JPH0820399A - Three-axis geostationary satellite - Google Patents

Three-axis geostationary satellite

Info

Publication number
JPH0820399A
JPH0820399A JP6156311A JP15631194A JPH0820399A JP H0820399 A JPH0820399 A JP H0820399A JP 6156311 A JP6156311 A JP 6156311A JP 15631194 A JP15631194 A JP 15631194A JP H0820399 A JPH0820399 A JP H0820399A
Authority
JP
Japan
Prior art keywords
south
north
panel
axis
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6156311A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujino
宏 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6156311A priority Critical patent/JPH0820399A/en
Publication of JPH0820399A publication Critical patent/JPH0820399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a three-axis geostationary satellite capable of sharply reducing the incoming heat by sunlight radiation while maintaining the heat radiation quantity by radiation, reducing the seasonal fluctuation of the heat radiation quantity from the satellite, increasing the heat radiation quantity, preventing the overheat of equipment, and capable of keeping the temperature of the equipment nearly constant. CONSTITUTION:This three-axis geostationary satellite is provided with a main body 14 having south-north plane panels 12 facing the direction of the south-north axis P and side face panels 13 surrounding the south-north axis and shielding panels 16 connected to the outer peripheries of the south-north plane panels 12 of the main body 14 at the inner ends 16a and extended outward in the south-north axis direction at the outer ends 16b. The outer ends 16b of the shielding panels 16 are positioned at the positions where the sunlight 4 does not directly enter the south-north plane panels 12 at the maximum incidence angle theta (23.5 deg.) to the south-north plane panels 12. Inner faces 16c of the shielding panels 16 are mirror finished surfaces having the same incidence angle and reflection angle of light, and the angle alpha of the shielding panels 16 against the south-north axis is set so that the sunlight reflected on the inner faces of the shielding panel 16 is not reflected to the south-north plane panels 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、本体の3軸を慣性空間
に固定した3軸静止衛星に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-axis geostationary satellite whose main body has three axes fixed in an inertial space.

【0002】[0002]

【従来の技術】人工衛星に搭載されている機器が設計通
りの動作を行い、また定められた寿命を保つためには、
機器の動作環境温度を一定範囲内に制御する必要があ
る。衛星の温度は衛星に加わる入熱と衛星の外部へ出て
いく出熱(放熱)との釣り合いにより定まり、衛星に加
わる入熱としては太陽光による輻射熱と搭載機器の発熱
とがある。
2. Description of the Related Art In order for a device mounted on an artificial satellite to operate as designed and to maintain a specified life,
It is necessary to control the operating environment temperature of the device within a certain range. The temperature of the satellite is determined by the balance between the heat input to the satellite and the heat output (heat dissipation) that goes out of the satellite. The heat input to the satellite includes radiant heat from sunlight and heat from the onboard equipment.

【0003】人工衛星のうち静止衛星は、地球をまわる
公転周期が地球の自転周期と等しく、相対的には地球か
ら常に同じ場所に位置する。また、静止衛星には、本体
がスピンするスピン衛星と、本体の3軸(図5における
P,Y,R)が慣性空間に固定した3軸静止衛星とがあ
り、3軸静止衛星は地球に対して常に同じ向きを維持で
きる特徴がある。
Among the artificial satellites, the geostationary satellite has a revolution period around the earth equal to the rotation period of the earth, and is relatively always located at the same place from the earth. Geostationary satellites include spin satellites whose main body spins and three-axis geostationary satellites whose three axes (P, Y, R in Fig. 5) are fixed in inertial space. On the other hand, it has the feature that it can always maintain the same orientation.

【0004】[0004]

【発明が解決しようとする課題】図5に例示するよう
に、3軸静止衛星1は常に地球Eの赤道面上にあり、太
陽光輻射による南北面2への入熱は、日変化がなく季節
変化だけである。また、南北面への太陽光4の入射角は
最大で地軸の軌道面に対する角度θ(θ=23.5°)
であるため、太陽光輻射による側面3への入熱に較べて
南北面への入熱は小さい。このため、従来の3軸静止衛
星では一般に側面を断熱し、南北面を放熱面として用い
ていた。
As illustrated in FIG. 5, the 3-axis geostationary satellite 1 is always on the equatorial plane of the earth E, and the heat input to the north-south surface 2 by solar radiation does not change daily. Only seasonal changes. The maximum incident angle of the sunlight 4 on the north-south surface is the angle θ of the earth axis with respect to the orbital surface (θ = 23.5 °).
Therefore, the heat input to the north-south surface is smaller than the heat input to the side surface 3 due to solar radiation. For this reason, in the conventional three-axis geostationary satellite, the side surfaces are generally insulated, and the north and south surfaces are used as the heat dissipation surface.

【0005】3軸静止衛星の南北面2のパネルは、冬至
の時に南面パネルが最高温度となり、夏至の時に北面パ
ネルが最高温度となる。特に冬至には、太陽との距離が
最も近いため熱的に最も厳しい状態となる。この場合、
南面には機器の発熱と太陽光による入熱が加わり、その
一部が宇宙空間に輻射で放熱され、残りは太陽の当たら
ない北面から宇宙に輻射放熱される。
The panel of the north-south surface 2 of the three-axis geostationary satellite has the maximum temperature of the south-surface panel at the winter solstice and the maximum temperature of the north-surface panel at the summer solstice. Especially in the winter solstice, the distance from the sun is the shortest, and the situation is the severest in terms of heat. in this case,
Heat generated from the equipment and heat input from sunlight are added to the south surface, and part of it is radiated to outer space by radiation, and the rest is radiated to space from the north surface, which is not exposed to the sun.

【0006】南北面2での熱平衡式は、南面:aSA+
QS ≒εAσTS4(式)、北面:QN ≒εAσTN
4(式)、QS :南面から輻射放熱される搭載機器の
発熱量、QN :北面から輻射放熱される搭載機器の発熱
量、TS :南面の絶対温度、TN:北面の絶対温度、
ε:南北面の輻射率、a:南北面の太陽光吸収率、A:
南北面の面積、S:太陽光熱入力σ:ステファンボルツ
マン定数であらわされる。
The heat balance equation on the north-south surface 2 is as follows:
QS ≈ εAσTS 4 (formula), North surface: QN ≈ εAσTN
4 (Equation), QS: Heat value of onboard equipment that radiates heat from the south surface, QN: Heat value of onboard equipment that radiates heat from the north surface, TS: absolute temperature of the south surface, TN: absolute temperature of the north surface,
ε: emissivity of north-south surface, a: solar absorption rate of north-south surface, A:
Area of north-south surface, S: solar heat input σ: Stefan Boltzmann constant.

【0007】しかし従来の3軸静止衛星では、式か
ら明らかなように、常に太陽光輻射による入熱(aS
A)があり、かつこの入熱量が季節により変動するた
め、衛星の熱設計が困難であり、機器の温度を一定に保
持することができず、特に冬季に放熱量が不足して搭載
機器が過熱されるおそれがある、等の問題点があった。
However, in the conventional three-axis geostationary satellite, as is clear from the equation, the heat input (aS
Since there is A) and this heat input varies with the seasons, it is difficult to design the heat of the satellite, and the temperature of the equipment cannot be kept constant. There were problems such as overheating.

【0008】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、輻射
による放熱量を維持したまま、太陽光輻射による入熱を
大幅に低減することができ、これにより、衛星からの放
熱量の季節変動を低減し、放熱量を増大させ、機器の過
熱を防止し、かつ機器の温度をほぼ一定に保持すること
ができる3軸静止衛星を提供することにある。
The present invention was devised to solve such problems. That is, the object of the present invention is to significantly reduce the heat input due to solar radiation while maintaining the heat radiation amount due to the radiation, thereby reducing the seasonal variation of the heat radiation amount from the satellite and reducing the heat radiation amount. It is an object of the present invention to provide a three-axis geostationary satellite capable of increasing the temperature of the device, preventing the device from overheating, and keeping the device temperature substantially constant.

【0009】[0009]

【課題を解決するための手段】本発明によれば、赤道上
空に位置し、地球をまわる公転周期が地球の自転周期に
等しく、地軸に平行な南北軸と軌道の半径方向軸と円周
方向軸の3軸を有し該3軸が地球に対して相対的に固定
された3軸静止衛星において、南北軸方向に向いた南北
面パネルと南北軸をかこむ側面パネルとを有する本体
と、該本体の南北面パネルの外周に内端が連結され外端
が南北軸方向外方に延びた遮光パネルとを備え、遮光パ
ネルの外端は、南北面パネルへの最大入射角における太
陽光が南北面パネルに直接入射しない位置に位置決めさ
れ、遮光パネルの内面は、光の入射角と反射角が等しい
鏡面であり、かつ遮光パネルの南北軸に対する角度は、
該遮光パネルの内面で反射された太陽光が南北面パネル
へ反射しないように設定されている、ことを特徴とする
3軸静止衛星が提供される。
According to the present invention, the orbital period located above the equator and traveling around the earth is equal to the rotation period of the earth, the north-south axis parallel to the earth axis, the radial axis of the orbit, and the circumferential direction. A three-axis geostationary satellite having three axes, the three axes being fixed relative to the earth, and a main body having a north-south panel facing the north-south axis and a side panel enclosing the north-south axis, It is equipped with a light-shielding panel whose inner end is connected to the outer periphery of the north-south panel of the main body and whose outer end extends outward in the north-south axial direction. The light-shielding panel is positioned at a position where it does not directly enter the surface panel, the inner surface of the light-shielding panel is a mirror surface with the same incident angle of light and the reflection angle, and the angle with respect to the north-south axis of the light-shielding panel is
There is provided a three-axis geostationary satellite characterized in that the sunlight reflected on the inner surface of the light-shielding panel is set so as not to be reflected on the north-south surface panel.

【0010】本発明の好ましい実施例によれば、遮光パ
ネルの南北軸に対する角度αは少なくとも23.5°以
上であり、南北面パネルの最大幅L0 に対して、遮光パ
ネルの内端から外端までの長さLは、少なくともL0 ・
sin23.5°/cos(α+23.5°)以上であ
る。また、前記本体は、矩形の南北面パネルと矩形の側
面パネルとからなる箱型であり、前記遮光パネルは、内
方に折り畳み可能に南北面パネルの各辺に回転自在に取
付られている。更に、前記遮光パネルは、熱伝導の小さ
いハニカムサンドイッチパネルからなる、ことが好まし
い。
According to a preferred embodiment of the present invention, the angle α of the shading panel with respect to the north-south axis is at least 23.5 ° or more, and for the maximum width L0 of the north-south panel, the inner edge to the outer edge of the light-shielding panel. The length L up to is at least L0
sin 23.5 ° / cos (α + 23.5 °) or more. Further, the main body is a box-shaped body composed of a rectangular north-south panel and a rectangular side panel, and the light-shielding panel is rotatably attached to each side of the north-south panel so that it can be folded inward. Furthermore, it is preferable that the light-shielding panel is a honeycomb sandwich panel having low heat conductivity.

【0011】[0011]

【作用】上記本発明の構成によれば、本体の南北面パネ
ルの外周に内端が連結され外端が南北軸方向外方に延び
た遮光パネルを備え、その外端は南北面パネルへの最大
入射角における太陽光が南北面パネルに直接入射しない
位置に位置決めされているので、南北面パネルへの太陽
光の直接入射をこの遮光パネルにより遮光することがで
きる。また、遮光パネルの内面が、光の入射角と反射角
が等しい鏡面であり、かつ遮光パネルの南北軸に対する
角度は、該遮光パネルの内面で反射された太陽光が南北
面パネルへ反射しないように設定されているので、反射
光が南北面パネルへ入射しない。更に、遮光パネルの内
面が鏡面であり、外方に傾斜した角度を有しているの
で、南北面パネルから輻射された熱の一部を遮光パネル
の内面で反射し真宇宙に放射することができ、輻射によ
る放熱が遮光パネルで阻害されない。
According to the above-mentioned structure of the present invention, a light-shielding panel having an inner end connected to the outer periphery of the north-south surface panel of the main body and an outer end extending outward in the north-south axial direction, the outer end of which extends to the north-south surface panel. Since the sunlight at the maximum incident angle is positioned so as not to directly enter the north-south panel, the light-shielding panel can block the direct incidence of the sunlight on the north-south panel. In addition, the inner surface of the light-shielding panel is a mirror surface with the same incident angle of light and the reflection angle, and the angle with respect to the north-south axis of the light-shielding panel is set so that the sunlight reflected on the inner surface of the light-shielding panel does not reflect to the north-south surface panel. Since it is set to, reflected light does not enter the north-south panel. Furthermore, since the inner surface of the shading panel is a mirror surface and has an angle inclined outward, part of the heat radiated from the north-south surface panel can be reflected on the inner surface of the shading panel and radiated to the true universe. The light-shielding panel does not hinder the heat radiation by radiation.

【0012】従って輻射による放熱量を維持したまま、
太陽光輻射による入熱を大幅に低減することができ、こ
れにより、衛星からの放熱量の季節変動を低減し、放熱
量を増大させ、機器の過熱を防止し、かつ機器の温度を
ほぼ一定に保持することができる。
Therefore, while maintaining the amount of heat released by radiation,
The heat input due to solar radiation can be significantly reduced, which reduces the seasonal fluctuation of the heat radiation from the satellite, increases the heat radiation, prevents the equipment from overheating, and keeps the equipment temperature almost constant. Can be held at.

【0013】[0013]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には、
同一の符号を付して使用する。図1は本発明による3軸
静止衛星の全体斜視図、図2は図1のPY面における断
面図である。本発明の3軸静止衛星は、図5と同様に、
赤道上空に位置し、地球Eをまわり公転周期が地球の自
転周期に等しい静止衛星であり、この3軸静止衛星は、
地軸に平行な南北軸Pと軌道の半径方向軸Yと円周方向
軸Rの3軸を有しており、この3軸P,Y,Rが地球に
対して相対的に固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In addition, the common part in each figure,
The same reference numbers are used. FIG. 1 is an overall perspective view of a 3-axis geostationary satellite according to the present invention, and FIG. 2 is a sectional view taken along the PY plane of FIG. The 3-axis geostationary satellite of the present invention is similar to FIG.
It is a geostationary satellite that is located above the equator and moves around the earth E and has a revolution period equal to the rotation period of the earth.
It has three axes, a north-south axis P parallel to the earth axis, a radial axis Y of the orbit, and a circumferential axis R, and these three axes P, Y, and R are fixed relative to the earth.

【0014】図1及び図2において、本発明の3軸静止
衛星10は、南北軸Pの方向に向いた南北面パネル12
と南北軸Pをかこむ側面パネル13とを有する本体14
と、本体の南北面パネル12の外周に内端16aが連結
され外端16bが南北軸方向外方に延びた遮光パネル1
6とを備えている。図1及び図2の実施例において、本
体14は、矩形の南北面パネル12と矩形の側面パネル
13とからなる箱型である。また、遮光パネル16は、
内方に折り畳み可能に南北面パネル12の各辺に回転自
在に取付られている。
1 and 2, a three-axis geostationary satellite 10 of the present invention has a north-south panel 12 facing in the north-south axis P direction.
And a body 14 having a side panel 13 enclosing the north-south axis P
And an inner end 16a is connected to the outer periphery of the north-south panel 12 of the main body, and an outer end 16b extends outward in the north-south axial direction.
6 is provided. In the embodiment shown in FIGS. 1 and 2, the main body 14 is a box-shaped body including a rectangular north-south panel 12 and a rectangular side panel 13. In addition, the light shielding panel 16 is
It is rotatably attached to each side of the north-south panel 12 so that it can be folded inward.

【0015】図4は遮光パネル16の折り畳み構造図で
ある。この図に示すように、遮光パネルはa〜lの12
の部分から構成され、a〜h、i,k、j,lの
順で折り畳むことにより(A)の展開状態から(B)の
格納状態に折り畳むことができる。展開する場合は、こ
の逆である。かかる構成により、ロケットフェアリング
での収納効率を高めることができる。
FIG. 4 is a diagram showing the folding structure of the light shielding panel 16. As shown in this figure, the light-shielding panel has 12 of a to l.
It can be folded from the expanded state of (A) to the stored state of (B) by folding in the order of a to h, i, k, j, l. The opposite is true when deploying. With this configuration, the storage efficiency of the rocket fairing can be improved.

【0016】また、遮光パネル16は、熱伝導の小さい
ハニカムサンドイッチパネルからなる。更に、遮光パネ
ル16の内面は光の入射角と反射角が等しい鏡面とす
る。遮光パネル16の外面は、内面と同じ鏡面とする
か、或いは、断熱性能の高い多層断熱材(例えばML
I:Multi Layer Insulation)を設ける。かかる構成に
より、太陽光4からの遮光パネル16への入熱とその入
熱の本体14への伝熱を大幅に低減することができる。
The light-shielding panel 16 is composed of a honeycomb sandwich panel having a small heat conductivity. Furthermore, the inner surface of the light-shielding panel 16 is a mirror surface having the same incident angle and reflected angle of light. The outer surface of the light-shielding panel 16 has the same mirror surface as the inner surface, or a multilayer heat insulating material (eg, ML) having high heat insulating performance.
I: Multi Layer Insulation) is provided. With such a configuration, heat input from the sunlight 4 to the light shielding panel 16 and heat transfer of the heat input to the main body 14 can be significantly reduced.

【0017】図3は、図2における南北面パネル12と
遮光パネル16との位置関係を示す図である。図1〜図
3において、遮光パネル16の外端16bは、南北面パ
ネル12への最大入射角θ(θ=23.5°)における
太陽光4が南北面パネル12に直接入射しない位置に位
置決めされている。すなわち、図3において、遮光パネ
ルの南北軸に対する角度がα、南北面パネルの最大幅
(図で線分AB)がL0 の場合に、遮光パネル16の内
端16aから外端16bまでの長さLが、少なくともL
0 ・sin23.5°/cos(α+23.5°)以上
であるように、遮光パネルの角度αと遮光パネルの長さ
Lが定められている。図3の三角形ABCと線分ACへ
の垂線BDにおいて、線分BDの長さは、L0 ・sin
θ及びL・cos(α+θ)であらわすことができる。
従って、遮光パネル16の内端16aから外端16bま
での長さLを少なくともL0 ・sin23.5°/co
s(α+23.5°)以上とすることにより、南北面パ
ネル12への太陽光4の直接入射を遮光パネル16によ
り完全に遮光することができる。
FIG. 3 is a diagram showing the positional relationship between the north-south panel 12 and the light-shielding panel 16 in FIG. 1 to 3, the outer end 16b of the shading panel 16 is positioned at a position where the sunlight 4 at the maximum incident angle θ (θ = 23.5 °) to the north-south panel 12 does not directly enter the north-south panel 12. Has been done. That is, in FIG. 3, when the angle of the shading panel with respect to the north-south axis is α and the maximum width of the north-south panel (line segment AB in the figure) is L0, the length from the inner end 16a to the outer end 16b of the shading panel 16 L is at least L
The angle α of the light-shielding panel and the length L of the light-shielding panel are set so as to be 0 · sin 23.5 ° / cos (α + 23.5 °) or more. In the triangle ABC and the perpendicular line BD to the line segment AC in FIG. 3, the length of the line segment BD is L0.sin.
It can be represented by θ and L · cos (α + θ).
Therefore, the length L from the inner end 16a to the outer end 16b of the light shielding panel 16 is at least L0.sin23.5 ° / co.
By setting s (α + 23.5 °) or more, the direct incidence of the sunlight 4 on the north-south surface panel 12 can be completely shielded by the light-shielding panel 16.

【0018】更に、図1〜図3において、遮光パネル1
6の内面16cは、光の入射角と反射角が等しい鏡面で
ある。また、遮光パネル16の南北軸に対する角度α
は、遮光パネルの内面16cで反射された太陽光4が南
北面パネル12へ反射しないように設定されている。す
なわち、図3において、遮光パネル16の南北軸Pに対
する角度αは少なくとも太陽光4の最大入射角(θ=2
3.5°)以上に設定されている。かかる構成により、
遮光パネル16の内面16cで反射された太陽光4が外
側(真宇宙側)に反射され、反射光が南北面パネルへ入
射しない。また同様に、遮光パネルの内面16cが鏡面
であり、外方に傾斜した角度αを有しているので、南北
面パネル12から輻射された熱の一部を遮光パネル16
の内面16cで反射し真宇宙に放射することができ、輻
射による放熱が遮光パネルで阻害されない。
Further, in FIGS. 1 to 3, the light shielding panel 1
The inner surface 16c of 6 is a mirror surface having the same incident angle and reflection angle of light. In addition, the angle α of the shading panel 16 with respect to the north-south axis
Is set so that the sunlight 4 reflected on the inner surface 16c of the light shielding panel does not reflect to the north-south surface panel 12. That is, in FIG. 3, the angle α of the shading panel 16 with respect to the north-south axis P is at least the maximum incident angle (θ = 2) of the sunlight 4.
3.5 °) or more. With this configuration,
The sunlight 4 reflected by the inner surface 16c of the light shielding panel 16 is reflected to the outside (true universe side), and the reflected light does not enter the north-south surface panel. Similarly, since the inner surface 16c of the light-shielding panel is a mirror surface and has an angle α inclined outward, a part of the heat radiated from the north-south surface panel 12 is partially shielded.
The light can be reflected by the inner surface 16c of the and can be radiated to the true universe, and the heat radiation by radiation is not obstructed by the light shielding panel.

【0019】従って、上述の構成により、輻射による放
熱量を維持したまま、太陽光輻射による入熱を大幅に低
減することができ、これにより、衛星からの放熱量の季
節変動を低減し、放熱量を増大させ、機器の過熱を防止
し、かつ機器の温度をほぼ一定に保持することができ
る。なお、本発明は上述した実施例に限定されず、本発
明の要旨を逸脱しない範囲で種々に変更できることは勿
論である。
Therefore, with the above-mentioned configuration, the heat input due to the solar radiation can be greatly reduced while maintaining the heat radiation amount due to the radiation, thereby reducing the seasonal variation of the heat radiation amount from the satellite and releasing it. It is possible to increase the amount of heat, prevent the device from overheating, and keep the device temperature substantially constant. It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0020】[0020]

【発明の効果】上述したように、本発明の3軸静止衛星
によれば、南北面パネルへの太陽光の直接入射を遮光パ
ネルにより遮光することができ、また、遮光パネルの内
面での太陽光の反射光が南北面パネルへ入射しない。更
に、遮光パネルの内面が鏡面であり、外方に傾斜した角
度を有しているので、南北面パネルから輻射された熱の
一部を遮光パネルの内面で反射し真宇宙に放射すること
ができ、輻射による放熱が遮光パネルで阻害されない。
As described above, according to the three-axis geostationary satellite of the present invention, the direct incidence of sunlight on the north-south surface panel can be blocked by the light-shielding panel, and the sun on the inner surface of the light-shielding panel can be shielded. The reflected light does not enter the north-south panel. Furthermore, since the inner surface of the shading panel is a mirror surface and has an angle inclined outward, part of the heat radiated from the north-south surface panel can be reflected on the inner surface of the shading panel and radiated to the true universe. The light-shielding panel does not hinder the heat radiation by radiation.

【0021】従って、本発明の3軸静止衛星は、輻射に
よる放熱量を維持したまま、太陽光輻射による入熱を大
幅に低減することができ、これにより、衛星からの放熱
量の季節変動を低減し、放熱量を増大させ、機器の過熱
を防止し、かつ機器の温度をほぼ一定に保持することが
できる、等の優れた効果を有する。
Therefore, the three-axis geostationary satellite of the present invention can greatly reduce the heat input due to the solar radiation while maintaining the heat radiation due to the radiation, and thus the seasonal variation of the heat radiation from the satellite. It has excellent effects such as reduction, increase of heat radiation amount, prevention of overheating of equipment, and keeping equipment temperature almost constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による3軸静止衛星の全体斜視図であ
る。
FIG. 1 is an overall perspective view of a 3-axis geostationary satellite according to the present invention.

【図2】図1のPY面における断面図である。FIG. 2 is a cross-sectional view taken along the PY plane of FIG.

【図3】図2における南北面パネルと遮光パネルとの位
置関係図である。
FIG. 3 is a positional relationship diagram between a north-south surface panel and a light-shielding panel in FIG.

【図4】遮光パネルの折り畳み構造図である。FIG. 4 is a view showing a folding structure of a light shielding panel.

【図5】従来の3軸静止衛星の位置関係図である。FIG. 5 is a positional relationship diagram of a conventional 3-axis geostationary satellite.

【符号の説明】[Explanation of symbols]

1 3軸静止衛星 2 南北面 3 側面 4 太陽光 10 3軸静止衛星 12 南北面パネル 13 側面パネル 14 本体 16 遮光パネル 16a 内端 16b 外端 θ 南北面パネルへの太陽光の最大入射角 α 遮光パネルの南北軸に対する角度 P 南北軸 Y 半径方向軸 R 円周方向軸 1 3-axis geostationary satellite 2 north-south surface 3 side surface 4 solar light 10 3-axis geostationary satellite 12 south-south surface panel 13 side panel 14 main body 16 light-shielding panel 16a inner edge 16b outer edge θ maximum incident angle of sunlight on north-south surface panel α light-shielding Angle of panel with respect to north-south axis P North-south axis Y Radial axis R Circumferential axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 赤道上空に位置し、地球をまわる公転周
期が地球の自転周期に等しく、地軸に平行な南北軸と軌
道の半径方向軸と円周方向軸の3軸を有し、該3軸が地
球に対して相対的に固定された3軸静止衛星において、 南北軸方向に向いた南北面パネルと南北軸をかこむ側面
パネルとを有する本体と、該本体の南北面パネルの外周
に内端が連結され外端が南北軸方向外方に延びた遮光パ
ネルとを備え、 遮光パネルの外端は、南北面パネルへの最大入射角にお
ける太陽光が南北面パネルに直接入射しない位置に位置
決めされ、 遮光パネルの内面は、光の入射角と反射角が等しい鏡面
であり、かつ遮光パネルの南北軸に対する角度は、該遮
光パネルの内面で反射された太陽光が南北面パネルへ反
射しないように設定されている、ことを特徴とする3軸
静止衛星。
1. An orbit around the earth, which is located above the equator, has a revolution period equal to the rotation period of the earth, and has three axes of a north-south axis parallel to the earth axis, a radial axis of an orbit, and a circumferential axis. In a three-axis geostationary satellite whose axis is fixed relative to the earth, a main body having a north-south panel facing the north-south axis and side panels enclosing the north-south axis, and an inner periphery of the north-south panel of the main body. Equipped with a light-shielding panel whose ends are connected and the outer end extends outward in the north-south axial direction.The outer end of the light-shielding panel is positioned at a position where sunlight at the maximum incidence angle on the north-south panel does not directly enter the north-south panel. The inner surface of the light-shielding panel is a mirror surface where the incident angle of light is equal to the reflection angle, and the angle with respect to the north-south axis of the light-shielding panel is such that the sunlight reflected on the inner surface of the light-shielding panel does not reflect to the north-south surface panel. Is set to A 3-axis geostationary satellite.
【請求項2】 遮光パネルの南北軸に対する角度αは少
なくとも23.5°以上であり、南北面パネルの最大幅
L0 に対して、遮光パネルの内端から外端までの長さL
は、少なくともL0 ・sin23.5°/cos(α+
23.5°)以上である、ことを特徴とする請求項1に
記載の3軸静止衛星。
2. The angle α of the light-shielding panel with respect to the north-south axis is at least 23.5 ° or more, and the length L from the inner edge to the outer edge of the light-shielding panel with respect to the maximum width L0 of the north-south surface panel.
Is at least L0 · sin23.5 ° / cos (α +
2. The three-axis geostationary satellite according to claim 1, wherein the three-axis geostationary satellite is at least 23.5 °.
【請求項3】 前記本体は、矩形の南北面パネルと矩形
の側面パネルとからなる箱型であり、前記遮光パネル
は、内方に折り畳み可能に南北面パネルの各辺に回転自
在に取付られている、ことを特徴とする請求項1に記載
の3軸静止衛星。
3. The main body is a box-shaped body composed of a rectangular north-south panel and a rectangular side panel, and the light-shielding panel is rotatably attached to each side of the north-south panel so that it can be folded inward. The three-axis geostationary satellite according to claim 1, wherein
【請求項4】 前記遮光パネルは、熱伝導の小さいハニ
カムサンドイッチパネルからなる、ことを特徴とする請
求項1に記載の3軸静止衛星。
4. The triaxial geostationary satellite according to claim 1, wherein the light-shielding panel is formed of a honeycomb sandwich panel having low heat conductivity.
JP6156311A 1994-07-08 1994-07-08 Three-axis geostationary satellite Pending JPH0820399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6156311A JPH0820399A (en) 1994-07-08 1994-07-08 Three-axis geostationary satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6156311A JPH0820399A (en) 1994-07-08 1994-07-08 Three-axis geostationary satellite

Publications (1)

Publication Number Publication Date
JPH0820399A true JPH0820399A (en) 1996-01-23

Family

ID=15625033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6156311A Pending JPH0820399A (en) 1994-07-08 1994-07-08 Three-axis geostationary satellite

Country Status (1)

Country Link
JP (1) JPH0820399A (en)

Similar Documents

Publication Publication Date Title
JP6643224B2 (en) Spacecraft and thermal control system and thermal control panel
JP5126854B2 (en) Space exploration equipment
US20120205492A1 (en) Satellite Having Multiple Aspect Ratios
WO2000005134A2 (en) Spacecraft shading device
US9764861B2 (en) Space craft comprising at least one pair of supporting arms, said arm pair being equipped with a hollow mounting module, and method for employing such a craft
JP2002308199A (en) Expandable radiator for spacecraft
EP1078400A4 (en) A retractable thin film solar concentrator for spacecraft
JPH02262500A (en) Satellite control system
US10618677B1 (en) Articulating sunshield
JPH0820399A (en) Three-axis geostationary satellite
JPH03114999A (en) Heat control device for space navigation body
JP2555972B2 (en) Orbit control device and method for three-axis controlled geostationary satellite
JP2002037200A (en) Satellite having orbital inclination
JPH04218497A (en) Geostationary satellite
JP7499720B2 (en) Surveillance equipment and satellites
JPS61222899A (en) Method of controlling heat of artificial satellite
JP2970261B2 (en) Solar synchronous satellite
JP2902652B2 (en) Disturbance torque control device
WO2024049385A1 (en) A thermal protection system
ES2300312T3 (en) DOUBLE CONE PASSIVE REFRIGERATOR WITH ELIPTICAL BASE.
JPH0428318Y2 (en)
JP2732612B2 (en) Solar paddle
WO2024049384A1 (en) A thermal protection system
JPH05147596A (en) Three axis communication/broadcasting satellite
JPH05131998A (en) Spacecraft

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040226

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040913