JPH08201863A - Higher harmonic generating apparatus - Google Patents

Higher harmonic generating apparatus

Info

Publication number
JPH08201863A
JPH08201863A JP1100595A JP1100595A JPH08201863A JP H08201863 A JPH08201863 A JP H08201863A JP 1100595 A JP1100595 A JP 1100595A JP 1100595 A JP1100595 A JP 1100595A JP H08201863 A JPH08201863 A JP H08201863A
Authority
JP
Japan
Prior art keywords
resonator
semiconductor laser
harmonic
output
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1100595A
Other languages
Japanese (ja)
Inventor
Toshimasa Kakiuchi
利昌 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1100595A priority Critical patent/JPH08201863A/en
Publication of JPH08201863A publication Critical patent/JPH08201863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE: To prevent the stop of outputs of second higher harmonics owing to the occurrence of thermal expansion or shrinkage of a supporting substrate by alteration of ambient temperature and owing to the alteration of optical length by installing an electromagnetic coil actuator in at least either one of optical parts installed between a semiconductor laser and a resonator. CONSTITUTION: To control the optical length 20 between a semiconductor laser 1 and a resonator 4, a mirror 24 for reflection provided with an electromagnetic coil actuator 25 is inserted between collimator lens 2 and a focusing lens 3. A portion of second higher harmonics 18 separated by a beam splitter 26 comes in a photodiode 27 and are converted into electromagnetic signals and sent to a detector 29. The output signals of the detector 29 are sent to an actuator electric power source 30 as feedback signals 31 of the electromagnetic actuator 25. The electromagnetic coil actuator 25 carries out displacement reflecting the output of the feedback signals 31 and functions as to keep the output of the second higher harmonics 18 stable as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザから出射
される基本波光を非線形光学材料により高調波に変換す
る高調波発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic generator for converting fundamental wave light emitted from a semiconductor laser into a harmonic by a non-linear optical material.

【0002】[0002]

【従来の技術】従来の第2高調波発生装置の一例の平面
図を図3、側面図を図4に示す。
2. Description of the Related Art A plan view of an example of a conventional second harmonic generator is shown in FIG. 3 and a side view thereof is shown in FIG.

【0003】支持具8に保持された半導体レーザ1から
出射した波長860nmの基本波光16は、コリメート
レンズ2及びフォーカスレンズ3を経て共振器4に入射
する。共振器4は一対の共振用ミラー5、7及び非線形
光学材料であるKNbO3 単結晶6から成り、基本波光
16は共振用ミラー5、7間で共振され、共振光17の
一部がKNbO3 単結晶6によって波長430nmの第
2高調波光18に変換される。
The fundamental wave light 16 having a wavelength of 860 nm emitted from the semiconductor laser 1 held by the support 8 enters the resonator 4 via the collimator lens 2 and the focus lens 3. The resonator 4 is composed of a pair of resonance mirrors 5 and 7 and a KNbO 3 single crystal 6 which is a nonlinear optical material. The fundamental wave light 16 is resonated between the resonance mirrors 5 and 7, and a part of the resonance light 17 is KNbO 3. The single crystal 6 converts the second harmonic light 18 having a wavelength of 430 nm.

【0004】第2高調波光18を発生するには、位相整
合条件を満たすよう半導体レーザ1及びKNbO3 単結
晶6の温度を制御する必要がある。半導体レーザ1の温
度制御はサーミスター9及びペルチェ素子10を、KN
bO3 結晶6の温度制御はサーミスター12及びペルチ
ェ素子13を用いて駆動電源15で行っている。前記半
導体レーザ1、KNbO3 結晶6、サーミスター9、1
2、ペルチェ素子10、13は、基板23上に設置固定
されている。
In order to generate the second harmonic light 18, it is necessary to control the temperatures of the semiconductor laser 1 and the KNbO 3 single crystal 6 so as to satisfy the phase matching condition. The temperature of the semiconductor laser 1 is controlled by setting the thermistor 9 and the Peltier device 10 to KN.
The temperature control of the bO 3 crystal 6 is performed by the driving power supply 15 using the thermistor 12 and the Peltier element 13. The semiconductor laser 1, KNbO 3 crystal 6, thermistor 9, 1
2. The Peltier elements 10 and 13 are installed and fixed on the substrate 23.

【0005】第2高調波光18の出力安定化技術とし
て、共振器4からの共振光17の一部を戻り光19とし
て半導体レーザ1に戻すことによって、半導体レーザ1
の光周波数を共振器4の共振光周波数に引き込む光フィ
ードバック制御を用いている。
As a technique for stabilizing the output of the second harmonic light 18, a part of the resonant light 17 from the resonator 4 is returned to the semiconductor laser 1 as the return light 19 so that the semiconductor laser 1
The optical feedback control of pulling the optical frequency of 1 to the resonant optical frequency of the resonator 4 is used.

【0006】光フィードバック制御の場合、第2高調波
発生装置は半導体レーザ1と共振器4から成る複合共振
器となるため、前記半導体レーザ1と前記共振器4間の
光学長20を一定に制御する必要がある。前記光学長2
0に要求される位置の制御精度としては、基本波光16
の波長オーダーの精度(約0.1μmの精度)が必要で
ある。
In the case of the optical feedback control, the second harmonic generator is a composite resonator composed of the semiconductor laser 1 and the resonator 4, so that the optical length 20 between the semiconductor laser 1 and the resonator 4 is controlled to be constant. There is a need to. The optical length 2
The position control accuracy required for 0 is 16
Accuracy on the order of wavelength (accuracy of about 0.1 μm) is required.

【0007】支持基板14の熱膨張及び熱収縮による前
記光学長20の変動を抑えるため、支持基板14の温度
制御はサーミスター21、ペルチェ素子22を用いて駆
動電源15で行っている。支持基板14のサーミスター
位置での温度の制御精度は0.01℃であり、支持基板
14の材質としては熱伝導性が良いという理由から銅を
用いている。しかしながら、従来の第2高調波発生装置
では、環境温度の±2℃の変動で第2高調波光18の出
力が停止するという欠点があった。
In order to suppress the fluctuation of the optical length 20 due to the thermal expansion and thermal contraction of the supporting substrate 14, the temperature of the supporting substrate 14 is controlled by the driving power source 15 using the thermistor 21 and the Peltier element 22. The temperature control accuracy of the support substrate 14 at the thermistor position is 0.01 ° C., and copper is used as the material of the support substrate 14 because it has good thermal conductivity. However, the conventional second harmonic generation device has a drawback in that the output of the second harmonic light 18 is stopped by the fluctuation of the ambient temperature of ± 2 ° C.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有する前述の欠点を解消しようとするものであ
る。すなわち、環境温度の±2℃の変動により支持基板
の熱膨張及び熱収縮が発生し、光学長が変動して第2高
調波光の出力が停止するという問題点を解消することを
目的とする。
SUMMARY OF THE INVENTION The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art. That is, it is an object of the present invention to solve the problem that thermal expansion and contraction of the supporting substrate occur due to the environmental temperature fluctuation of ± 2 ° C., the optical length fluctuates, and the output of the second harmonic light is stopped.

【0009】[0009]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、基本波光源である半
導体レーザと、基本波光を共振させる複数の共振用ミラ
ーから構成される共振器と、前記共振器内の基本波光の
光軸上に設けられた非線形光学材料とを備えた高調波発
生装置において、前記半導体レーザ、前記共振器及び前
記半導体レーザと前記共振器間に配置された光学部品の
少なくともいずれか一つに、電磁コイルアクチュエータ
を設けた高調波発生装置を提供する。
The present invention has been made to solve the above-mentioned problems, and is composed of a semiconductor laser as a fundamental wave light source and a plurality of resonance mirrors for resonating the fundamental wave light. A harmonic generator comprising a resonator and a nonlinear optical material provided on the optical axis of the fundamental wave light in the resonator, wherein the semiconductor laser, the resonator, and the semiconductor laser and the semiconductor laser are arranged between the resonator. There is provided a harmonic wave generation device in which an electromagnetic coil actuator is provided in at least one of the optical components.

【0010】本発明の電磁コイルアクチュエータは応答
性が良いので、半導体レーザ等の位置調整に適してい
る。
Since the electromagnetic coil actuator of the present invention has a good responsiveness, it is suitable for position adjustment of a semiconductor laser or the like.

【0011】本発明において、光学部品を基本波光の反
射用ミラーであり、前記反射用ミラーに電磁コイルアク
チュエータを設けることが、半導体レーザと共振器との
光学長を調整しやすく好ましい。
In the present invention, it is preferable that the optical component is a reflection mirror for the fundamental wave light, and an electromagnetic coil actuator is provided on the reflection mirror because the optical lengths of the semiconductor laser and the resonator can be easily adjusted.

【0012】前記非線形光学材料としては、KNbO
3 、β−BaB24 、KTiOPO4 、KH2 PO
4 、LiNbO3 等の非線形光学結晶、その他有機非線
形光学材料等が使用できるが、高い第2高調波への変換
効率、結晶の取扱いやすさ等からしてKNbO3 単結晶
が好ましい。
As the non-linear optical material, KNbO is used.
3 , β-BaB 2 O 4 , KTiOPO 4 , KH 2 PO
4 , non-linear optical crystals such as LiNbO 3 and other organic non-linear optical materials can be used, but KNbO 3 single crystal is preferable in terms of high conversion efficiency to the second harmonic and easy handling of the crystal.

【0013】また本発明は、第2高調波のみならず、第
3高調波等のより高次の高調波の発生装置にも応用でき
る。
Further, the present invention can be applied not only to the second harmonic but also to a higher harmonic generator such as a third harmonic.

【0014】[0014]

【作用】本発明の高調波発生装置は、高調波出力が常に
一定となるように、受光部で検出された高調波出力の電
気信号をフィードバックして電磁コイルアクチュエータ
を制御し、前記電磁コイルアクチュエータの電磁誘導効
果により半導体レーザと共振器との光学長を調整するよ
う動作する。
The harmonic generator according to the present invention controls the electromagnetic coil actuator by feeding back the electric signal of the harmonic output detected by the light receiving section so that the harmonic output is always constant. It operates so as to adjust the optical lengths of the semiconductor laser and the resonator by the electromagnetic induction effect of.

【0015】[0015]

【実施例】以下に、本発明の実施例を説明する。本発明
の一実施例の第2高調波発生装置の平面図を図1、側面
図を図2に示す。符号1〜20は従来例を示す図3、図
4と同一のものである。
EXAMPLES Examples of the present invention will be described below. 1 is a plan view and FIG. 2 is a side view of a second harmonic generation device according to an embodiment of the present invention. Reference numerals 1 to 20 are the same as those in FIGS. 3 and 4 showing the conventional example.

【0016】半導体レーザ1と共振器4との光学長20
の制御のため、コリメートレンズ2及びフォーカスレン
ズ3間に電磁コイルアクチュエータ25を付加した反射
用ミラー24を挿入している。ビームスプリッター26
で分離された第2高調波光18の一部は、フォトダイオ
ード27に入射し電気信号に変換され、検波器29に入
力される。検波器29の出力信号は、電磁コイルアクチ
ュエータ25のフィードバック信号31としてアクチュ
エータ電源30に入力される。電磁コイルアクチュエー
タ25はフィードバック信号31の出力に相当した変位
を行い、全体として第2高調波光18の出力が一定とな
るよう機能する。
Optical length 20 of semiconductor laser 1 and resonator 4
In order to control the above, a reflection mirror 24 having an electromagnetic coil actuator 25 added is inserted between the collimator lens 2 and the focus lens 3. Beam splitter 26
A part of the second harmonic light 18 separated by is incident on the photodiode 27, converted into an electric signal, and input to the detector 29. The output signal of the detector 29 is input to the actuator power supply 30 as the feedback signal 31 of the electromagnetic coil actuator 25. The electromagnetic coil actuator 25 performs a displacement corresponding to the output of the feedback signal 31, and functions so that the output of the second harmonic light 18 becomes constant as a whole.

【0017】半導体レーザ1には波長860nm帯の定
格100mWシングルモードレーザを、非線形光学材料
としては長さ5mmで基本波の反射率1%以下の反射防
止膜が設けられたKNbO3 単結晶6を使用した。ま
た、共振用ミラー5には曲率半径10mmで基本波の反
射率95%の反射膜が設けられたものを、共振用ミラー
7には同じく曲率半径10mmで基本波の反射率99%
の反射膜が設けられたものを使用した。フォトダイオー
ド27はSiフォトダイオードを使用した。
The semiconductor laser 1 is a rated 100 mW single mode laser with a wavelength of 860 nm, and the non-linear optical material is a KNbO 3 single crystal 6 having a length of 5 mm and an antireflection film having a fundamental wave reflectance of 1% or less. used. The resonance mirror 5 is provided with a reflection film having a radius of curvature of 10 mm and a reflectance of the fundamental wave of 95%, and the resonance mirror 7 is similarly provided with a radius of curvature of 10 mm and a reflectance of the fundamental wave of 99%.
The one provided with the reflective film of was used. As the photodiode 27, a Si photodiode is used.

【0018】以上の実施例から、第2高調波光18の出
力として波長430nmで6.2mWの光出力が得られ
た。出力安定性についても環境温度変動を1℃/分のレ
ート速度で25℃から45℃に変化させた結果、第2高
調波光18の出力は6.2mWから5.9mWと安定に
推移し、変動幅5%以内と安定であった。また機械的震
動に対しても第2高調波光18の出力の停止は認められ
なかった。
From the above examples, an optical output of 6.2 mW at a wavelength of 430 nm was obtained as the output of the second harmonic light 18. As for output stability, as a result of changing the environmental temperature fluctuation from 25 ° C to 45 ° C at a rate rate of 1 ° C / min, the output of the second harmonic light 18 remained stable from 6.2mW to 5.9mW and fluctuated. The width was stable within 5%. Moreover, the stop of the output of the second harmonic light 18 was not recognized even in response to mechanical vibration.

【0019】[0019]

【発明の効果】本発明による第2高調波発生装置は、次
のような効果を有する。
The second harmonic generator according to the present invention has the following effects.

【0020】(1)雰囲気温度変動及び機械的震動等が
生じた場合においても、従来の第2高調波発生装置に比
べて第2高調波光の出力が安定している。
(1) The output of the second harmonic light is more stable than that of the conventional second harmonic generator even when the ambient temperature changes and mechanical vibrations occur.

【0021】(2)従来のように第2高調波発生装置内
の支持基板の温度制御を行う必要が無いため、温度制御
系を簡易化することができる。
(2) Since it is not necessary to control the temperature of the supporting substrate in the second harmonic generator as in the conventional case, the temperature control system can be simplified.

【0022】(3)従来の第2高調波発生装置に比べて
起動時間を短縮することができる。
(3) The starting time can be shortened as compared with the conventional second harmonic generator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る第2高調波発生装置の
平面図。
FIG. 1 is a plan view of a second harmonic generation device according to an embodiment of the present invention.

【図2】本発明の一実施例に係る第2高調波発生装置の
側面図。
FIG. 2 is a side view of a second harmonic generation device according to an embodiment of the present invention.

【図3】従来の第2高調波発生装置の平面図。FIG. 3 is a plan view of a conventional second harmonic generator.

【図4】従来の第2高調波発生装置の側面図。FIG. 4 is a side view of a conventional second harmonic generator.

【符号の説明】[Explanation of symbols]

1:半導体レーザ 2:コリメートレンズ 3:フォーカスレンズ 4:共振器 5:共振用ミラー 6:非線形光学材料(KNbO3 単結晶) 7:共振用ミラー 8:支持具 9:サーミスター 10:ペルチェ素子 11:支持具 12:サーミスター 13:ペルチェ素子 14:支持基板 15:駆動電源 16:基本波光 17:共振光 18:第2高調波光 19:戻り光 20:光学長 21:サーミスター 22:ペルチェ素子 23:基板 24:反射用ミラー 25:電磁コイルアクチュエータ 26:ビームスプリッター 27:フォトダイオード 28:フォトダイオード電源 29:検波器 30:アクチュエータ電源 31:フィードバック信号1: Semiconductor Laser 2: Collimating Lens 3: Focus Lens 4: Resonator 5: Resonant Mirror 6: Nonlinear Optical Material (KNbO 3 Single Crystal) 7: Resonant Mirror 8: Support 9: Thermistor 10: Peltier Element 11 : Supporting tool 12: Thermistor 13: Peltier element 14: Support substrate 15: Driving power supply 16: Fundamental wave light 17: Resonance light 18: Second harmonic light 19: Return light 20: Optical length 21: Thermistor 22: Peltier element 23 : Substrate 24: Reflecting mirror 25: Electromagnetic coil actuator 26: Beam splitter 27: Photodiode 28: Photodiode power supply 29: Detector 30: Actuator power supply 31: Feedback signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基本波光源である半導体レーザと、基本波
光を共振させる複数の共振用ミラーから構成される共振
器と、前記共振器内の基本波光の光軸上に設けられた非
線形光学材料とを備えた高調波発生装置において、前記
半導体レーザ、前記共振器及び前記半導体レーザと前記
共振器間に配置された光学部品の少なくともいずれか一
つに、電磁コイルアクチュエータを設けたことを特徴と
する高調波発生装置。
1. A semiconductor laser which is a fundamental wave light source, a resonator comprising a plurality of resonance mirrors for resonating the fundamental wave light, and a non-linear optical material provided on the optical axis of the fundamental wave light in the resonator. In a higher harmonic wave generating device comprising: a semiconductor laser, the resonator, and at least one of the optical components arranged between the semiconductor laser and the resonator, an electromagnetic coil actuator is provided. Harmonic generator.
【請求項2】前記光学部品が基本波光の反射用ミラーで
あり、前記反射用ミラーに電磁コイルアクチュエータが
設けられている請求項1記載の高調波発生装置。
2. The harmonic generator according to claim 1, wherein the optical component is a reflection mirror for fundamental wave light, and the reflection mirror is provided with an electromagnetic coil actuator.
JP1100595A 1995-01-26 1995-01-26 Higher harmonic generating apparatus Pending JPH08201863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100595A JPH08201863A (en) 1995-01-26 1995-01-26 Higher harmonic generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100595A JPH08201863A (en) 1995-01-26 1995-01-26 Higher harmonic generating apparatus

Publications (1)

Publication Number Publication Date
JPH08201863A true JPH08201863A (en) 1996-08-09

Family

ID=11766013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100595A Pending JPH08201863A (en) 1995-01-26 1995-01-26 Higher harmonic generating apparatus

Country Status (1)

Country Link
JP (1) JPH08201863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093201A (en) * 2008-10-10 2010-04-22 Toshiba Corp Temperature control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093201A (en) * 2008-10-10 2010-04-22 Toshiba Corp Temperature control unit

Similar Documents

Publication Publication Date Title
US4847851A (en) Butt-coupled single transverse mode diode pumped laser
US6654392B1 (en) Quasi-monolithic tunable optical resonator
WO2006042045A2 (en) Solid state laser insensitive to temperature changes
JP3423761B2 (en) Optical wavelength converter
JP6853780B2 (en) Resonant microchip resonator-based system for generating laser beams through non-linear effects
US5450429A (en) Efficient linear frequency doubled solid-state laser
US7386021B2 (en) Light source
US6097540A (en) Frequency conversion combiner system for diode lasers
KR930006854B1 (en) Laser generation system
JPH04107536A (en) Second harmonic generation device
EP2466372A1 (en) Laser system comprising a nonlinear device having a dual resonant resonator and method of operating the same
US5459744A (en) Laser having frequency conversion element
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
JP3424973B2 (en) Short wavelength light source module
US20070286248A1 (en) Nonlinear optical modulator
JPH08201863A (en) Higher harmonic generating apparatus
JP3480946B2 (en) Laser light generator
Brozek et al. Highly efficient cw frequency doubling of 854 nm GaAlAs diode lasers in an external ring cavity
CN101383477A (en) Laser second harmonic generation device
WO1996018132A1 (en) Frequency-doubled diode laser device
JP2006324334A (en) Laser light emitting apparatus
JP3219118B2 (en) Wavelength converter in external resonator
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
KR100307619B1 (en) The second harmonic generator
JPH0715061A (en) Wavelength converter for laser