JPH0820351B2 - Ultra-precision hardness standard piece - Google Patents
Ultra-precision hardness standard pieceInfo
- Publication number
- JPH0820351B2 JPH0820351B2 JP62042882A JP4288287A JPH0820351B2 JP H0820351 B2 JPH0820351 B2 JP H0820351B2 JP 62042882 A JP62042882 A JP 62042882A JP 4288287 A JP4288287 A JP 4288287A JP H0820351 B2 JPH0820351 B2 JP H0820351B2
- Authority
- JP
- Japan
- Prior art keywords
- hardness
- standard piece
- standard
- piece
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、10gf以下の軽荷重を用いる硬度測定の為の標
準片に関するものであり、特には高信頼度の精密な硬度
測定を為すための基準となりうる金属単結晶製の超精密
硬度標準片に関する。本硬度標準片は、IC、LSI等の電
子デバイス部品、PVD、CVD等による薄膜、光フアイバ、
炭素繊維等の繊維材料その他に見られる先端技術素材の
出現に伴いこれら材料の硬度評価手段として最近注目を
あびている(超)軽荷重動的硬度試験法における定量化
の規準となりうる硬度標準片を提供するものである。Description: TECHNICAL FIELD The present invention relates to a standard piece for hardness measurement using a light load of 10 gf or less, and in particular, a standard for making highly reliable and precise hardness measurement. The present invention relates to an ultraprecision hardness standard piece made of a metal single crystal that can be This hardness standard piece is used for electronic device parts such as IC, LSI, thin film by PVD, CVD, optical fiber,
With the advent of advanced technology materials such as carbon fiber and other fiber materials, hardness standard pieces that can be used as criteria for quantification in the (ultra) light load dynamic hardness test method have recently attracted attention as a hardness evaluation method for these materials. It is provided.
発明の背景 硬度(硬さ)とは、それが他の物体によつて極小領域
で変形を与えられようとする時呈する抵抗の大小を示す
尺度として定義されており、材料の性状の一つを簡易に
示す。そのため、硬度試験は金属その他の分野で広範に
使用されてきた材料試験の一つである。硬度としては、
押込み硬度(ブリネル、マイヤー、ロツクウエル、ビツ
カース硬度)、動的硬度(シヨアー硬度)及び引掻き硬
度(マルテンス法)が状況に応じて使われていることは
周知の通りである。中でも、押込み硬度は一般に広く採
用されている。押込み硬度は圧子によつて試料面に圧縮
を与えることから生ずる圧痕の形状、寸法から硬さを測
定する。Background of the Invention Hardness (hardness) is defined as a measure of the magnitude of resistance when it is subjected to deformation in a minimal region by another object, and is one of the properties of a material. It shows simply. Therefore, the hardness test is one of the material tests that have been widely used in the metal and other fields. As hardness,
It is well known that indentation hardness (Brinell, Meyer, Rockwell, Vickers hardness), dynamic hardness (Shore hardness) and scratch hardness (Martens method) are used depending on the situation. Among them, the indentation hardness is generally widely adopted. For the indentation hardness, the hardness is measured from the shape and size of the indentation generated by applying compression to the sample surface with the indenter.
硬度測定は比較測定であるから、その比較基準となる
ものを用意して測定機に応じた基準片を用いて絶えず検
定を行う必要がある。この基準片が硬度標準片と呼ばれ
ている。Since the hardness measurement is a comparative measurement, it is necessary to prepare a standard for the comparison and constantly perform the verification using a standard piece according to the measuring machine. This reference piece is called a hardness standard piece.
従来技術とその問題点 押込み硬度の測定は、圧子を硬度標準片の表面に一定
速度及び一定荷重で押し付け、それによつて生じた圧痕
の大きさから硬度を求めるものである。圧痕の大きさは
測定毎にバラツキ、その巾も大きい。そこで、普通は、
一つの硬度を求める際には、20〜50回程度の操作を繰返
して、その平均値と標準偏差を用いて比較検討してい
る。Conventional technology and its problems The indentation hardness is measured by pressing the indenter against the surface of the hardness standard piece at a constant speed and a constant load, and determining the hardness from the size of the indentation produced thereby. The size of the indentation varies from measurement to measurement and its width is large. So usually,
When one hardness is calculated, the operation is repeated 20 to 50 times, and the average value and the standard deviation are used for comparison.
このバラツキの原因は測定方法自体の持つ要因と硬度
標準片の持つそれとに分けられる。硬度標準片による要
因の大半は、標準片の不均質性によるものと考えられ
る。例えば、従来の硬度標準片は炭素鋼から成り、種々
の熱処理によつて硬度を変化させている。従つて、結晶
粒の方位差、結晶粒界、介在物等が存在し、これがバラ
ツキの原因となつている。The cause of this variation is divided into the factor of the measuring method itself and that of the hardness standard piece. Most of the factors due to the hardness standard pieces are considered to be due to the nonuniformity of the standard pieces. For example, a conventional hardness standard piece is made of carbon steel, and its hardness is changed by various heat treatments. Therefore, there are misorientations of crystal grains, crystal grain boundaries, inclusions, etc., which cause variations.
従来硬度標準片における上記バラツキ問題とは別に、
従来の硬度試験法は、その圧痕をつける際の荷重が大き
く(10gf〜3000kgf)、薄膜その他の新素材の硬度試験
用標準片として不向きである。更に悪いことに従来硬度
標準片は圧痕をつける際の荷重が小さくなる程大きなバ
ラツキを示す。最初に述べたように、先端技術素材の新
しい硬度評価手段として、超軽荷重による動的硬度試験
法が注目され始めている。硬度の動的試験法とは、圧痕
の大きさと硬度とを1対1に対応させていただけの従来
硬度試験法を発展させ、圧痕が生じる時の変位と荷重の
関係を求めようとするものである。その際、圧痕時の荷
重が小さくなると、当然圧痕が小さくなり、より局所的
な硬度を評価することになる。従つて、硬度標準片の結
晶粒界、介在物、表面加工状態の不均一が従来よりも深
刻に測定結果のバラツキ巾を大きくさせる。超軽荷重の
硬度試験は現在の所は定性的な試験法としての位置づけ
しかない。しかし、その定量化へのニーズが顕在化して
くるにつれ、近い将来、規格化、定量化に進むのは確実
である。それには、試験機の機構上の問題点(精密化、
高感度化等)の解決を計ることに加えて、技術的にその
要求に対応しうる硬度標準片の開発が不可欠である。つ
まり、定量化は、超微小荷重の硬度測定においてその標
準の尺度となりうる超精密硬度標準片の存在によつて始
めて可能となる。現時点では、それにかなう硬度標準片
は得られていない。Apart from the above problem of variation in conventional hardness standard pieces,
The conventional hardness test method has a large load for making an indentation (10 gf to 3000 kgf) and is not suitable as a standard piece for hardness test of thin films and other new materials. To make matters worse, the conventional hardness standard pieces show large variations as the load for making the indentation becomes smaller. As mentioned at the beginning, as a new hardness evaluation method for high-tech materials, the dynamic hardness test method under ultra-light load has begun to attract attention. The dynamic hardness test method is an attempt to develop a conventional hardness test method in which the size and hardness of an indentation are in a one-to-one correspondence with each other to obtain the relationship between displacement and load when an indentation occurs. is there. At that time, if the load at the time of indentation becomes small, the indentation naturally becomes small, and more local hardness is evaluated. Therefore, the unevenness of the crystal grain boundaries, inclusions, and surface processing state of the hardness standard piece causes the variation range of the measurement result to be more serious than before. The ultra-light load hardness test is currently only positioned as a qualitative test method. However, as the need for quantification becomes apparent, it is certain that standardization and quantification will proceed in the near future. To that end, mechanical problems of the testing machine (refining,
It is indispensable to develop a hardness standard piece that can technically meet the requirements in addition to solving the problem (higher sensitivity, etc.). In other words, the quantification is possible only by the existence of the ultra-precision hardness standard piece, which can be the standard measure for the hardness measurement of ultra-small loads. At the present time, a hardness standard piece corresponding to that has not been obtained.
以上のように、2つの局面から従来の硬度標準片に代
る新たな硬度標準片の開発によつてこそ多様な素材のよ
り信頼し得る硬度測定が可能となるのである。As described above, the development of a new hardness standard piece in place of the conventional hardness standard piece from the two aspects enables more reliable hardness measurement of various materials.
発明の目的 上述のような認識の下で、本発明は、 1 超微小硬度測定法の定量化に対応しうる10gf以下の
軽荷重を用いる硬度測定用の硬度標準片を提供するこ
と、及び 2 従来の硬度測定法において硬度標準片の測定バラツ
キの原因を極力排除した硬度標準片を提供すること を目的とする。OBJECT OF THE INVENTION Based on the above recognition, the present invention provides: 1. A hardness standard piece for hardness measurement using a light load of 10 gf or less, which can correspond to the quantification of an ultra-micro hardness measurement method; and (2) An object of the present invention is to provide a hardness standard piece in which the cause of the measurement variation of the hardness standard piece in the conventional hardness measuring method is eliminated as much as possible.
発明の概要 本発明者等は、上記目的を満足しうる硬度標準片とし
て金属の単結晶を使用することを想到した。高純度金属
単結晶は、結晶粒界、介在物、偏析等の測定バラツキの
原因となる不均質性を持たず、一定の結晶方位を具備
し、しかもその表面を硬度標準片として要求されるレベ
ル以上に研磨する技術は確立されているので、正に硬度
標準片としてうつてつけの材料である。SUMMARY OF THE INVENTION The present inventors have conceived to use a metal single crystal as a hardness standard piece capable of satisfying the above object. High-purity metal single crystals do not have inhomogeneities that cause variations in measurement such as grain boundaries, inclusions, and segregation, have a certain crystal orientation, and have the surface at the level required as a hardness standard piece. Since the technique for polishing is established as described above, it is a material that is exactly used as a hardness standard piece.
この知見に基いて、本発明は、硬度標準片の材質が金
属の単結晶であることを特徴とする、10gf以下の軽荷重
を用いる硬度測定用の超精密硬度標準片を提供する。こ
こで、金属とは金属元素及び合金を包括するものとして
使用する。Based on this finding, the present invention provides an ultra-precision hardness standard piece for hardness measurement using a light load of 10 gf or less, characterized in that the material of the hardness standard piece is a metal single crystal. Here, the term "metal" is used to include metal elements and alloys.
実施例の説明 ブリツジマン法等の金属・合金単結晶化技術の進展に
伴い、銅、銅合金(例えばCu−Ni、Cu−Mn等のα固溶域
の広い合金)、モリブデン等の比較的大きな単結晶イン
ゴツトを生成する技術は確立されている。Description of Examples With the progress of metal / alloy single crystallization techniques such as the Britzmann method, copper, copper alloys (for example, alloys having a wide α solid solution region such as Cu-Ni and Cu-Mn), and relatively large amounts of molybdenum, etc. Techniques for producing single crystal ingots have been established.
本発明に従えば、こうした金属単結晶から例えば円板
状の小片が切出され、その表面が研磨される。現在で
は、金属表面研磨技術はきわめて高度に進歩しており、
硬度標準片に従来から要求されていた水準をはるかに超
え、光学ミラーに要求される超鏡面を創出することが出
来るようになつている。硬度標準片に必要な平面度はエ
メリー研磨、バフ研磨等により容易に確立することが出
来る。According to the invention, for example, a disk-shaped small piece is cut out from such a metal single crystal, and the surface thereof is polished. At present, metal surface polishing technology has advanced extremely highly,
It has become possible to create a super-mirror surface required for optical mirrors, far exceeding the level conventionally required for hardness standard pieces. The flatness required for the hardness standard piece can be easily established by emery polishing, buffing, or the like.
更に、表面研磨法としては、表面に加工層を残さない
研磨法として知られる放電加工、電解研磨、化学研磨等
の使用が好適である。通常の切削や機械研磨ではどうし
ても被加工材の表面に塑性変形が生じている層が残存
し、その層は内部歪が高く、一般に硬くなつている。こ
の層の厚さや硬さによつて硬度が変化してしまう。ま
た、この層は熱的に不安定であり、再結晶温度範囲の高
温硬度を測る場合には、標準片に再結晶が生じ、単結晶
が多結晶化するだけにとどまらず、硬度も変化してしま
う。このような高温での硬度標準片には従来の焼入れ組
織を持つ標準片では対応できない。Further, as the surface polishing method, it is preferable to use electric discharge machining, electrolytic polishing, chemical polishing, or the like, which is known as a polishing method that does not leave a processed layer on the surface. By ordinary cutting or mechanical polishing, a layer in which plastic deformation has occurred remains on the surface of the workpiece, and the layer has a high internal strain and is generally hard. The hardness changes depending on the thickness and hardness of this layer. Further, this layer is thermally unstable, and when measuring the high temperature hardness in the recrystallization temperature range, recrystallization occurs in the standard piece and the single crystal is not only polycrystallized, but the hardness also changes. Will end up. A standard piece having a conventional quenching structure cannot deal with such a standard piece having a hardness at a high temperature.
こうして表面研磨された円板等の形態の金属単結晶
は、その表面に不均質か存在しないのできわめて高精度
の硬度標準片として使用される。硬度標準片には、何段
階かにわたつての硬度バリエーシヨンが必要であるが、
これは金属の種類、合金化更には方位差によつて小硬度
から大硬度までニーズに応じた硬度差を有する一群の硬
度標準片を用意することが出来る。The metal single crystal in the form of a disk or the like whose surface has been polished in this way is used as an extremely high-precision hardness standard piece because it is non-uniform or does not exist on the surface. The hardness standard piece requires hardness variability over several stages,
It is possible to prepare a group of hardness standard pieces having a hardness difference from a small hardness to a large hardness according to needs depending on the kind of metal, alloying and orientation difference.
次に、市販硬度標準片と本発明硬度標準片との精度比
較結果を示す。比較参考のために荷重200gfの場合の結
果をも示す。Next, the accuracy comparison results of the commercially available hardness standard piece and the hardness standard piece of the present invention will be shown. The results when the load is 200 gf are also shown for comparative reference.
注2:硬度測定 試験機 明石製作所MVK 荷重保持時間 15秒 注3:本発明硬度標準片は、ブリツジマン法で作製した単
結晶インゴツト(φ50×120mm)から、小寸法(15×15
×10mm程度)に小片を切り出し、研磨用樹脂にうめ込ん
だ後、エメリー研磨、バフ研磨によつて、表面を研磨し
たものである。 Note 2: Hardness measuring tester Akashi Seisakusho MVK, load holding time 15 seconds Note 3: The hardness standard piece of the present invention is a small crystal (15 × 15 mm) from a single crystal ingot (φ50 × 120 mm) manufactured by the Britzmann method.
A small piece is cut out into about 10 mm and embedded in a polishing resin, and then the surface is polished by emery polishing and buffing.
更に、もつと軽荷重での動向を見るために、荷重1gf
として市販品と本発明品とを比較するため、上記と同様
に比較試験した: これらの結果から次の評価が得られる。Furthermore, in order to see the trend under light load, load 1 gf
In order to compare the commercial product with the product of the present invention, a comparative test was conducted in the same manner as above: The following evaluation is obtained from these results.
1.金属単結晶硬度標準片は荷重依存性が小さい。単結晶
の場合、荷重1〜10〜200gfにおいて変動率は、3.33%
〜3.73%〜4.27%、特に1〜10gfでは、3.33%〜3.73%
の狭い巾しかないのに対して、市販品は1〜10〜200gf
において11.6%〜5.43〜1.38%、特に1〜10gfでは11.6
%〜5.43%の広い巾をとりしかも絶対量も大きい。1. Metal single crystal hardness standard piece has little load dependence. In the case of a single crystal, the fluctuation rate is 3.33% at a load of 1 to 10 to 200 gf
~ 3.73% ~ 4.27%, especially 1 ~ 10gf, 3.33% ~ 3.73%
There is only a narrow width of 1 to 10 to 200 gf for commercial products
11.6% to 5.43 to 1.38%, especially 1 to 10 gf is 11.6%
It has a wide width of% -5.43% and a large absolute amount.
2.金属単結晶硬度標準片は荷重が小さくなる程、変動率
(及び偏差)の絶対量が減少するのに対し、市販のもの
は10gfより下の軽荷重で変動率(偏差)が逆に著しく増
大する。即ち、本発明のものは軽荷重に適性を示すが、
市販品は軽荷重では信頼性に乏しい。PVD、CVD薄膜のよ
うな大きな荷重の使えないものでは、市販品は使用不可
ということになる。2.The smaller the load is, the smaller the absolute value of the fluctuation rate (and deviation) of the metal single crystal hardness standard specimen becomes, whereas the commercially available products have the opposite fluctuation rate (deviation) at light loads below 10 gf. Increase significantly. That is, although those of the present invention are suitable for light loads,
Commercial products have poor reliability at light loads. With PVD and CVD thin films that cannot be used with large loads, commercial products cannot be used.
以上、説明した通り、本発明は、金属単結晶を硬度標
準片という用途に用いるというユニークな着想に基くも
のである。本発明により、従来からの金属等の材料及び
新素材の材質の適確な評価が可能となつたものである。As described above, the present invention is based on the unique idea of using a metal single crystal as a hardness standard piece. According to the present invention, it is possible to accurately evaluate materials such as conventional metals and new materials.
発明の効果 1.超微小動的硬度測定に適した10gf以下の軽荷重を用い
る硬度測定用の硬度標準片を提供し、その定量化を大き
く一歩進める。Effects of the Invention 1. Providing a hardness standard piece for hardness measurement using a light load of 10 gf or less, which is suitable for ultra-fine dynamic hardness measurement, and makes a great step forward in its quantification.
2.従来の硬度標準片よりもバラツキの少い硬度が得られ
るので、少い測定回数で高い信頼度の硬度検定を可とす
る。2. Hardness with less variation than the conventional hardness standard piece can be obtained, so it is possible to carry out highly reliable hardness verification with a small number of measurements.
3.高温標準片として使用できる。3. Can be used as a high temperature standard piece.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭52−30457(JP,B2) 11th World Conf Non destr Test 1985,Vol.13 (1985)KELLEY DR,JOHNS ON CE,LASHMORE DS(N ational Bureau of s tandards,MD,USA),電鋳 で作られる微小硬度標準の製作と検定, P.2022−2029 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Publication No. 52-30457 (JP, B2) 11th World Conf Non dest Test 1985, Vol. 13 (1985) KELLEY DR, JOHNS ON CE, LASHMORE DS (National Bureau of Standards, MD, USA), Production and verification of microhardness standard made by electroforming, P. 2022-2029
Claims (1)
とを特徴とする、10gf以下の軽荷重を用いる硬度測定用
の超精密硬度標準片。1. An ultraprecision hardness standard piece for hardness measurement using a light load of 10 gf or less, characterized in that the material of the hardness standard piece is a metal single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62042882A JPH0820351B2 (en) | 1987-02-27 | 1987-02-27 | Ultra-precision hardness standard piece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62042882A JPH0820351B2 (en) | 1987-02-27 | 1987-02-27 | Ultra-precision hardness standard piece |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63210641A JPS63210641A (en) | 1988-09-01 |
JPH0820351B2 true JPH0820351B2 (en) | 1996-03-04 |
Family
ID=12648409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62042882A Expired - Lifetime JPH0820351B2 (en) | 1987-02-27 | 1987-02-27 | Ultra-precision hardness standard piece |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0820351B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040088448A (en) * | 2004-09-21 | 2004-10-16 | 정세영 | manufacturing method for single crystal wire |
JP4942579B2 (en) * | 2007-08-13 | 2012-05-30 | 株式会社ミツトヨ | Test management method and indentation tester in indentation tester |
KR100949316B1 (en) | 2007-11-13 | 2010-03-23 | 한국표준과학연구원 | Standard Indentation Sample for Calibration of Vickers Hardness Indentation Measuring Instrument |
KR100949315B1 (en) | 2007-11-13 | 2010-03-23 | 한국표준과학연구원 | Standard Indentation Sample for Calibration of Brinell Hardness Indentation Measuring Instrument |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5230457A (en) * | 1975-09-03 | 1977-03-08 | Hitachi Ltd | Electromagnetic-wave screening structure of electronic measuring instr ument |
-
1987
- 1987-02-27 JP JP62042882A patent/JPH0820351B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
11thWorldConfNondestrTest1985,Vol.13(1985)KELLEYDR,JOHNSONCE,LASHMOREDS(NationalBureauofstandards,MD,USA),電鋳で作られる微小硬度標準の製作と検定,P.2022−2029 |
Also Published As
Publication number | Publication date |
---|---|
JPS63210641A (en) | 1988-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Becker | The effect of porosity distribution on ductile failure | |
Beardmore et al. | Deformation and fracture of tungsten single crystals | |
Wu et al. | A study on the wire drawing of TiNi shape memory alloys | |
Zong et al. | Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment | |
Scott et al. | Surface re-orientation caused on metals by abrasion—its nature, origin and relation to friction and wear | |
Gehman | Bonding wire microelectronic interconnections | |
JPH0820351B2 (en) | Ultra-precision hardness standard piece | |
Yuan et al. | Preparation and characterization of ultra-thin dicing blades with different bonding properties | |
Reid et al. | The effect of surface hardness on friction | |
KR20190116357A (en) | Cu-Ni-Si copper alloy bath | |
Tsai et al. | Identification of mechanical properties of intermetallic compounds on lead free solder | |
Carvalho et al. | Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions | |
US4381666A (en) | Method for the nondestructive testing of cellular metallics | |
Oikawa et al. | Activation parameters of high-temperature creep in nickel, and in Ni-9.5 at% Cr and Ni-10.3 at% W alloys | |
Blau | A study of the interrelationships among wear, friction and microstructure in the unlubricated sliding of copper and several single-phase binary copper alloys | |
Smith et al. | Through‐Thickness Compression Testing of Commercially Pure (Grade II) Titanium Thin Sheet to Large Strains | |
Elsner et al. | Modeling and microstructure analysis of fatigue initiation life extension by reductions in microporosity | |
WO2004107335A1 (en) | Stamper substrate and process for producing the same | |
Briffod et al. | Effect of Microstructure on the Tensile and Fatigue Behavior of an Accumulative Roll Bonded Cu/Nb Laminate Material | |
Adineh | Machining Characteristics of the New Cu-35Zn-1.89 Al Leadless Free-cutting Brass by Elliptical Ultrasonic Vibration-Assisted Turning | |
Leach et al. | Energy relations in cold working an alloy at 78 K and at room temperature | |
JPH07197170A (en) | Aluminum alloy sheet for thin disk and its production | |
Hoffmann et al. | Surface states by grinding thin strips of electrochemically deposited nanocrystalline nickel-iron | |
JP2007015079A (en) | Tin polishing plate | |
Piotrowski et al. | Invited paper Metallography of the precious metals |