JPH0820336B2 - Refractive index distribution measuring method and measuring apparatus therefor - Google Patents

Refractive index distribution measuring method and measuring apparatus therefor

Info

Publication number
JPH0820336B2
JPH0820336B2 JP62159601A JP15960187A JPH0820336B2 JP H0820336 B2 JPH0820336 B2 JP H0820336B2 JP 62159601 A JP62159601 A JP 62159601A JP 15960187 A JP15960187 A JP 15960187A JP H0820336 B2 JPH0820336 B2 JP H0820336B2
Authority
JP
Japan
Prior art keywords
refractive index
prism
medium
light
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159601A
Other languages
Japanese (ja)
Other versions
JPS646735A (en
Inventor
秀己 佐藤
康夫 日良
貴子 福島
和民 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62159601A priority Critical patent/JPH0820336B2/en
Publication of JPS646735A publication Critical patent/JPS646735A/en
Publication of JPH0820336B2 publication Critical patent/JPH0820336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は屈折率分布の測定方法及びその測定装置に係
り、特に非破壊で簡便かつ高精度な測定方法に関する。
The present invention relates to a method for measuring a refractive index distribution and a measuring apparatus therefor, and more particularly to a nondestructive, simple and highly accurate measuring method.

〔従来の技術〕[Conventional technology]

従来、屈折率分布の測定方法としては、干渉顕微鏡を
用いた方法が一般に広く知られている。しかし、本方法
では測定媒質を薄片化し、しかも光学研磨する必要があ
る。したがって、試料作製に多大な時間を必要とする。
しかも、破壊検査であるため、試料の再生ができない欠
点があった。その他、薄膜の光学定数測定方法として、
偏光解析法、反射分光法などが知られている。しかし、
いずれの方法も、屈折率分布の測定方法として適用でき
ない欠点があった。
Conventionally, a method using an interference microscope is widely known as a method for measuring the refractive index distribution. However, in this method, it is necessary to thin the measurement medium and further optically polish it. Therefore, it takes a lot of time to prepare the sample.
Moreover, since it is a destructive inspection, there is a drawback that the sample cannot be regenerated. In addition, as a method for measuring the optical constants of thin films,
Ellipsometry and reflection spectroscopy are known. But,
None of the methods has a drawback that it cannot be applied as a method for measuring the refractive index distribution.

一方、近年半導体レーザに関する研究の進展に伴な
い、一枚の基板上に上記レーザ等の受発光素子や各種導
波路形光学素子を集積した光集積回路の研究が活発に行
なわれている。この光集積回路の最も基本的な構成要素
の一つとし光導波路がある。光導波路の実効屈折率の測
定方法としては、アプライドオプティクス,10,11(1971
年)第2395頁から第2413頁(Applied Optics Vol10、No
11(1971)PP2395−2413)等に論じられているようにプ
リズムカップラ法が一般に広く知られている。
On the other hand, with the recent progress of research on semiconductor lasers, research on an optical integrated circuit in which a light emitting / receiving element such as the above laser and various waveguide type optical elements are integrated on one substrate has been actively conducted. An optical waveguide is one of the most basic components of this optical integrated circuit. As a method of measuring the effective refractive index of an optical waveguide, Applied Optics, 10, 11 (1971
2395 to 2413 (Applied Optics Vol10, No.
11 (1971) PP2395-2413) and the like, the prism coupler method is generally widely known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、光導波路上に屈折率npのプリズムを
空気層をはさんで密着させる。そして、プリズム底面に
所定の角度θで光ビームを入射させ光導波路との位相整
合をとる事により導波光を励振し、第2のプリズムによ
り導波光を外部へ取り出す。この場合、出射光の角度が
光導波路の導波モードにより異なる原理を用いて、光導
波路の実効屈折率を算出する。しかし、本法において
も、光導波路の屈折率が連続的に変化している場合、適
用できない欠点があった。
In the above-mentioned conventional technique, a prism having a refractive index of np is brought into close contact with an optical layer on an optical waveguide. Then, a light beam is made incident on the bottom surface of the prism at a predetermined angle θ to achieve phase matching with the optical waveguide to excite the guided light, and the guided light is extracted to the outside by the second prism. In this case, the effective refractive index of the optical waveguide is calculated using the principle that the angle of the emitted light differs depending on the waveguide mode of the optical waveguide. However, this method also has a drawback that it cannot be applied when the refractive index of the optical waveguide continuously changes.

本発明の目的は、上記した従来技術の欠点をなくし、
非破壊で簡便に、しかも高精度な屈折率分布測定方法及
びその測定装置を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a non-destructive, simple and highly accurate refractive index distribution measuring method and a measuring apparatus therefor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、屈折率が深さ方向に変化している媒質の
屈折率分布測定方法において、プリズムを媒質に密着
し、該プリズムにレーザ光を照射し、該レーザ光の入射
角を変化させ、該プリズム底面からの反射光強度を測定
し、反射光強度が最小になる該レーザ光の入射角度少な
くとも2点測定し、該レーザ光の入射角度より媒質の実
効屈折率を算出し、該実効屈折率の算出値より逆WKB法
により媒質の屈折率変化を求める。
The above-mentioned object is a refractive index distribution measuring method of a medium in which the refractive index is changing in the depth direction, a prism is brought into close contact with the medium, the prism is irradiated with laser light, and the incident angle of the laser light is changed, The reflected light intensity from the bottom surface of the prism is measured, at least two incident angles of the laser light that minimize the reflected light intensity are measured, the effective refractive index of the medium is calculated from the incident angle of the laser light, and the effective refraction is calculated. The refractive index change of the medium is obtained from the calculated value of the index by the inverse WKB method.

また屈折率が深さ方向に変化している媒質に密着させ
るプリズムと、該プリズムにレーザ光を照射させるため
の光源と、該プリズム底面からの反射光強度を測定する
ための受光素子と、該プリズム、媒質及び該受光素子の
保持・回転テーブルと、逆WKB法等を用いて屈折率が深
さ方向に連続的に変化した光導波路の屈折率分布を計算
する計算機制御モジュールとを備えた屈折率分布測定装
置により達成できる。
Further, a prism that is in close contact with a medium whose refractive index changes in the depth direction, a light source for irradiating the prism with laser light, a light receiving element for measuring the intensity of reflected light from the bottom surface of the prism, Refraction provided with a prism, a medium and a holding / rotating table for the light receiving element, and a computer control module for calculating the refractive index distribution of an optical waveguide whose refractive index continuously changes in the depth direction by using the inverse WKB method or the like. This can be achieved by a rate distribution measuring device.

〔作用〕[Action]

媒質の深さ方向の屈折率が連続的に変化している場
合、これを伝搬する光ビームは円弧の軌跡を描き、伝搬
モードにより異なった軌跡を描く。したがって、受光素
子と一体化したプリズムへの光ビーム入射角を変えるこ
とにより各伝搬モードを個別に励振し、プリズム底面か
らの反射光強度が最小になる入射角θiを読みとり、伝
搬モードに対応した実効屈折率Nを(1)式で算出す
る。
When the refractive index in the depth direction of the medium changes continuously, the light beam propagating through the medium draws an arc locus, and a different locus depending on the propagation mode. Therefore, each propagation mode is individually excited by changing the incident angle of the light beam to the prism integrated with the light receiving element, and the incident angle θi at which the intensity of reflected light from the bottom of the prism is minimized is read to correspond to the propagation mode. The effective refractive index N is calculated by the equation (1).

ここで、α:プリズム頂角、np:プリズムの屈折率で
ある。
Here, α is the prism apex angle, and np is the refractive index of the prism.

次に、屈折率分布がn(y)の二次元光導波路におけ
るTEモードの波動方程式は、マックスウェルの方程式か
ら、 と表わされる。
Next, the wave equation of the TE mode in the two-dimensional optical waveguide whose refractive index distribution is n (y) is Is represented.

ここで、β:z方向の伝搬定数、μ0:真空中の透磁率、
ω:光の角周波数、h0:波数(波長/2π)である。
Here, β: propagation constant in the z direction, μ0: magnetic permeability in vacuum,
ω: angular frequency of light, h0: wave number (wavelength / 2π).

上記した等価屈折率Nを用いると(3)式は、 となる。n(y)が既知のとき、(6)式を満たす等価
屈折率を求めることは個有値問題となる。ここで、WKB
の近似法によれば、以下の個有値方程式が得られる。
Using the above-mentioned equivalent refractive index N, equation (3) becomes Becomes When n (y) is known, finding an equivalent refractive index that satisfies the expression (6) is a unique value problem. Where WKB
According to the approximation method of, the following private equation is obtained.

ここでytm:m次モードの転移点、n0:表面屈折率であ
る。
Where ytm is the transition point of the m-th mode, and n0 is the surface refractive index.

次に、逆WKB法は、上述した各伝搬モードの実効屈折
率N1,N2……Nmから、それぞれの転移点yt1,yt2,……
ytmを求め、点列(Nt1,yt1),(Ntm,ytm)を得る方法
である。この点列を結べば屈折率分布を求めることがで
きる。
Next, inverse WKB method, the effective refractive index N 1, N 2 ...... Nm of each propagation mode described above, each of the transition points yt 1, yt 2, ......
This is a method of obtaining ytm and obtaining point sequences (Nt 1 , yt 1 ) and (Ntm, ytm). The refractive index distribution can be obtained by connecting these point sequences.

〔実施例〕〔Example〕

以下、本発明の実施例を詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.

第1図は、本発明の一実施例を示し、基板1にLiNbO3
結晶を用いた。基板1の深さ方向に屈折率が連続的に変
化している光導波路2は、金属Tiの熱拡散法により作成
した。作成条件は基板1上にTiを200Aスパッタリング法
により堆積させた後、1000℃、O2雰囲気中で4時間熱拡
散した。次に、光導波路2上に、プリズム3を空気層を
介して密着させる。ここで、プリズム3はTiO2(ルチ
ル)製を用い、頂角45度、プリズム屈折率np=2.854を
用いた。プリズム3への光ビーム入射方法は、光源4に
波長0.633μmのHe−Neレーザを用い、入射角の調整は
パルスモータ(図示せず)で駆動される回転テーブル5
で行った。第2図は、プリズム3の支持方法を示す。プ
リズム3は、ホルダ6に固定し、押しネジ7により基板
1との密着度の調整する。
FIG. 1 shows an embodiment of the present invention, in which LiNbO 3 is applied to the substrate 1.
Crystals were used. The optical waveguide 2 whose refractive index continuously changes in the depth direction of the substrate 1 was formed by the thermal diffusion method of metallic Ti. The preparation conditions were such that Ti was deposited on the substrate 1 by the 200 A sputtering method, and then thermal diffusion was performed at 1000 ° C. in an O 2 atmosphere for 4 hours. Next, the prism 3 is brought into close contact with the optical waveguide 2 via an air layer. Here, the prism 3 is made of TiO 2 (rutile), the apex angle is 45 degrees, and the prism refractive index np = 2.854. The light beam is incident on the prism 3 by using a He-Ne laser having a wavelength of 0.633 μm as the light source 4, and the incident angle is adjusted by a rotary table 5 driven by a pulse motor (not shown).
I went in. FIG. 2 shows a method of supporting the prism 3. The prism 3 is fixed to the holder 6, and the degree of contact with the substrate 1 is adjusted by the push screw 7.

第3図は、光ビームをプリズム3に種々の角度で光ビ
ームを入射させ、光導波路2を伝搬する光線及びプリズ
ム底面で反射する光線の軌跡を示す。ここで、前述した
ように、光導波路2を伝搬する光線は光ビームの入射角
度に対して離散的な値をとる。したがって、光ビームの
入射角度とプリズム3の底面で反射する光強度を、プリ
ズム3と保持具9により一体化した受光素子8で連続的
に測定する。第4図に測定データの一例を示す。横軸は
光ビームの入射角θであり、縦軸は受光素子による相対
輝度を示す。同図において、相対輝度が最小値を示す入
射角度が各伝搬モードの実効屈折率Nに対応し、(1)
式により値を算出する。次に、上述した伝搬モードに対
応した実効屈折率の測定データを用いて、(7)式によ
り、実効屈折率と転移点との点列を算出する。第5図に
屈折率分布の計算結果の一例を示す。屈折率分布をガウ
ス分布と仮定した理論曲線(実線)と計算値が良く対応
し本法の有効性を確認することができた。なお、繰返し
測定による再現性についても、3α=0.001と良好であ
った。
FIG. 3 shows trajectories of light rays which are incident on the prism 3 at various angles and which propagate through the optical waveguide 2 and are reflected by the bottom surface of the prism. Here, as described above, the light beam propagating through the optical waveguide 2 has a discrete value with respect to the incident angle of the light beam. Therefore, the incident angle of the light beam and the light intensity reflected by the bottom surface of the prism 3 are continuously measured by the light receiving element 8 integrated with the prism 3 and the holder 9. FIG. 4 shows an example of measurement data. The horizontal axis represents the incident angle θ of the light beam, and the vertical axis represents the relative brightness of the light receiving element. In the figure, the incident angle at which the relative luminance shows the minimum value corresponds to the effective refractive index N of each propagation mode, and (1)
The value is calculated by the formula. Next, using the measurement data of the effective refractive index corresponding to the above-mentioned propagation mode, the point sequence of the effective refractive index and the transition point is calculated by the equation (7). FIG. 5 shows an example of the calculation result of the refractive index distribution. The theoretical curve (solid line) assuming that the refractive index distribution is Gaussian distribution corresponded well with the calculated values, and the effectiveness of this method could be confirmed. The reproducibility by repeated measurement was also good at 3α = 0.001.

なお、上記した回転テーブル5の駆動制御、ならびに
実効屈折率N、屈折率分布の計算はマイクロコンピュー
タからなる計算機制御モジュール(図示せず)にて行う
ことができる。
The drive control of the rotary table 5 and the calculation of the effective refractive index N and the refractive index distribution can be performed by a computer control module (not shown) including a microcomputer.

〔発明の効果〕〔The invention's effect〕

以上、本発明によれば、従来測定ができなかった屈折
率分布の測定が、非破壊で簡便に、しかも高精度に測定
できる効果がある。
As described above, according to the present invention, there is an effect that the measurement of the refractive index distribution, which could not be conventionally measured, can be performed nondestructively, easily and highly accurately.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る屈折率分布測定装置の一実施例を
示す斜視図、第2図はプリズム保持部を示す正面図、第
3図は本発明によるプリズムを介した媒質への光線軌跡
を示す正面図、第4図は本発明によるプリズム入射角と
受光素子による相対輝度の関係を示す特性の測定例を示
す図、第5図は本発明による屈折率分布特性の測定例を
示す図である。 1……基板、2……光導波路、3……プリズム、4……
光源、5……回転テーブル。
FIG. 1 is a perspective view showing an embodiment of a refractive index distribution measuring apparatus according to the present invention, FIG. 2 is a front view showing a prism holding portion, and FIG. 3 is a ray trace to a medium through a prism according to the present invention. 4 is a front view showing a measurement example of a characteristic showing a relationship between a prism incident angle and a relative luminance by a light receiving element according to the present invention, and FIG. Is. 1 ... Substrate, 2 ... Optical waveguide, 3 ... Prism, 4 ...
Light source, 5 ... Rotary table.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川本 和民 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (56)参考文献 特開 昭56−43529(JP,A) 特開 昭62−12840(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutomi Kawamoto 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Inside the Institute of Industrial Science, Hitachi, Ltd. (56) Reference JP-A-56-43529 (JP, A) Kai 62-12840 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】屈折率が深さ方向に変化している媒質の屈
折率分布測定方法において、プリズムを媒質に密着し、 該プリズムにレーザ光を照射し、 該レーザ光の入射角を変化させ、 該プリズム底面からの反射光強度を測定し、 反射光強度が最小になる該レーザ光の入射角度少なくと
も2点測定し、 該レーザ光の入射角度より媒質の実効屈折率を算出し、 該実効屈折率の算出値より逆WKB法により媒質の屈折率
変化を求めることを特徴とする屈折率分布の測定方法。
1. A method of measuring a refractive index distribution of a medium in which the refractive index changes in the depth direction, in which a prism is brought into close contact with the medium, the prism is irradiated with laser light, and the incident angle of the laser light is changed. The intensity of reflected light from the bottom surface of the prism is measured, the incident angle of the laser light at which the intensity of reflected light is minimized is measured at least two points, and the effective refractive index of the medium is calculated from the incident angle of the laser light. A method for measuring a refractive index distribution, characterized in that a change in refractive index of a medium is obtained by an inverse WKB method from a calculated value of a refractive index.
【請求項2】屈折率が深さ方向に変化している媒質に密
着させるプリズムと、 該プリズムにレーザ光を照射させるための光源と、 該プリズム底面からの反射光強度を測定するための受光
素子と、 該プリズム、媒質及び該受光素子の保持・回転テーブル
と、 逆WKB法等を用いて屈折率が深さ方向に連続的に変化し
た光導波路の屈折率分布を計算する計算機制御モジュー
ルと、 を備えたことを特徴とする屈折率分布測定装置。
2. A prism in close contact with a medium whose refractive index changes in the depth direction, a light source for irradiating the prism with laser light, and a light receiving for measuring the intensity of reflected light from the bottom surface of the prism. An element, a holding / rotating table for the prism, the medium, and the light receiving element, and a computer control module for calculating the refractive index distribution of the optical waveguide whose refractive index continuously changes in the depth direction using the inverse WKB method or the like. A refractive index distribution measuring device comprising:
JP62159601A 1987-06-29 1987-06-29 Refractive index distribution measuring method and measuring apparatus therefor Expired - Lifetime JPH0820336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62159601A JPH0820336B2 (en) 1987-06-29 1987-06-29 Refractive index distribution measuring method and measuring apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159601A JPH0820336B2 (en) 1987-06-29 1987-06-29 Refractive index distribution measuring method and measuring apparatus therefor

Publications (2)

Publication Number Publication Date
JPS646735A JPS646735A (en) 1989-01-11
JPH0820336B2 true JPH0820336B2 (en) 1996-03-04

Family

ID=15697266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159601A Expired - Lifetime JPH0820336B2 (en) 1987-06-29 1987-06-29 Refractive index distribution measuring method and measuring apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0820336B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244106A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Method for measuring optical constant of thin film and optical integrated circuit or semiconductor element produced by using this method
JP4657775B2 (en) * 2005-03-28 2011-03-23 独立行政法人理化学研究所 Method and apparatus for measuring photonic band structure of photonic crystal waveguide
CN103884490B (en) * 2014-03-05 2016-09-14 内蒙古科技大学 The method and apparatus measuring refraction of biprism rate based on optical lever

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643529A (en) * 1979-09-18 1981-04-22 Nec Corp Measuring method of minute refractive index difference between optical waveguide line and its substrate
JPS6212840A (en) * 1985-07-10 1987-01-21 Morioka Shoji Kk Method and instrument for measuring concentration of liquid to be examined

Also Published As

Publication number Publication date
JPS646735A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
JPH02244106A (en) Method for measuring optical constant of thin film and optical integrated circuit or semiconductor element produced by using this method
JP2802825B2 (en) Semiconductor wafer electrical measurement device
EP0023577B1 (en) Surface stress measurement
US6348967B1 (en) Method and device for measuring the thickness of opaque and transparent films
Chen et al. Measurement of third order nonlinear susceptibilities by surface plasmons
Swalen et al. Spectra of organic molecules in thin films
EP0231264B1 (en) Method and apparatus for nondestructively determining the characteristics of a multilayer thin film structure
JPH09257814A (en) Optical waveguide probe and optical system
JPH0348106A (en) Method of inspecting surface structure
JPH0820336B2 (en) Refractive index distribution measuring method and measuring apparatus therefor
JP2724025B2 (en) Measurement method of optical constant of thin film
JP2906924B2 (en) Wafer surface roughness measurement method
Hase et al. New method for determining the nonlinear optical coefficients of thin films
US20050117165A1 (en) Semiconductor etching process control
Cheng et al. Losses in tantalum pentoxide waveguides
JP2003042722A (en) Film-thickness measuring method
JP2890588B2 (en) Method of measuring film thickness
JP2851935B2 (en) Collinear optical deflector, method of manufacturing the same, optical deflector, optical integrated head, and optical information recording / reproducing device
Kushibiki et al. Material characterization by acoustic line-focus beam
JP2001284294A (en) Laser beam stimulated etching processing device, wherein near field optical probe is used, and processing method thereof
Dutta et al. Use of laser annealing to achieve low loss in Corning 7059 glass, ZnO, Si3N4, Nb205, and Ta205 optical thin-film waveguides
JPS60202940A (en) Method of measuring depth of etching
Petrov et al. Phase measurements of surface electromagnetic waves on silver with excitation through the substrate
SU1657946A1 (en) Method for control of process of ion treatment
JPH11281658A (en) Optical probe and its manufacture