JPH0820317B2 - Stress measuring method and device - Google Patents

Stress measuring method and device

Info

Publication number
JPH0820317B2
JPH0820317B2 JP63295947A JP29594788A JPH0820317B2 JP H0820317 B2 JPH0820317 B2 JP H0820317B2 JP 63295947 A JP63295947 A JP 63295947A JP 29594788 A JP29594788 A JP 29594788A JP H0820317 B2 JPH0820317 B2 JP H0820317B2
Authority
JP
Japan
Prior art keywords
stress
laser light
objective lens
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63295947A
Other languages
Japanese (ja)
Other versions
JPH02143131A (en
Inventor
寛 坂田
俊雄 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63295947A priority Critical patent/JPH0820317B2/en
Publication of JPH02143131A publication Critical patent/JPH02143131A/en
Publication of JPH0820317B2 publication Critical patent/JPH0820317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微小部の応力測定方法及び装置に係り、特
に、被測定試料がLSI素子のように極微小で、その応力
測定が困難な場合に好適な応力測定方法及び装置に関す
る。
The present invention relates to a method and an apparatus for measuring stress on a minute portion, and particularly to a case where a sample to be measured is extremely minute like an LSI element and the stress measurement is difficult. The present invention relates to a suitable stress measuring method and apparatus.

〔従来の技術〕[Conventional technology]

従来の微小部の応力測定方法については、アプライド
フイジツクス レターズ,第40巻,第10号(1982号)
第895頁から第898頁(Appl.Phys.Lett.,Vol.40,No.10
(1982),pp895−898)においてラマン分光法による応
力測定方法及び装置に関する内容が論じられている。
For the conventional stress measurement method for minute parts, see Applied Physics Letters, Vol. 40, No. 10 (1982).
Pages 895 to 898 (Appl.Phys.Lett., Vol.40, No.10
(1982), pp895-898), the content of the method and apparatus for stress measurement by Raman spectroscopy is discussed.

この従来技術では、以下のようにして応力測定を行
う。被測定試料に強い単色光線(この装置では、Arイオ
ンレーザ又はKrイオンレーザ等を使用)を照射すると、
その試料の分子振動に起因して入射光が周波数シフト
し、入射光と周波数が異なるラマン散乱光が発生する。
その周波数シフトしたラマン散乱光強度を測定したもの
をラマンスペクトルといい、このラマンスペクトルがピ
ークを示す周波数位置から定性分析ができ、また、散乱
光強度から定量分析ができる。応力が負荷されるとラマ
ンスペクトルがピークを示す周波数位置がシフトし、こ
のシフト量を検出することにより応力の定量的評価を行
う。
In this conventional technique, stress measurement is performed as follows. When the sample to be measured is irradiated with a strong monochromatic light beam (in this device, Ar ion laser or Kr ion laser is used),
The incident light is frequency-shifted due to the molecular vibration of the sample, and Raman scattered light having a frequency different from that of the incident light is generated.
What measured the frequency-shifted Raman scattered light intensity is called a Raman spectrum, and qualitative analysis can be performed from the frequency position where this Raman spectrum shows a peak, and quantitative analysis can be performed from the scattered light intensity. When stress is applied, the frequency position where the Raman spectrum shows a peak shifts, and the amount of this shift is detected to quantitatively evaluate the stress.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記の従来の応力測定方法及び装置は、光源としてAr
イオンレーザ(波長0.488μm又は0.5145μm)やKrイ
オンレーザ(波長0.6471μm)等を用いているので、例
えば、LSI素子のように、該レーザのスポツトサイズ
(0.8〜1μm)よりも小さい領域内で、応力値が急変
する試料や応力分布を持つ試料の場合は、測定の精度が
悪くなる欠点があつた。
The above conventional stress measuring method and apparatus use Ar as a light source.
Since an ion laser (wavelength 0.488 μm or 0.5145 μm) or a Kr ion laser (wavelength 0.6471 μm) is used, for example, in an area smaller than the spot size (0.8 to 1 μm) of the laser, such as an LSI device. However, in the case of a sample in which the stress value changes abruptly or a sample having a stress distribution, there is a drawback that the measurement accuracy deteriorates.

本発明の目的は、微小部(サブミクロンオーダー)の
応力や応力分布を精度良く求める応力測定方法及び装置
を提供することにある。
An object of the present invention is to provide a stress measuring method and apparatus for accurately obtaining stress and stress distribution in a minute portion (submicron order).

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、ラマン分光法による応力測定方法におい
て、紫外レーザを用い、スポツト径を紫外レーザ光の波
長の1〜2倍の範囲にすることにより、達成される。
The above object is achieved by using a UV laser in the stress measurement method by Raman spectroscopy and setting the spot diameter to a range of 1 to 2 times the wavelength of the UV laser light.

また、上記目的は、レーザ光源とレンズ等の光学系と
分光計と検出器とからなる装置において、紫外レーザを
発振するレーザ光源と、紫外光を透過するレンズ等の光
学系と紫外光を透過する入射窓を持つ検出器とを設け、
対物レンズにより絞られるスポット径を紫外レーザ光の
波長の1〜2倍の範囲にするように光学系を構成するこ
とにより、達成される。さらに、真空中において応力測
定を行なうことにより達成される。
Further, the above-mentioned object is a device including an optical system such as a laser light source and a lens, a spectrometer and a detector, and a laser light source that oscillates an ultraviolet laser, and an optical system such as a lens that transmits ultraviolet light and the ultraviolet light is transmitted. And a detector with an entrance window to
This is achieved by configuring the optical system so that the spot diameter narrowed by the objective lens is in the range of 1 to 2 times the wavelength of the ultraviolet laser light. Furthermore, it is achieved by performing stress measurements in vacuum.

〔作用〕[Action]

上記のように、紫外レーザを用い、該スポツト径を紫
外レーザ光の波長の1〜2倍の範囲にすることにより、
0.1μmの領域の応力値を検出することが可能となり、
従来困難であつた微小部の応力又は応力分布の測定が可
能となる。
As described above, by using an ultraviolet laser and setting the spot diameter in the range of 1 to 2 times the wavelength of the ultraviolet laser light,
It becomes possible to detect the stress value in the area of 0.1 μm,
It is possible to measure the stress or stress distribution in a minute portion, which was difficult in the past.

また、上記のように、紫外レーザを発振するレーザ光
源と、紫外光を透過するレンズ等の光学系と紫外光と透
過する入射窓を持つ検出器とを設けたことにより、微小
部(サブミクロンオーダー)の応力又は応力分布を精度
良く把持することができるので、高精度の測定を行うこ
とが可能となる。
Further, as described above, by providing a laser light source that oscillates an ultraviolet laser, an optical system such as a lens that transmits ultraviolet light, and a detector that has an entrance window that transmits ultraviolet light, a minute portion (submicron) Since the (order) stress or the stress distribution can be grasped with high accuracy, it is possible to perform highly accurate measurement.

さらに、真空中で応力測定を行うことにより、紫外レ
ーザ光強度の減衰を小さくすることができ、高精度の応
力測定が可能となる。
Further, by performing the stress measurement in vacuum, it is possible to reduce the attenuation of the intensity of the ultraviolet laser light, and it is possible to perform the stress measurement with high accuracy.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本発明の基本的構成を第1図に示す。この図におい
て、レーザ光源1から出た紫外レーザ光2は対物レンズ
3により絞られ試料4に照射される。試料4の分子振動
に起因して発生したラマン散乱光を対物レンズ3を通
り、ハーフミラー5により分光計6に導かれ検出部7で
検出される。得られたラマンスペクトルはコンピユータ
8に読み込まれる。試料4は、微動ステージ9上に置か
れており、このステージ9を移動させることで、レーザ
光2を試料4上で走査し、各走査位置におけるラマンス
ペクトルと微動ステージ9に設けた位置センサ(図示せ
ず)からの位置情報をコンピユータ8に読み込ませる。
コンピユータ8により各走査点での周波数シフト値から
応力値を求め、画像処理装置10によりその応力分布状態
を表示する。
The basic configuration of the present invention is shown in FIG. In this figure, the ultraviolet laser light 2 emitted from the laser light source 1 is focused by the objective lens 3 and irradiated onto the sample 4. Raman scattered light generated due to molecular vibration of the sample 4 passes through the objective lens 3, is guided to the spectrometer 6 by the half mirror 5, and is detected by the detection unit 7. The obtained Raman spectrum is read into the computer 8. The sample 4 is placed on the fine movement stage 9. By moving the stage 9, the laser beam 2 is scanned on the sample 4 and the Raman spectrum at each scanning position and the position sensor ( The computer 8 is made to read the positional information from a computer (not shown).
The stress value is obtained from the frequency shift value at each scanning point by the computer 8, and the stress distribution state is displayed by the image processing device 10.

紫外レーザとしてH2レーザを用いると、その波長は短
かく、光学系として対物レンズに下記の透過性の良い材
質をすることによりレーザ光の波長の1〜2倍の範囲の
スポツト径を得ることが可能となる。従つて、被応力測
定面のスポツト径は約0.1μmとなり、この領域での散
乱光の周波数シフト値からレーザ光が照射されている前
記領域の応力値を求めることができる。よつて上記の構
成により、約0.1μmの微小部の応力を測定することが
可能となる。この時、対物レンズ及び検出器の入射窓と
してはハロゲン化アルカリ、特にLiF製レンズ及び入射
窓をそれぞれ用いると良い。MgF2製のものを用いても良
い。
When an H 2 laser is used as an ultraviolet laser, its wavelength is short, and the spot diameter in the range of 1 to 2 times the wavelength of the laser light can be obtained by using the following material with good transparency for the objective lens as an optical system. Is possible. Therefore, the spot diameter of the stress-measured surface is about 0.1 μm, and the stress value of the region irradiated with the laser beam can be obtained from the frequency shift value of the scattered light in this region. Therefore, with the above configuration, it is possible to measure the stress of a minute portion of about 0.1 μm. At this time, an alkali halide, especially a LiF lens and an entrance window are preferably used as the entrance window of the objective lens and the detector, respectively. It may be used made of MgF 2.

また、紫外レーザとして、Ar2レーザ,ArClレーザ,ArF
レーザ,KrClレーザ,KrFレーザ,XeBrレーザ,XeClレーザ
あるいはXeFレーザ等のエキシマレーザを用いると、約
0.13μm〜0.35μmの微小部の応力を測定することが可
能である。この時、対物レンズ及び検出器の入射窓とし
ては、LiF製,MgF2製あるいは蛍石(CaF2)製レンズ及び
入射窓をそれぞれ用いると良い。合成石英製あるいは天
然水晶から作つた溶融石英製のものでもよい。サフアイ
アガラス(Al2O3)製あるいは紫外透過ガラス製のもの
でも良い。
In addition, as an ultraviolet laser, Ar 2 laser, ArCl laser, ArF
When using excimer laser such as laser, KrCl laser, KrF laser, XeBr laser, XeCl laser or XeF laser,
It is possible to measure the stress in a minute portion of 0.13 μm to 0.35 μm. At this time, as the incident window of the objective lens and the detector, it is preferable to use a lens made of LiF, MgF 2 or fluorite (CaF 2 ) and an incident window, respectively. It may be made of synthetic quartz or fused quartz made of natural quartz. It may be made of sapphire glass (Al 2 O 3 ) or ultraviolet transparent glass.

第2図に示す実施例は、第1図の実施例の応用例で、レ
ーザ光源1,レーザ光2,対物レンズ3,試料4,ハーフミラー
5、分光計6,検出器7及び微動ステージ9を真空室11内
に設けたものである。紫外レーザとして、発振波長が約
0.1μmのものを用いると、空気中ではレーザ光の強度
の減衰が大きくなることがあるため、真空中で行うこと
により、減衰を小さくできる。このため、微小部の応力
値を精度よく行なうことができる。
The embodiment shown in FIG. 2 is an application example of the embodiment shown in FIG. 1, which is a laser light source 1, a laser light 2, an objective lens 3, a sample 4, a half mirror 5, a spectrometer 6, a detector 7, and a fine movement stage 9. Is provided in the vacuum chamber 11. As an ultraviolet laser, the oscillation wavelength is about
If the one having a thickness of 0.1 μm is used, the attenuation of the intensity of the laser light may be increased in the air, and therefore the attenuation can be reduced by performing the operation in a vacuum. Therefore, the stress value of the minute portion can be accurately measured.

〔発明の効果〕〔The invention's effect〕

上述のとおり、本発明に係る方法は、紫外レーザを用
い、該スポツト径を該波長程度にするものであるから、
従来困難であつた微小部(サブミクロンオーダー)の応
力値又は応力分布状態を把握できる効果がある。
As described above, the method according to the present invention uses an ultraviolet laser and makes the spot diameter approximately the wavelength,
There is an effect that a stress value or a stress distribution state of a minute portion (submicron order), which has been difficult in the past, can be grasped.

また、本発明に係る装置は、紫外レーザを発振するレ
ーザ光源と、紫外光を透過するレンズ等の光学系と、紫
外光を透過する入射窓を持つ検出器とを設けたものであ
るから、微小部(サブミクロンオーダー)の応力又は応
力分布を精度良く把握する効果がある。
Further, the apparatus according to the present invention is provided with a laser light source that oscillates an ultraviolet laser, an optical system such as a lens that transmits ultraviolet light, and a detector having an incident window that transmits ultraviolet light. This has the effect of accurately grasping the stress or stress distribution in a minute portion (submicron order).

又、真空中で応力測定を行うことにより紫外レーザ強
度の減衰を小さくでき、高精度の応力測定ができる効果
がある。
Further, by performing the stress measurement in a vacuum, the attenuation of the intensity of the ultraviolet laser can be reduced, and the stress can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る応力測定装置の構成を示すシステ
ム図、第2図は本発明の他の実施例である応力測定装置
の構成を示すシステム図である。 1……レーザ光源、2……レーザ光、3……紫外レーザ
用対物レンズ、4……試料、5……ハーフミラー、6…
…分光計、7……検出器、8……コンピユータ、9……
微動ステージ、10……画像処理装置、11……真空室。
FIG. 1 is a system diagram showing a configuration of a stress measuring device according to the present invention, and FIG. 2 is a system diagram showing a configuration of a stress measuring device according to another embodiment of the present invention. 1 ... Laser light source, 2 ... Laser light, 3 ... UV laser objective lens, 4 ... Sample, 5 ... Half mirror, 6 ...
… Spectrometer, 7 …… Detector, 8 …… Computer, 9 ……
Fine movement stage, 10 ... Image processing device, 11 ... Vacuum chamber.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】レーザ光を対物レンズを介して被応力測定
物表面にスポット状に絞って照射し、該被応力測定物表
面から発生した散乱光をハーフミラーにより分光計に導
いて検出するラマン分光法による応力測定方法におい
て、前記被応力測定物表面の測定領域がサブミクロンオ
ーダーの微小部であり、前記レーザ光として紫外レーザ
光を用い、前記対物レンズにより絞られるスポット径を
前記紫外レーザ光の波長の1〜2倍の範囲にすることに
より、当該微小部の応力値及び応力分布を測定すること
を特徴とする応力測定方法。
1. A Raman for irradiating a laser beam focused on the surface of an object to be stress-spotted through an objective lens in a spot shape, and guiding scattered light generated from the surface of the object-to-stress to be measured to a spectrometer by a half mirror. In the stress measurement method by spectroscopy, the measurement area of the surface of the object to be stress-stressed is a submicron-order minute portion, and an ultraviolet laser beam is used as the laser beam, and the spot diameter narrowed down by the objective lens is the ultraviolet laser beam. The stress measurement method is characterized by measuring the stress value and the stress distribution of the minute portion by setting the wavelength to be 1 to 2 times the wavelength.
【請求項2】レーザ光源とレーザ光を被応力測定物表面
にスポット状に絞るための対物レンズと散乱光を分光計
に導くためのハーフミラーと該分光計とを備えた応力測
定装置において、前記被応力測定物表面の測定領域がサ
ブミクロンオーダーの微小部であり、前記レーザ光を紫
外レーザ光とし、前記対物レンズには紫外光を透過する
ものを用い、前記分光計に付設される検出器の入射窓に
も紫外レーザ光を透過するものを用い、前記対物レンズ
により絞られるスポット径を前記紫外レーザ光の波長の
1〜2倍の範囲にするように光学系を構成してなること
を特徴とする応力測定装置。
2. A stress measuring device comprising a laser light source, an objective lens for focusing laser light in a spot shape on the surface of an object to be stressed, a half mirror for guiding scattered light to a spectrometer, and the spectrometer. The measurement area of the surface of the object to be stressed is a submicron-order minute portion, the laser light is an ultraviolet laser light, and the objective lens is one that transmits ultraviolet light, and is attached to the spectrometer. The entrance window of the container is also one that transmits ultraviolet laser light, and the optical system is configured so that the spot diameter narrowed down by the objective lens is in the range of 1 to 2 times the wavelength of the ultraviolet laser light. A stress measuring device characterized by:
【請求項3】前記応力測定を真空中で行うことを特徴と
する請求項1に記載の応力測定方法。
3. The stress measuring method according to claim 1, wherein the stress measuring is performed in vacuum.
【請求項4】少なくとも紫外レーザの光の光路を真空に
したことを特徴とする請求項2に記載の応力測定装置。
4. The stress measuring device according to claim 2, wherein at least the optical path of the ultraviolet laser light is evacuated.
【請求項5】前記紫外レーザ光がH2光であり、前記対物
レンズ及び前記入射窓がLiF製であることを特徴とする
請求項2または4に記載の応力測定装置。
5. The stress measuring device according to claim 2, wherein the ultraviolet laser light is H 2 light, and the objective lens and the entrance window are made of LiF.
JP63295947A 1988-11-25 1988-11-25 Stress measuring method and device Expired - Lifetime JPH0820317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295947A JPH0820317B2 (en) 1988-11-25 1988-11-25 Stress measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295947A JPH0820317B2 (en) 1988-11-25 1988-11-25 Stress measuring method and device

Publications (2)

Publication Number Publication Date
JPH02143131A JPH02143131A (en) 1990-06-01
JPH0820317B2 true JPH0820317B2 (en) 1996-03-04

Family

ID=17827165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295947A Expired - Lifetime JPH0820317B2 (en) 1988-11-25 1988-11-25 Stress measuring method and device

Country Status (1)

Country Link
JP (1) JPH0820317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281258B2 (en) * 2006-10-10 2013-09-04 株式会社堀場製作所 Stress measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656367B2 (en) * 1984-04-04 1994-07-27 株式会社日立製作所 Solid surface condition analyzer
JPH0718797B2 (en) * 1987-05-01 1995-03-06 株式会社日立製作所 Local stress distribution measuring device

Also Published As

Publication number Publication date
JPH02143131A (en) 1990-06-01

Similar Documents

Publication Publication Date Title
US4984894A (en) Method of and apparatus for measuring film thickness
JP2002055041A (en) Apparatus for measuring opening of probe and near-field optical microscope using the same
JP2002148172A (en) Near field microscope
JPH0694604A (en) Spectral photographing device using two interferometer
JP2003021596A (en) Method and apparatus for schlieren analysis
JPH0694605A (en) Spectral photographing device using pulse electromagnetic wave source and interferometer
JPH085471A (en) Method and device for measuring stress
JPH05113418A (en) Surface analyzing apparatus
JPH0820317B2 (en) Stress measuring method and device
JP2004198250A (en) Time-resolved reflection measuring method and terahertz time-resolved reflection measuring apparatus
JP3736361B2 (en) Foreign matter identification method, foreign matter identification device, and dust generation source identification method
JP7012045B2 (en) Far infrared spectroscope
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JP2544428B2 (en) Stress measuring method and stress measuring device
JPH0776746B2 (en) Infrared microspectrophotometer
JP3261339B2 (en) Pore distribution measuring device
JPH0719969A (en) Method and device for measuring stress
JPH063271A (en) Spectroscopic analysis device
JPH06177218A (en) Measuring device for free-carrier life and the like of semiconductor
JPH0510872A (en) Micro infrared rays atr measuring device
JP2597515Y2 (en) Total reflection absorption spectrum measurement device
JP2003106978A (en) Optical radiation pressure measuring device
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate
JPH06347343A (en) Method and apparatus for measuring stress
JP2003053699A (en) Method of forming pinhole and measuring device