistor or the like is built in, since a passive element is formed after forming an insulating layer on the mounting surface of the element, No matter what is built in, it can be formed as a chip element without any problem.

【0012】[0012]

【実施例】本発明の実施例を図1〜図3を使って説明す
る前に、本願の最大のポイントについて説明する。本願
のポイントは、通常のICの製造工程において排出され
る不良ウェハを使用することであり、受動素子を形成す
る基板として廃棄されるシリコンウェハを使用するので
コストを大幅に削減する事であり、また通常の半導体技
術でウェハの上に受動素子を形成し、セラミック等の絶
縁基板よりも熱伝導率の優れた基板(ヒートシンク)と
して活用し、半導体チップと同様にオートマウンターで
実装するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments of the present invention with reference to FIGS. 1 to 3, the maximum points of the present application will be described. The point of the present application is to use a defective wafer discharged in a normal IC manufacturing process, and to use a silicon wafer to be discarded as a substrate for forming a passive element, thereby significantly reducing the cost. In addition, passive elements are formed on a wafer by ordinary semiconductor technology, utilized as a substrate (heat sink) having a higher thermal conductivity than an insulating substrate such as ceramic, and mounted by an automounter like a semiconductor chip. .

【0013】例えば、バイポーラICの製造工程は、大
まかに説明すると以下のようになる。まず(1)P型基
板の用意、(2)表面の酸化、(3)この酸化膜の一部
に導入口を形成し、(4)N+埋め込み層の形成、
(5)酸化膜除去、(6)N型エピ層の形成、(7)エ
ピ層表面の酸化、(8)アイソレーションの導入口の酸
化膜形成、(9)アイソーレーションの拡散、(10)
ベースの導入口およびベースの拡散、(11)エミッタ
の導入口の形成および拡散、(12)酸化膜除去、(1
3)酸化膜の形成、(14)コンタクト口形成、(1
4)メタルの形成の14工程が有る。
For example, the manufacturing process of a bipolar IC will be roughly described as follows. First, (1) preparation of a P-type substrate, (2) oxidation of the surface, (3) formation of an inlet in a part of this oxide film, and (4) formation of an N + buried layer,
(5) Oxide film removal, (6) N-type epilayer formation, (7) Epilayer surface oxidation, (8) Isolation inlet oxide film formation, (9) Isolation diffusion, (10) )
Base inlet and base diffusion, (11) Emitter inlet formation and diffusion, (12) Oxide film removal, (1
3) Oxide film formation, (14) Contact opening formation, (1
4) There are 14 steps of metal formation.

【0014】一般に受動素子を形成する場合、表面がフ
ラットで有る方が好ましいため、(1)〜(2)、
(5)〜(7)および(12)等の工程で不良となった
ものが好ましい。つまりシリコン表面に絶縁膜および/
またはエピ層が形成されているが、導入口やコンタクト
等のための凸凹が無いため、ウェハ表面がフラットであ
る理由に依るためである。
Generally, when forming a passive element, it is preferable that the surface is flat. Therefore, (1) to (2),
Those that have become defective in the steps (5) to (7) and (12) are preferable. That is, an insulating film and /
Alternatively, this is because the epitaxial layer is formed, but since there is no unevenness for the introduction port or the contact, the wafer surface is flat.

【0015】またMOSICの製造工程では、(1)P
型基板の用意、(2)全面酸化、(3)シリコン窒化膜
の全面形成、(4)ロコス酸化のための前記窒化膜除
去、(5)窒化膜を耐酸化マスクとしてロコス酸化、
(6)窒化膜、酸化膜除去、(7)ゲート酸化膜の形
成、(8)ゲートを形成し、ゲートにセルフアラインし
てソース・ドレインを形成、(9)全面にCVDによる
絶縁膜形成、(10)コンタクト形成、(11)メタル
形成の11工程がある。
In the MOSIC manufacturing process, (1) P
Preparation of mold substrate, (2) whole surface oxidation, (3) whole surface formation of silicon nitride film, (4) removal of the nitride film for locos oxidation, (5) locos oxidation using the nitride film as an oxidation resistant mask,
(6) Removal of nitride film and oxide film, (7) Formation of gate oxide film, (8) Forming gate, forming source / drain by self-aligning with gate, (9) Forming insulating film by CVD on entire surface, There are 11 steps of (10) contact formation and (11) metal formation.

【0016】前述したように、基板表面がフラットであ
ることが好ましいことから、(1)〜(3)で不良とな
ったウェハが好ましい。また前述した好ましい工程以外
でも、最初に凸凹ウェハにガラス等を形成してフラット
にするか、または凸凹表面をエッチングしてフラットに
しても良い。図1は、不良ウェハ1採用していることを
示すために、バイポーラICプロセスで、埋め込み領域
2と分離領域3が形成された状態で不良となったとして
説明しており、分離領域形成の際の不純物導入口4がシ
リコン酸化膜5に示されている。6は、絶縁層であり、
導入口4を埋め実質的にきばん表面をフラットにすれば
良く、ガラスや樹脂で成る。また7は、裏電極で、ハイ
ブリッド基板の導電路に実装する際、簡単に半田付けで
きるように、例えばCr−Ni−Auの順で積層されて
いる。抵抗体8は、実質的にフラットにされた基板表
面、つまり絶縁層6の表面に例えばCr−Ni−Mnの
順で積層されて形成されている。また抵抗体8の両端に
は、Al電極9が形成されている。
As described above, since it is preferable that the substrate surface is flat, the wafers that are defective in (1) to (3) are preferable. In addition to the preferred steps described above, glass or the like may be first formed on the uneven wafer to make it flat, or the uneven surface may be etched to make it flat. In order to show that the defective wafer 1 is used, FIG. 1 explains that a defect occurs in the state where the embedded region 2 and the isolation region 3 are formed in the bipolar IC process. The impurity introduction port 4 is shown in the silicon oxide film 5. 6 is an insulating layer,
It suffices to fill the inlet 4 and substantially flatten the surface of the bag, which is made of glass or resin. Reference numeral 7 denotes a back electrode, which is laminated in the order of, for example, Cr-Ni-Au so that it can be easily soldered when mounted on the conductive path of the hybrid substrate. The resistor 8 is formed by laminating, for example, Cr—Ni—Mn in this order on the substantially flattened substrate surface, that is, the surface of the insulating layer 6. Al electrodes 9 are formed on both ends of the resistor 8.

【0017】図2の抵抗体も同様であるが、温度係数T
CRは、実質±50PPM程度で、抵抗体として数mm
Ωから実現可能である。1989年第62冊の理科年表
477ページに依れば、アルミナは、常温で21κ、ポ
リエチレンが0.25程度、珪素は0度で168κ、ア
ルミニウムは、0度で236κ、Cuは、0度で403
κである。ここでκの単位は、W/(m・K)である。
説明するまでもないが、シリコン基板1の上に配置され
ているので、絶縁性基板の上に形成された抵抗体よりも
放熱性が優れている。
The same applies to the resistor of FIG. 2, but the temperature coefficient T
CR is about ± 50PPM, and it is a few mm as a resistor.
It can be realized from Ω. According to page 477 of the science table in the 62nd volume of 1989, alumina is 21 κ at room temperature, polyethylene is about 0.25, silicon is 168 κ at 0 degrees, aluminum is 236 κ at 0 degrees, and Cu is 0 degrees. At 403
κ. Here, the unit of κ is W / (m · K).
Needless to say, since it is arranged on the silicon substrate 1, it has better heat dissipation than a resistor formed on an insulating substrate.

【0018】一方、図2は、図1の抵抗体にパシベーシ
ョン膜10が形成されているものである。ウェハ1は、
好ましい工程で形成されたもので、表面11が絶縁層で
有れば、別途絶縁層を付けても付けなくても良い。しか
しエピタキシャル層やシリコン層であれば、別途前記絶
縁層11を全表面に設ける必要がある。またエッチング
によりシリコン層が露出している場合も、別途絶縁層を
設ける必要がある。
On the other hand, FIG. 2 shows the passivation film 10 formed on the resistor of FIG. Wafer 1
It is formed by a preferable process, and if the surface 11 is an insulating layer, an insulating layer may or may not be added separately. However, if it is an epitaxial layer or a silicon layer, it is necessary to separately provide the insulating layer 11 on the entire surface. Also, when the silicon layer is exposed by etching, it is necessary to separately provide an insulating layer.

【0019】図3は、図1の平面図であり、抵抗体8と
相似形で縮小された抵抗体20が電極9とコンタクトし
て配置されており、抵抗体20の左端には電極21が設
けられている。電極21は、プロービングの際に使用す
る電極で、抵抗体20をみて抵抗体8の抵抗値を予測す
るものである。図4は、ハイブリッドIC基板30に前
述した抵抗チップ1を実装した図であり、例えば金属基
板、AlやCuの基板30に絶縁層31を介して貼着さ
れた導電路32や導電ランド33があり、導電ランド3
3には図面では省略したが半田を介して抵抗チップの裏
電極が接続されている。また表面にある電極9,9は、
金属細線を介して導電路32と電気的に接続されてい
る。
FIG. 3 is a plan view of FIG. 1, in which a resistor 20 similar to the resistor 8 and reduced in size is arranged in contact with the electrode 9, and an electrode 21 is provided at the left end of the resistor 20. It is provided. The electrode 21 is an electrode used for probing, and predicts the resistance value of the resistor 8 by looking at the resistor 20. FIG. 4 is a diagram in which the above-described resistance chip 1 is mounted on the hybrid IC substrate 30. For example, a conductive path 32 and a conductive land 33 that are adhered to the substrate 30 of a metal substrate, Al or Cu via the insulating layer 31 are provided. Yes, conductive land 3
Although not shown in the drawing, the back electrode of the resistor chip 3 is connected to the resistor 3 via solder. The electrodes 9 and 9 on the surface are
It is electrically connected to the conductive path 32 via a thin metal wire.

【0020】以上説明したように、前述した工程で不良
となったウェハを用意し、必要により耐絶縁および目的
の抵抗値の達成のために絶縁層を形成し、裏面または表
面の一方に、前述した抵抗体や電極を形成し、ウェハ内
にマトリックス状に形成された抵抗体(受動素子)をス
クライバーで個々に分割し、この分割された抵抗体チッ
プを図4のように、ハイブリッドICに実装し、ワイヤ
ーボンドする。この一連のプロセスにより、安価なチッ
プ抵抗が通常の半導体プロセスにて形成でき、しかも基
板自身熱抵抗が小さいので、金属基板に実装すればヒー
トシンクとして働くと共に、基板に熱を良好に伝えるこ
とができ、抵抗体の熱による抵抗値変化も防止できる。
或いは、Cu等のヒートシンクブロックの上に実装して
も良い。この場合、ランドとブロックが半田や銀ペース
ト等で固着される。しかも材料により温度係数の小さい
抵抗対が実現できるので、高精度で低抵抗の抵抗体が実
現できる。従って、出力トランジスタの出入口に検出用
の抵抗体として活用すれば、抵抗値が小さいためロスが
すくなく、精度の高い検出が可能となる。従って抵抗体
の電圧を制御回路にフィードバックして出力トランジス
タを制御すれば、出力トランジスタの保護が高精度で実
現できる。
As described above, a wafer that has become defective in the above-mentioned process is prepared, and if necessary, an insulating layer is formed for insulation resistance and achievement of a target resistance value. Resistors and electrodes are formed, and resistors (passive elements) formed in a matrix in the wafer are individually divided by a scriber, and the divided resistor chips are mounted on a hybrid IC as shown in FIG. And wire bond. With this series of processes, inexpensive chip resistors can be formed by a normal semiconductor process, and since the substrate itself has low thermal resistance, it can function as a heat sink when mounted on a metal substrate and can transfer heat well to the substrate. It is also possible to prevent the resistance value from changing due to heat of the resistor.
Alternatively, it may be mounted on a heat sink block of Cu or the like. In this case, the land and the block are fixed to each other with solder or silver paste. Moreover, since a resistance pair having a small temperature coefficient can be realized by the material, a highly accurate and low resistance resistor can be realized. Therefore, if it is used as a detection resistor at the entrance and exit of the output transistor, the resistance value is small, so that the loss is small and highly accurate detection is possible. Therefore, if the voltage of the resistor is fed back to the control circuit to control the output transistor, the protection of the output transistor can be realized with high accuracy.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、不良と
なったウェハを基板として活用すれば、基板のコストが
比較にならないほど安価とすることができる。しかもシ
リコンは熱抵抗が絶縁体よりもはるかに小さいため、基
板の上に載せる受動素子が熱を発生しても良好に外部に
放出できる。
As is apparent from the above description, if a defective wafer is used as a substrate, the cost of the substrate can be made so low that it cannot be compared. Moreover, since the thermal resistance of silicon is much smaller than that of the insulator, even if the passive element mounted on the substrate generates heat, it can be radiated favorably to the outside.

【0022】第二に、ウェハの裏面(抵抗体実装面と異
なる面)に半田付け可能な電極を形成すれば、ハイブリ
ッド基板に半田を介して実装でき、通常の半導体チップ
の実装と同様にハイブリッド基板に実装できる。第3に
ウェハ内にマトリックス状に数多く抵抗体が形成でき、
安価な基板に数多く抵抗体が形成できるため、非常に安
価なものが実現できる。またリサイクルの面でも有効で
ある。
Secondly, if electrodes that can be soldered are formed on the back surface of the wafer (the surface different from the resistor mounting surface), the electrodes can be mounted on the hybrid substrate via solder, and the hybrid substrate can be mounted in the same manner as a normal semiconductor chip mounting. Can be mounted on a board. Thirdly, many resistors can be formed in a matrix in the wafer,
Since many resistors can be formed on an inexpensive substrate, a very inexpensive one can be realized. It is also effective in terms of recycling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のチップ部品を説明する図である。FIG. 1 is a diagram illustrating a chip component of the present invention.

【図2】本発明のチップ部品を説明する図である。FIG. 2 is a diagram illustrating a chip component of the present invention.

【図3】図1の平面図である。FIG. 3 is a plan view of FIG.

【図4】チップ部品をハイブリッド基板に実装した断面
図である。
FIG. 4 is a sectional view of a chip component mounted on a hybrid substrate.

【符号の説明】[Explanation of symbols]

1 基板 6 絶縁層 7 裏電極 8 抵抗体 9 電極 10 パシベーション膜 30 ハイブリッド基板 1 Substrate 6 Insulating Layer 7 Back Electrode 8 Resistor 9 Electrode 10 Passivation Film 30 Hybrid Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面または裏面に形成された
絶縁層上に能動素子や受動素子を形成したチップ部品で
あり、 前記半導体基板は、不良品であることを特徴としたチッ
プ部品。
1. A chip component in which an active element or a passive element is formed on an insulating layer formed on the front surface or the back surface of a semiconductor substrate, wherein the semiconductor substrate is a defective product.
【請求項2】 前記素子が実装されない半導体基板面に
は、半田となじむ電極が設けられ、ハイブリッド基板上
に設けられた導電路と半田を介して固着される請求項1
記載のチップ部品。
2. An electrode that is compatible with solder is provided on the surface of the semiconductor substrate on which the element is not mounted, and is fixed to the conductive path provided on the hybrid substrate through the solder.
The listed chip parts.
【請求項3】 ウェハへの加工工程またはウェハでの半
導体プロセス工程にに於いて不良となったウェハを用意
し、 前記ウェハ上に半導体素子または受動素子を形成し、 前記ウェハに形成された半導体素子または受動素子を個
々にスクライブする工程とを少なくとも有するチップ部
品の製造方法。
3. A semiconductor formed on the wafer by preparing a defective wafer in a wafer processing step or a semiconductor process step on the wafer, forming a semiconductor element or a passive element on the wafer, A method of manufacturing a chip component, which comprises at least a step of individually scribing an element or a passive element.
JP01191595A 1995-01-27 1995-01-27 Chip component and method of manufacturing the same Expired - Fee Related JP3263554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01191595A JP3263554B2 (en) 1995-01-27 1995-01-27 Chip component and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01191595A JP3263554B2 (en) 1995-01-27 1995-01-27 Chip component and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08204063A true JPH08204063A (en) 1996-08-09
JP3263554B2 JP3263554B2 (en) 2002-03-04

Family

ID=11791008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01191595A Expired - Fee Related JP3263554B2 (en) 1995-01-27 1995-01-27 Chip component and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3263554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305754B2 (en) 2003-11-27 2007-12-11 Disco Corporation Method of manufacturing chip resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305754B2 (en) 2003-11-27 2007-12-11 Disco Corporation Method of manufacturing chip resistor

Also Published As

Publication number Publication date
JP3263554B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
EP2224479B1 (en) Metal-ceramic composite substrate and method of its manufacture
US5986338A (en) Assembly of semiconductor device
KR900008973B1 (en) Semiconductor device
US6330158B1 (en) Semiconductor package having heat sinks and method of fabrication
US20060220214A1 (en) Semiconductor device and manufacturing method thereof
JPH10270762A (en) Thermoelectric conversion element
Linder et al. Fabrication technology for wafer through-hole interconnections and three-dimensional stacks of chips and wafers
JP2002319658A (en) Semiconductor device
JPH07153920A (en) Semiconductor device
JPH08306861A (en) Chip resistor
US3594619A (en) Face-bonded semiconductor device having improved heat dissipation
JPH01245549A (en) Semiconductor device and manufacture thereof
JP3263554B2 (en) Chip component and method of manufacturing the same
US7189602B2 (en) Method and apparatus for reducing substrate bias voltage drop
JPH08236553A (en) Semiconductor element and method having thermal spraying thermal diffusion layer
JPH02201949A (en) Package of semiconductor device
JPH10247752A (en) Thermoelectric conversion device and manufacture thereof
JPH03179767A (en) Large power semiconductor device
US20060237814A1 (en) Semiconductor device having surface mountable external contact areas and method for producing the same
US20020149055A1 (en) Semiconductor device including insulating substrate formed of single-crystal silicon chip
JPH06216526A (en) Thin-film multi layer printed circuit board
US11532534B2 (en) Semiconductor module
JPH0818071A (en) Manufacture of individual diode device
JP2002289763A (en) Electric field effect transistor
JPH0728003B2 (en) Thin film hybrid IC

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees