JPH08201592A - Non-spherical surface reflection optical element - Google Patents

Non-spherical surface reflection optical element

Info

Publication number
JPH08201592A
JPH08201592A JP7010456A JP1045695A JPH08201592A JP H08201592 A JPH08201592 A JP H08201592A JP 7010456 A JP7010456 A JP 7010456A JP 1045695 A JP1045695 A JP 1045695A JP H08201592 A JPH08201592 A JP H08201592A
Authority
JP
Japan
Prior art keywords
shape
optical element
accuracy
aspherical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7010456A
Other languages
Japanese (ja)
Inventor
Motohide Kageyama
元英 影山
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7010456A priority Critical patent/JPH08201592A/en
Publication of JPH08201592A publication Critical patent/JPH08201592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE: To obtain a non-spherical surface reflection optical element fulfilling both of strict shape accuracy and surface accuracy by contacting a reflection part having a thickness distribution on the curved surface of a base plate having a curved surface approximated by a non-spherical surface shape with an anodic junction method. CONSTITUTION: A part 2a (for example, silicon mono-crystal) having a front surface with good surface accuracy (for example, maximum surface roughness of 0.001μm or less) and a thickness distribution and a base plate 1 having a curved surface 3 approximated by a non-spherical shape with good shape accuracy are prepared. Then, on the curved surface 3 of the base plate 1, the part 2a (reflection part) is contacted with anodic junction method and a non-spherical reflection optical element having a reflection surface 4 with a non-spherical surface shape is completed. To avoid formation of air space at the junction, a hole 5 for venting air is desirably provided in the base plate 1 or the part 2a or in both. This non-spherical reflection optical element can be used in an optical system required of high optical performance as the reflection surface can fulfill both strict shape accuracy and surface accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非球面反射光学素子に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical reflective optical element.

【0002】[0002]

【従来の技術】近年、半導体集積回路素子の微細化に伴
い、光の回折限界によって制限される光学系の解像力を
向上させるために、従来の紫外線に代わって、これより
波長の短いX線を使用した投影リソグラフィー技術が開
発されている。この技術に使用されるX線縮小投影露光
装置は、主としてX線発生器11、X線照明光学系1
2、マスク13、X線結像光学系14、ウェハー15の
ステージ等により構成される(図5参照)。
2. Description of the Related Art In recent years, with the miniaturization of semiconductor integrated circuit devices, in order to improve the resolution of an optical system which is limited by the diffraction limit of light, conventional X-rays are replaced with X-rays having a shorter wavelength. The projection lithography technique used has been developed. The X-ray reduction projection exposure apparatus used in this technique mainly includes an X-ray generator 11 and an X-ray illumination optical system 1.
2, the mask 13, the X-ray imaging optical system 14, the stage of the wafer 15, etc. (see FIG. 5).

【0003】X線発生器11には、放射光光源やレーザ
ープラズマX線源等が使用される。X線照明光学系12
は反射面に斜め方向から入射したX線を反射させる斜入
射ミラー、反射面が多層膜により形成される多層膜ミラ
ー、および所定波長のX線のみを反射または透過させる
フィルター等により構成され、マスク13上を所望の波
長のX線で照明する。
As the X-ray generator 11, a radiation light source, a laser plasma X-ray source, or the like is used. X-ray illumination optical system 12
Is a mask formed by an oblique incidence mirror that reflects X-rays obliquely incident on the reflecting surface, a multilayer mirror whose reflecting surface is formed of a multilayer film, and a filter that reflects or transmits only X-rays of a predetermined wavelength. Illuminate 13 with X-rays of desired wavelength.

【0004】マスク13には透過型マスクと反射型マス
クとがある。透過型マスクは、X線を良く透過する物質
からなる薄いメンブレン上にX線を吸収する物質を所定
形状に設けることによってパターンを形成したものであ
る。一方、反射型マスクは、例えば、X線を反射する多
層膜上に反射率の低い部分を所定形状に設けることによ
ってパターンを形成したものである。
The mask 13 includes a transmission type mask and a reflection type mask. The transmissive mask has a pattern formed by providing a substance that absorbs X-rays in a predetermined shape on a thin membrane made of a substance that transmits X-rays well. On the other hand, the reflective mask is, for example, a pattern formed by providing a portion having a low reflectance in a predetermined shape on a multilayer film that reflects X-rays.

【0005】このようなマスク上に形成されたパターン
は、複数の多層膜ミラー等で構成されたX線結像光学系
14により、フォトレジストが塗布されたウェハー15
上に結像することで該レジストに転写される。なお、X
線は大気に吸収されて減衰するため、その光路は排気装
置20により所定真空度に維持された真空容器19内に
配置されている。
The pattern formed on such a mask is a wafer 15 coated with a photoresist by an X-ray imaging optical system 14 composed of a plurality of multilayer film mirrors and the like.
It is transferred to the resist by forming an image on it. Note that X
Since the line is absorbed by the atmosphere and attenuated, its optical path is arranged in the vacuum container 19 maintained at a predetermined vacuum degree by the exhaust device 20.

【0006】反射光学素子の反射面形状は殆どが平面、
球面、または放物面である。その理由は、前記形状より
も複雑な反射面形状を光学的に要求される高い精度(面
精度及び形状精度)で形成することは、実際上困難であ
るからである。しかし、反射面が前記形状に限定される
と、かかる反射光学素子を用いる光学系の光学性能も制
限されてしまう。
The reflection surface of the reflection optical element is almost flat,
It is a spherical surface or a parabolic surface. The reason is that it is practically difficult to form a reflection surface shape that is more complicated than the above shape with high accuracy (surface accuracy and shape accuracy) that is optically required. However, when the reflecting surface is limited to the above shape, the optical performance of the optical system using such a reflecting optical element is also limited.

【0007】一方、高い光学性能が要求される光学系で
は、反射面の形成が困難な非球面形状の反射面を有する
反射光学素子が求められている。X線光学系において
も、非球面形状の反射面を有するX線反射光学素子が求
められているが、短波長のX線を反射するX線反射光学
素子には、特に高い(厳密な)形状精度及び面精度が要
求されるので、非球面形状の反射面の形成は特に困難で
ある。
On the other hand, in an optical system which is required to have high optical performance, a reflective optical element having an aspherical reflective surface in which a reflective surface is difficult to form is required. X-ray optical systems are also required to have an X-ray reflection optical element having an aspherical reflection surface. However, an X-ray reflection optical element that reflects X-rays of a short wavelength has a particularly high (strict) shape. Since precision and surface precision are required, it is particularly difficult to form a reflecting surface having an aspherical shape.

【0008】しかしながら、かかる非球面形状の反射面
が、その形状精度及び面精度の両方の要求精度を満たす
ことができるならば、前述のX線投影露光装置のように
レンズ光学系を適用できないX線光学系や、その他の光
学系にも用いることができるので、その適用範囲は様々
な装置に広がる。例えば、近年急速に進歩している医学
や生物工学の分野では、通常の可視光(λ=約400n
m〜800nm)を用いる顕微鏡よりも分解能が高く、
しかも生きた試料(以下生物試料という、例えば、細
胞、バクテリア、精子、染色体、ミトコンドリア、べん
毛など)も鮮明に観察することができる高解像度顕微鏡
として、可視光に代えて波長λ=2〜5nmの軟X線を
用いるX線顕微鏡が検討され開発されつつある。
However, if such an aspherical reflecting surface can satisfy the required accuracy of both shape accuracy and surface accuracy, the lens optical system cannot be applied as in the X-ray projection exposure apparatus described above. Since it can be used for a linear optical system and other optical systems, its application range is widened to various devices. For example, in the fields of medicine and biotechnology, which are rapidly advancing in recent years, normal visible light (λ = about 400 n
The resolution is higher than that of a microscope using
Moreover, as a high-resolution microscope capable of clearly observing a living sample (hereinafter referred to as a biological sample, for example, cells, bacteria, sperms, chromosomes, mitochondria, flagella), wavelength λ = 2 to 2 instead of visible light. X-ray microscopes using 5 nm soft X-rays have been studied and are being developed.

【0009】例えば図6は、このようなX線顕微鏡の簡
単な構造と光学系を示したものである。図6において、
X線発生器11から出射したX線は、X線照明光学系1
2により集光されて試料カプセル16中の試料に照射さ
れる。そして、試料を透過したX線は、X線拡大光学系
17により、試料の像をX線撮像装置18上に結像させ
る。X線発生器11からX線撮像装置18までの光路長
は、例えば2m程度である。
For example, FIG. 6 shows a simple structure and optical system of such an X-ray microscope. In FIG.
The X-ray emitted from the X-ray generator 11 is the X-ray illumination optical system 1
It is condensed by 2 and is irradiated on the sample in the sample capsule 16. Then, the X-rays transmitted through the sample form an image of the sample on the X-ray imaging device 18 by the X-ray magnifying optical system 17. The optical path length from the X-ray generator 11 to the X-ray imaging device 18 is, for example, about 2 m.

【0010】19は真空容器で、20はこの容器内を真
空にするための排気装置である。X線照明光学系12及
びX線拡大光学系17に前記非球面反射光学素子を用い
ることができれば、高性能なX線反射光学系を構成する
ことができる。
Reference numeral 19 is a vacuum container, and 20 is an exhaust device for evacuating the interior of the container. If the aspherical reflective optical element can be used for the X-ray illumination optical system 12 and the X-ray magnifying optical system 17, a high-performance X-ray reflective optical system can be configured.

【0011】[0011]

【発明が解決しようとする課題】従来、反射光学素子の
反射面は、軸対称であろうと自由曲面であろうと、主と
してNC工作機により加工製作されてきた。しかし、こ
のような従来の加工方法では、厳密な形状精度及び面精
度の両方が要求される非球面形状の反射面を有する前記
非球面反射光学素子を作製することはできないため、非
球面反射光学素子を提供できないという問題点があっ
た。
Conventionally, the reflecting surface of a reflecting optical element, whether it is axially symmetric or a free-form surface, has been mainly machined and manufactured by an NC machine tool. However, with such a conventional processing method, it is not possible to produce the aspherical reflective optical element having an aspherical reflective surface that requires both strict shape accuracy and surface accuracy, and therefore the aspherical reflective optical element There is a problem that the element cannot be provided.

【0012】本発明はかかる問題点に鑑みてなされたも
のであり、厳密な形状精度及び面精度の両方を満たす非
球面反射光学素子を提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide an aspherical reflective optical element satisfying both strict shape accuracy and surface accuracy.

【0013】[0013]

【課題を解決するための手段】そのため、本発明は第一
に「非球面形状に近似した曲面を有する基板の該曲面
に、厚さ分布を有する反射部材を接合し、非球面形状の
反射面を形成してなる非球面反射光学素子(請求項
1)」を提供する。また、本発明は第二に「前記基板と
前記反射部材とが陽極接合法により接合されてなること
を特徴とする請求項1記載の非球面反射光学素子(請求
項2)」を提供する。
Therefore, in the first aspect of the present invention, a reflective member having a thickness distribution is bonded to the curved surface of a substrate having a curved surface approximate to an aspherical surface to form an aspherical reflective surface. To provide an aspherical reflective optical element (claim 1). In addition, the present invention secondly provides an “aspherical reflective optical element (claim 2), wherein the substrate and the reflection member are bonded by an anodic bonding method”.

【0014】また、本発明は第三に「非球面形状の反射
面にX線反射用多層膜を設けたことを特徴とする請求項
1または2記載の非球面反射光学素子(請求項3)」を
提供する。
In the third aspect of the present invention, "the aspherical reflective optical element according to claim 1 or 2, characterized in that a multilayer film for X-ray reflection is provided on the aspherical reflecting surface. "I will provide a.

【0015】[0015]

【作用】厳密な形状精度及び面精度の両方を満たす非球
面反射用光学素子は、非球面形状に近似した曲面3を有
する基板1の該曲面3に、厚さ分布を有する反射部材2
を接合し、非球面形状の反射面4を形成してなる非球面
反射光学素子(請求項1)により実現することができる
(図1参照)。
The aspherical surface reflection optical element satisfying both strict shape accuracy and surface accuracy has a reflecting member 2 having a thickness distribution on the curved surface 3 of a substrate 1 having a curved surface 3 approximated to an aspherical shape.
Can be realized by an aspherical reflective optical element (claim 1) in which the aspherical reflecting surface 4 is joined (see FIG. 1).

【0016】本発明の非球面反射光学素子を製造する方
法の一例を示すと、先ず、面精度良好な表面(例えば、
最大表面粗さ0.001 μm以下)と厚さ分布を有する部材
(例えば、シリコン単結晶)2aと、形状精度が良好な
非球面形状に近似した曲面3を有する基板1を用意する
(図1A参照)。次に、基板1の曲面3に、部材2aを
陽極接合法により接合して(図1B参照)、非球面形状
に近似した曲面3を有する基板1の該曲面3に、厚さ分
布を有する反射部材2を接合し、非球面形状の反射面4
を形成してなる非球面反射光学素子が完成する(図1C
参照)。陽極接合法については、後で詳述する。
An example of a method for manufacturing the aspherical reflective optical element of the present invention will be described. First, a surface with good surface accuracy (for example,
A substrate 1 having a member (for example, a silicon single crystal) 2a having a maximum surface roughness of 0.001 μm or less) and a thickness distribution and a curved surface 3 approximate to an aspherical shape with good shape accuracy is prepared (see FIG. 1A). . Next, the member 2a is joined to the curved surface 3 of the substrate 1 by the anodic bonding method (see FIG. 1B), and the curved surface 3 of the substrate 1 having the curved surface 3 having an approximate aspherical shape has a thickness distribution. The member 2 is joined to form an aspherical reflecting surface 4
To form an aspherical reflective optical element (Fig. 1C).
reference). The anodic bonding method will be described in detail later.

【0017】なお、基板1の曲面3と部材2aの接合を
行うとき、特に、接合面である基板1の曲面3が凹面の
場合には、凹面に最近接した部材2aの接合面3’部分
から接合が行われるので、接合部分に空気溜まりができ
やすい。そのため、空気溜まりができないように、空気
抜きのための穴を基板1又は部材2aに、或いは両方に
設けることが好ましい(図1参照、基板1に空気抜き穴
5を設けた例)。
When the curved surface 3 of the substrate 1 and the member 2a are bonded, particularly when the curved surface 3 of the substrate 1 which is the bonding surface is a concave surface, the bonding surface 3'part of the member 2a closest to the concave surface is joined. Since the joining is performed from the above, it is easy for air to accumulate in the joining portion. Therefore, it is preferable to provide a hole for venting air in the substrate 1 or the member 2a, or both in order to prevent air accumulation (see FIG. 1, an example in which the air vent hole 5 is provided in the substrate 1).

【0018】空気抜きの穴5を基板1に設ける場合、穴
5はその上に位置する反射部材2の反射面部分の変形に
影響を及ぼすので、光学特性が特に要求されない反射面
部分の下側に位置する基板部分に、必要最小限の大きさ
にて設けることが好ましい。また、空気抜きの穴を反射
部材2に設ける場合は、光学特性が特に要求されない反
射面部分に穴を設けることが好ましい。
When the air vent hole 5 is provided in the substrate 1, the hole 5 affects the deformation of the reflecting surface portion of the reflecting member 2 located thereabove, so that the hole 5 is provided below the reflecting surface portion where optical characteristics are not particularly required. It is preferable to provide the substrate portion located at the minimum required size. Further, when the air vent hole is provided in the reflection member 2, it is preferable to provide the hole in the reflection surface portion where optical characteristics are not particularly required.

【0019】従って、空気抜きの穴は例えば、基板1又
は反射部材2の中心に最小限の大きさにて設けることが
好ましい。以上、本発明の非球面反射光学素子を製造す
る方法の一例を示した。本発明の非球面反射光学素子に
かかる基板1の曲面3と部材2aの接合により基板曲面
3の形状が接合後の反射部材2に転写される。即ち、良
好な面精度を有する部材2aの接合面3’は接合後、基
板曲面3にならって変形することで形状精度が良好な基
板曲面3の形状が接合後の反射部材2の反射面4(面精
度良好)に転写される(図1C参照)。
Therefore, it is preferable that the air vent hole is provided in the center of the substrate 1 or the reflecting member 2 with a minimum size. The example of the method for manufacturing the aspherical reflective optical element of the present invention has been described above. By bonding the curved surface 3 of the substrate 1 and the member 2a according to the aspherical reflective optical element of the present invention, the shape of the curved surface 3 of the substrate is transferred to the reflecting member 2 after bonding. That is, the bonding surface 3 ′ of the member 2 a having good surface accuracy is deformed following the curved surface 3 of the substrate after bonding, so that the shape of the curved surface 3 of the substrate having good shape accuracy is the reflecting surface 4 of the reflecting member 2 after bonding. (The surface accuracy is good) (see FIG. 1C).

【0020】即ち、反射面4の形状は、面精度が良好な
部材2aの表面(非接合面)形状と形状精度が良好な曲
面6の形状(非球面形状に近似した曲面形状)とが合成
された形状であり、良好な面精度及び形状精度を有する
反射面形状となる。また、合成された形状が非球面形状
となるように、予め部材2aの表面形状を設定すること
で、良好な面精度及び形状精度を有する非球面反射形状
とすることができる。なお、予め設定する部材2aの表
面形状は、CAEなどによる構造解析により導出するこ
とができる。
That is, the shape of the reflecting surface 4 is a combination of the surface (non-bonding surface) shape of the member 2a having good surface accuracy and the shape of the curved surface 6 having good shape accuracy (curved surface shape approximate to an aspherical shape). The shape of the reflecting surface is a curved shape having good surface accuracy and shape accuracy. Further, by setting the surface shape of the member 2a in advance so that the combined shape becomes an aspherical shape, it is possible to obtain an aspherical reflective shape having good surface accuracy and shape accuracy. The preset surface shape of the member 2a can be derived by structural analysis using CAE or the like.

【0021】曲面3を有する基板1の該曲面3に、部材
2aを接合する方法としては、有機系接着剤、ロウ付又
はハンダ付などで用いられる金属系接着剤、ガラス系接
着剤等の接着剤を用いる接合法と、レーザー溶接、シー
ム溶接、超音波溶接等の溶接による接合法と、さらに陽
極接合法をあげることができる。なお、溶接による接合
法には、接合材を介して二つの部材を接合する方法と接
合材を介さないで直接二つの部材を接合する方法があ
る。
As a method of joining the member 2a to the curved surface 3 of the substrate 1 having the curved surface 3, an organic adhesive, a metal adhesive used by brazing or soldering, a glass adhesive or the like is adhered. Examples thereof include a joining method using an agent, a joining method by welding such as laser welding, seam welding, and ultrasonic welding, and an anodic joining method. The joining method by welding includes a method of joining two members through a joining material and a method of joining two members directly without a joining material.

【0022】かかる接合法のうち、接着剤又は接合材を
用いる接合法により前記基板曲面3及び部材2aを接合
した場合、基板曲面(基板の接合面)3と部材2aの接
合面3’との間に接着剤層又は接合材層が介在すること
になるが、この層の厚さが大きいと、基板曲面3の形状
を接合後の反射部材2に転写することが困難となる。ま
た、基板曲面(基板の接合面)3と部材2aの接合面
3’との間に接着剤層又は接合材層が介在すると、熱膨
張率や塑性の相違による接合強度の低下という問題や、
経年変化による接合強度の劣化という問題が起こりやす
くなる。
When the curved surface 3 of the substrate and the member 2a are bonded by a bonding method using an adhesive or a bonding material among such bonding methods, the curved surface of the substrate (bonding surface of the substrate) 3 and the bonding surface 3'of the member 2a. Although an adhesive layer or a bonding material layer is interposed therebetween, if the thickness of this layer is large, it becomes difficult to transfer the shape of the curved surface 3 of the substrate to the reflecting member 2 after bonding. Further, when an adhesive layer or a bonding material layer is interposed between the curved surface of the substrate (bonding surface of the substrate) 3 and the bonding surface 3 ′ of the member 2a, there is a problem that the bonding strength decreases due to a difference in thermal expansion coefficient and plasticity,
The problem of deterioration of the bonding strength due to aging tends to occur.

【0023】接合材を用いない溶接法により、基板1と
部材2aを接合する場合は、基板1又は部材2aをその
融点又は軟化点以上に加熱する必要があるので、形状精
度を保持したまま接合することが困難である。従って、
接合法としては、比較的低温での接合が可能であり、し
かも接合材を用いる必要がなく、そのため、基板曲面3
の形状を接合後の反射部材2に正確に転写することがで
きる陽極接合法が好ましい(請求項2)。
When the substrate 1 and the member 2a are joined by a welding method without using a joining material, it is necessary to heat the substrate 1 or the member 2a to a temperature equal to or higher than the melting point or the softening point thereof. Difficult to do. Therefore,
As a joining method, it is possible to join at a relatively low temperature, and it is not necessary to use a joining material.
The anodic bonding method capable of accurately transferring the above shape to the reflecting member 2 after bonding is preferable (claim 2).

【0024】陽極接合法は、接合を行う2部材間に直流
電圧を印加することにより、本来(直流電圧を印加しな
い場合)の接合温度よりも低い温度での接合を可能とす
る接合法であり、誘電体(例えば、ガラスやセラミック
ス)と金属類(単位金属、合金、半導体)の接合に適用
できる。陽極接合を行う場合、先ず、接合される誘電体
及び金属類の各接合面を研磨して平滑化することが好ま
しい。この平滑化により、接合強度増大の効果が得られ
る。例えば、0.05μm以下の表面粗さにすることが好ま
しい。
The anodic bonding method is a bonding method which enables bonding at a temperature lower than the original (when no DC voltage is applied) bonding temperature by applying a DC voltage between two members to be bonded. It can be applied to the joining of dielectrics (for example, glass or ceramics) and metals (unit metals, alloys, semiconductors). When performing anodic bonding, it is preferable to first polish and smooth the respective bonding surfaces of the dielectric and metal to be bonded. This smoothing has the effect of increasing the bonding strength. For example, it is preferable that the surface roughness be 0.05 μm or less.

【0025】陽極接合においては、両材料の接合面を重
ね合わせて、誘電体の軟化点及び金属類の融点よりも低
い温度で加熱し、比較的高い直流電圧を両材料間に印加
することで、両者の接合がなされる。このときの極性
は、金属類側を+、誘電体側を−にする。加熱温度は、
材料の組み合わせや接合面の平滑度に依存するが、30
0〜600°Cの場合が多い。接合面の平滑度が良い
程、また誘電体の硬度が小さい程、より低い加熱温度で
の接合が可能となる。
In anodic bonding, the bonding surfaces of both materials are superposed, heated at a temperature lower than the softening point of the dielectric and the melting point of the metal, and a relatively high DC voltage is applied between both materials. , The two are joined. The polarity at this time is + on the metal side and − on the dielectric side. The heating temperature is
Depending on the combination of materials and the smoothness of the joint surface,
It is often 0 to 600 ° C. The better the smoothness of the joint surface and the smaller the hardness of the dielectric material, the lower the heating temperature the joint becomes possible.

【0026】印加する電圧は直流電圧であり、交流電圧
の場合には接合はなされない。また極性は金属類側を必
ず+にする。印加電圧の大きさは、材料の組み合わせ、
接合面の平滑度、加熱温度に依存するが、200〜20
00Vの場合が多く、一般には1000V前後が適当で
ある。上限値は、スパークによる破壊を起こさない上限
の値となる。
The applied voltage is a DC voltage, and in the case of an AC voltage, no junction is made. Also, the polarity must be + on the metal side. The magnitude of the applied voltage depends on the combination of materials,
200 to 20 depending on the smoothness of the joint surface and the heating temperature
In many cases, it is 00V, and in general, around 1000V is suitable. The upper limit value is the upper limit value that does not cause destruction by sparks.

【0027】電圧の印加時間(接合が完了する時間)
は、加熱温度及び印加電圧に依存するが、加熱温度が高
い程、印加電圧が高い程、短時間となり、一般には数分
程度である。陽極接合は、一般には空気中で行われる
が、酸素、スチーム、窒素、水素、アルゴン、真空、ホ
ーミングガスの雰囲気下でも行うことができる。
Voltage application time (bonding completion time)
Depends on the heating temperature and the applied voltage, but the higher the heating temperature and the higher the applied voltage, the shorter the time, and generally about several minutes. Anodic bonding is generally carried out in air, but it can also be carried out in an atmosphere of oxygen, steam, nitrogen, hydrogen, argon, vacuum or homing gas.

【0028】陽極接合による接合強度を増大するため
に、被接合材料である誘電体と金属類の熱膨張率の差が
小さい組み合わせを選択することが好ましい。例えば、
熱膨張率の差が50%以下の組み合わせが好ましい。陽
極接合に好適な誘電体としては、例えば、軟質ガラス
(例えば、ホウケイ酸ガラス)、硬質ガラス、光学ガラ
ス、セラミック(例えば、βアルミナセラミックス)、
溶融石英、サファイア、磁器類などがあり、またこれら
の誘電体それぞれとの組み合わせとして好適な金属類と
しては、例えば、コバール、クロム合金、タンタル、シ
リコン、ゲルマニウム、モリブデン、タングステン、G
aAsなどがある。
In order to increase the bonding strength by the anodic bonding, it is preferable to select a combination in which the difference in the coefficient of thermal expansion between the material to be bonded and the metal is small. For example,
A combination in which the difference in coefficient of thermal expansion is 50% or less is preferable. Examples of dielectrics suitable for anodic bonding include soft glass (for example, borosilicate glass), hard glass, optical glass, ceramics (for example, β-alumina ceramics),
There are fused quartz, sapphire, porcelain and the like, and as metals suitable for combination with each of these dielectrics, for example, kovar, chromium alloy, tantalum, silicon, germanium, molybdenum, tungsten, G
aAs and the like.

【0029】前記好適な誘電体と、該誘電体との熱膨張
率の差が50%よりも大きい金属類との組み合わせの場
合でも、金属類を薄膜状にすれば、接合強度の増大が可
能である。このような金属類としては、例えば、銅、
鉄、ニッケル、鉄−ニッケル合金、クロム、アルミニウ
ム、マグネシウム、チタン、ベリリウムなどがある。以
上の材料の組み合わせのうち、陽極接合に特に好適なも
のは、汎用性と加工精度の点から、ホウケイ酸ガラスと
シリコンの組み合わせである。この組み合わせによる陽
極接合では、比較的低い接合温度で、しかも短時間で接
合を行うことができる。
Even in the case of a combination of the above-mentioned suitable dielectric material and a metal material having a difference in coefficient of thermal expansion from the dielectric material of more than 50%, the bonding strength can be increased by forming the metal material into a thin film. Is. Examples of such metals include copper,
Examples include iron, nickel, iron-nickel alloys, chromium, aluminum, magnesium, titanium and beryllium. Of the combinations of the above materials, the one particularly suitable for anodic bonding is a combination of borosilicate glass and silicon in terms of versatility and processing accuracy. In anodic bonding by this combination, bonding can be performed at a relatively low bonding temperature and in a short time.

【0030】本発明の非球面反射光学素子の反射面にX
線反射用多層膜を設けると(請求項3)、該素子をX線
反射光学素子として使用することができる。X線反射用
多層膜としては、例えば、Mo/Si、Mo/Si化合
物、Ru/Si、Ru/Si化合物、Rh/Si、Rh
/Si化合物、W/C、W/Si、Ni/C、Cr/
C、Mo/B4 C、Mo/SiC、Ru/B4 C、Ni
/V25 、Cr/V2 5 の組み合わせのうち、いず
れか一つの組み合わせで、交互に複数回積層したものが
使用できる。
X is formed on the reflecting surface of the aspherical reflecting optical element of the present invention.
When the multilayer film for line reflection is provided (claim 3), the device can be used as an X-ray reflection optical device. As the multilayer film for X-ray reflection, for example, Mo / Si, Mo / Si compound, Ru / Si, Ru / Si compound, Rh / Si, Rh
/ Si compound, W / C, W / Si, Ni / C, Cr /
C, Mo / B 4 C, Mo / SiC, Ru / B 4 C, Ni
It is possible to use any one of the combinations of / V 2 O 5 and Cr / V 2 O 5 , which are alternately laminated a plurality of times.

【0031】反射面にX線反射用多層膜を設けた非球面
反射光学素子(請求項3)を製作する方法としては大き
くわけて、多層膜を形成した後に陽極接合を行う方法
と、陽極接合した後に多層膜を形成する方法がある。基
板と反射部材との接合面の曲面度が小さい場合には、接
合後でも所望の多層膜(構成層の膜厚比及び各構成層の
膜厚が一定の交互多層膜)を形成しやすいが、曲面度が
大きい場合には、接合後に所望の多層膜を形成しようと
すると、成膜条件の設定等、成膜工程が煩雑になる。そ
のため接合面の曲面度が大きい場合には、接合前に多層
膜を形成するとよい。
The method of producing an aspherical reflective optical element having a reflective surface provided with a multilayer film for X-ray reflection (claim 3) is roughly divided into a method of performing anodic bonding after forming the multilayer film and an anodic bonding. After that, there is a method of forming a multilayer film. When the curved surface of the joint surface between the substrate and the reflecting member is small, it is easy to form a desired multilayer film (alternate multilayer film in which the ratio of the thicknesses of constituent layers and the thickness of each constituent layer are constant) even after bonding. When the degree of curved surface is large, if a desired multilayer film is formed after joining, the film forming process such as setting of film forming conditions becomes complicated. Therefore, when the curved surface of the bonding surface is large, it is preferable to form the multilayer film before bonding.

【0032】本発明においては、両方法を提案すること
で、反射面にX線反射用多層膜を設けた非球面反射光学
素子(請求項3)の製法を接合面の形状に関わらずに提
供できる。本発明にかかる非球面反射光学素子は、各種
装置の光学系(例えば、顕微鏡等の光学系)に用いるこ
とができる。さらに、多層膜を成膜した光学素子は、X
線顕微鏡やX線リソグラフィー装置の照明光学系にも適
用することができる。また、本発明の非球面反射光学素
子を製造する方法は、光学素子だけでなく各種機械系要
素の製造にも適用できる。
In the present invention, by proposing both methods, a method for producing an aspherical reflective optical element having a reflective surface provided with a multilayer film for X-ray reflection (claim 3) is provided regardless of the shape of the bonding surface. it can. The aspherical reflective optical element according to the present invention can be used in an optical system of various devices (for example, an optical system such as a microscope). Furthermore, the optical element formed with the multilayer film is
It can also be applied to an illumination optical system of a line microscope or an X-ray lithography apparatus. Further, the method for producing an aspherical reflective optical element of the present invention can be applied not only to optical elements but also to various mechanical system elements.

【0033】以下、本発明を実施例により更に具体的に
説明するが、本発明はこれらの例に限定されるものでは
ない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0034】[0034]

【実施例1】図1は本実施例の非球面反射光学素子を製
造する方法を示す工程図であり、図1Cは完成した非球
面反射光学素子の概略側面図である。以下、本実施例の
非球面反射光学素子を作製する手順を示す。先ず、面精
度の良好な表面(最大表面粗さ0.001 μm以下)と厚さ
分布を有する部材(例えば、シリコン単結晶)2aと、
形状精度が良好な非球面形状に近似した曲面3及び空気
抜きの穴5を有する基板(ホウケイ酸ガラス)1を用意
した(図1A参照)。
Embodiment 1 FIG. 1 is a process drawing showing a method for manufacturing an aspherical reflective optical element of this embodiment, and FIG. 1C is a schematic side view of a completed aspherical reflective optical element. The procedure for producing the aspherical reflective optical element of this example will be described below. First, a member (for example, a silicon single crystal) 2a having a surface with a good surface accuracy (maximum surface roughness 0.001 μm or less) and a thickness distribution,
A substrate (borosilicate glass) 1 having a curved surface 3 and an air vent hole 5 that approximated an aspherical shape with good shape accuracy was prepared (see FIG. 1A).

【0035】陽極接合を行う前に、接合される部材2a
及び基板1の各接合面3,3’を研磨して平滑化(0.05
μm以下の最大表面粗さ)した。陽極接合は、部材2a
及び基板1を約400℃に加熱した状態において、部材
2a側電極6の極性を+、基板1側電極6’の極性を−
にして、直流電圧約700Vを印加して行った(図1B
参照)。
Member 2a to be joined before anodic joining
And the bonding surfaces 3 and 3'of the substrate 1 are polished and smoothed (0.05
The maximum surface roughness was less than or equal to μm). The anodic bonding is the member 2a.
In the state where the substrate 1 is heated to about 400 ° C., the polarity of the member 2a side electrode 6 is +, and the polarity of the substrate 1 side electrode 6 ′ is −.
Then, a DC voltage of about 700 V was applied (Fig. 1B).
reference).

【0036】約10分で接合が完了し、非球面形状に近
似した曲面3を有する基板1の該曲面3に、厚さ分布を
有する反射部材2を接合し、非球面形状の反射面4を形
成してなる非球面反射光学素子が完成する(図1C参
照)。なお、基板1の曲面3と部材2aの接合を行うと
き、接合面である基板1の曲面3が凹面であるので、凹
面に最近接した部材2aの接合面3’部分から接合が行
われるので、接合部分に空気溜まりができやすい。
The joining is completed in about 10 minutes, and the reflecting member 2 having a thickness distribution is joined to the curved surface 3 of the substrate 1 having the curved surface 3 approximated to the aspherical shape, and the aspherical reflecting surface 4 is formed. The formed aspherical reflective optical element is completed (see FIG. 1C). When the curved surface 3 of the substrate 1 and the member 2a are bonded, since the curved surface 3 of the substrate 1 that is the bonding surface is a concave surface, the bonding is performed from the bonding surface 3'portion of the member 2a that is closest to the concave surface. , It is easy for air to accumulate at the joint.

【0037】そのため、空気溜まりができないように、
空気抜きのための穴5を基板1に設けた。また、空気抜
きの穴5は、その上に位置する反射部材2の反射面部分
の変形に影響を及ぼすので、光学特性が特に要求されな
い反射面部分の下側に位置する基板部分、即ち基板1の
中心に最小限の大きさにて設けた。基板1の曲面3と部
材2aの接合により基板曲面3の形状が接合後の反射部
材2に転写された。即ち、良好な面精度を有する部材2
aの接合面3’は接合後、基板曲面3にならって変形す
ることで、形状精度が良好な基板曲面3の形状が接合後
の反射部材2の反射面4(面精度良好)に転写された
(図1C参照)。
Therefore, to prevent air accumulation,
A hole 5 for venting air was provided in the substrate 1. Further, since the air vent hole 5 affects the deformation of the reflecting surface portion of the reflecting member 2 located thereabove, the substrate portion located below the reflecting surface portion where optical characteristics are not particularly required, that is, the substrate 1 It was installed in the center with the minimum size. By bonding the curved surface 3 of the substrate 1 and the member 2a, the shape of the curved surface 3 of the substrate was transferred to the reflecting member 2 after bonding. That is, the member 2 having good surface accuracy
After joining, the joining surface 3 ′ of a is deformed following the curved surface 3 of the substrate, so that the shape of the curved surface 3 of the substrate having good shape accuracy is transferred to the reflecting surface 4 (good surface accuracy) of the reflecting member 2 after joining. (See FIG. 1C).

【0038】即ち、反射面4の形状は、面精度が良好な
部材2aの表面(非接合面)形状と、形状精度が良好な
曲面3の形状(非球面形状に近似した曲面形状)とが合
成された形状であり、良好な面精度及び形状精度を有す
る反射面形状であった。また、合成された形状が非球面
形状となるように、予め部材2aの表面形状を設定して
おいたので、接合後の反射面形状が非球面となり、良好
な面精度及び形状精度を有する非球面反射形状とするこ
とができた。なお、予め設定する部材2aの表面形状
は、CAEなどによる構造解析により導出することがで
きた。
That is, the shape of the reflecting surface 4 is the surface (non-bonding surface) shape of the member 2a having good surface accuracy and the shape of the curved surface 3 having good shape accuracy (curved surface shape approximate to aspherical surface shape). It was a synthesized shape, and was a reflecting surface shape having good surface accuracy and shape accuracy. In addition, since the surface shape of the member 2a is set in advance so that the combined shape becomes an aspherical shape, the reflecting surface shape after joining becomes an aspherical surface, and a non-spherical surface having good surface accuracy and shape accuracy is obtained. It could have a spherical reflection shape. The surface shape of the member 2a set in advance could be derived by structural analysis by CAE or the like.

【0039】[0039]

【実施例2】図2は本実施例の非球面反射光学素子の概
略側面図である。該光学素子は、形状精度が良好な非球
面形状に近似した曲面3を有する基板(ステンレス)1
の該曲面3に誘電体層(ホウケイ酸ガラス層、厚さ0.4
μm)9を設け、該誘電体層9を介して、面精度の良好
な表面(最大表面粗さ0.001 μm以下)及び厚さ分布を
有する反射部材2(単結晶シリコン)と、基板1とを陽
極接合し、非球面形状の反射面4を形成してなる非球面
反射光学素子である。
Embodiment 2 FIG. 2 is a schematic side view of an aspherical reflective optical element of this embodiment. The optical element is a substrate (stainless steel) 1 having a curved surface 3 that approximates an aspherical shape with good shape accuracy.
A dielectric layer (borosilicate glass layer, thickness 0.4
μm) 9 is provided, and the reflecting member 2 (single crystal silicon) having a surface with good surface accuracy (maximum surface roughness of 0.001 μm or less) and a thickness distribution and the substrate 1 are provided through the dielectric layer 9. This is an aspherical reflective optical element formed by anodic bonding and forming an aspherical reflective surface 4.

【0040】[0040]

【実施例3】図3は本実施例の非球面反射光学素子の概
略側面図である。該光学素子は、接合前の部材(ホウケ
イ酸ガラス)2aにシリコン層(厚さ0.4 μm)10を
設け、該シリコン層10を介して、面精度良好な表面
(最大表面粗さ0.001 μm以下)と厚さ分布を有する部
材2と、形状精度が良好な非球面形状に近似した曲面3
を有する基板1とを陽極接合し、非球面形状の反射面4
を形成してなる非球面反射光学素子である。
Third Embodiment FIG. 3 is a schematic side view of an aspherical reflective optical element of this embodiment. In this optical element, a silicon layer (thickness 0.4 μm) 10 is provided on a member (borosilicate glass) 2a before bonding, and a surface with good surface accuracy (maximum surface roughness 0.001 μm or less) is provided through the silicon layer 10. And a member 2 having a thickness distribution, and a curved surface 3 approximated to an aspherical shape with good shape accuracy
And an aspherical reflective surface 4 by anodic bonding with a substrate 1 having
Is an aspherical reflective optical element formed by forming.

【0041】[0041]

【実施例4】図4は本実施例の非球面反射光学素子の概
略側面図である。該光学素子は、形状精度が良好な非球
面形状に近似した曲面3を有する基板(ホウケイ酸ガラ
ス)1の該曲面3に、面精度良好な表面(最大表面粗さ
0.001 μm以下)と厚さ分布を有する部材2(単結晶シ
リコン)を陽極接合し、非球面形状の反射面4を形成し
てなる非球面反射光学素子の表面に(部材2の表面
に)、X線反射多層膜(Mo/Si交互多層膜、50〜
100ペア)7を成膜した非球面反射光学素子である。
X線反射多層膜の成膜には、イオンビームスパッタ装置
やマグネトロンスパッタ装置等の成膜装置を用いた。
Fourth Embodiment FIG. 4 is a schematic side view of an aspherical reflective optical element of this embodiment. The optical element has a surface with good surface accuracy (maximum surface roughness) on the curved surface 3 of a substrate (borosilicate glass) 1 having a curved surface 3 approximate to an aspherical shape with good shape accuracy.
0.001 μm or less) and a member 2 (single crystal silicon) having a thickness distribution is anodically bonded to the surface of the aspherical reflective optical element (on the surface of the member 2) formed with the aspherical reflecting surface 4. X-ray reflective multilayer film (Mo / Si alternating multilayer film, 50-
(100 pairs) 7 is a film formed on the aspherical reflective optical element.
A film forming apparatus such as an ion beam sputtering apparatus or a magnetron sputtering apparatus was used for forming the X-ray reflective multilayer film.

【0042】本実施例の光学素子は、X線反射光学素子
として使用することができた。
The optical element of this example could be used as an X-ray reflection optical element.

【0043】[0043]

【発明の効果】以上説明したように、本発明の非球面反
射光学素子は、その反射面が厳密な形状精度及び面精度
の両方を満たすことができるので、高い光学性能が要求
される光学系に使用できる。
As described above, since the reflecting surface of the aspherical reflective optical element of the present invention can satisfy both strict shape accuracy and surface accuracy, an optical system which requires high optical performance. Can be used for

【図面の簡単な説明】[Brief description of drawings]

【図1】は、実施例1の非球面反射光学素子を製造する
方法を示す工程図である。
FIG. 1 is a process drawing showing a method for manufacturing an aspherical reflective optical element of Example 1.

【図2】は、実施例2の非球面反射光学素子の概略側面
図である。
FIG. 2 is a schematic side view of an aspherical reflective optical element of Example 2.

【図3】は、実施例3の非球面反射光学素子の概略側面
図である。
FIG. 3 is a schematic side view of an aspherical reflective optical element of Example 3.

【図4】は、実施例4の非球面反射光学素子の概略側面
図である。
FIG. 4 is a schematic side view of an aspherical reflective optical element of Example 4.

【図5】は、X線縮小投影露光装置の構成図である。FIG. 5 is a configuration diagram of an X-ray reduction projection exposure apparatus.

【図6】は、X線顕微鏡の構成図である。FIG. 6 is a configuration diagram of an X-ray microscope.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1・・・基板 2・・・反射部材(基板1に接合された後のもの) 2a・・部材(基板1に接合される前のもの) 3・・・基板の曲面(非球面形状に近似した曲面) 3’・・部材の接合面 4・・・非球面形状の反射面 5・・・空気抜き穴 6・・・部材2a側電極 6’・・基板1側電極 7・・・X線反射用多層膜 8・・・直流電源 9・・・誘電体(ホウケイ酸ガラス)層 10・・・シリコン層 11・・・X線発生器 12・・・X線照明光学系 13・・・マスク 14・・・X線結像光学系 15・・・ウェハ 16・・・試料カプセル 17・・・X線拡大光学系 18・・・X線撮像装置 19・・・真空容器 20・・・排気装置 以 上 1 ... Substrate 2 ... Reflective member (after being joined to substrate 1) 2a ... Member (before being joined to substrate 1) 3 ... Curved surface of substrate (approximate to aspherical shape) Curved surface) 3 '... Joining surface of member 4 ... Aspherical reflecting surface 5 ... Air vent hole 6 ... Member 2a side electrode 6' ... Substrate 1 side electrode 7 ... X-ray reflection Multi-layer film 8 ... DC power supply 9 ... Dielectric (borosilicate glass) layer 10 ... Silicon layer 11 ... X-ray generator 12 ... X-ray illumination optical system 13 ... Mask 14・ ・ ・ X-ray imaging optical system 15 ・ ・ ・ Wafer 16 ・ ・ ・ Sample capsule 17 ・ ・ ・ X-ray magnifying optical system 18 ・ ・ ・ X-ray imaging device 19 ・ ・ ・ Vacuum container 20 ・ ・ ・ Exhaust device Up

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非球面形状に近似した曲面を有する基板
の該曲面に、厚さ分布を有する反射部材を接合し、非球
面形状の反射面を形成してなる非球面反射光学素子。
1. An aspherical reflective optical element in which a reflective member having a thickness distribution is bonded to the curved surface of a substrate having a curved surface similar to an aspherical surface to form an aspherical reflective surface.
【請求項2】 前記基板と前記反射部材とが陽極接合法
により接合されてなることを特徴とする請求項1記載の
非球面反射光学素子。
2. The aspherical reflective optical element according to claim 1, wherein the substrate and the reflecting member are bonded by an anodic bonding method.
【請求項3】 非球面形状の反射面にX線反射用多層膜
を設けたことを特徴とする請求項1または2記載の非球
面反射光学素子。
3. The aspherical reflective optical element according to claim 1, wherein a multilayer film for X-ray reflection is provided on the aspherical reflecting surface.
JP7010456A 1995-01-26 1995-01-26 Non-spherical surface reflection optical element Pending JPH08201592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7010456A JPH08201592A (en) 1995-01-26 1995-01-26 Non-spherical surface reflection optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7010456A JPH08201592A (en) 1995-01-26 1995-01-26 Non-spherical surface reflection optical element

Publications (1)

Publication Number Publication Date
JPH08201592A true JPH08201592A (en) 1996-08-09

Family

ID=11750652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7010456A Pending JPH08201592A (en) 1995-01-26 1995-01-26 Non-spherical surface reflection optical element

Country Status (1)

Country Link
JP (1) JPH08201592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474880A (en) * 2019-02-26 2021-10-01 Asml荷兰有限公司 Reflector manufacturing method and related reflector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474880A (en) * 2019-02-26 2021-10-01 Asml荷兰有限公司 Reflector manufacturing method and related reflector
KR20210121151A (en) * 2019-02-26 2021-10-07 에이에스엠엘 네델란즈 비.브이. Method of making reflectors and related reflectors
JP2022521373A (en) * 2019-02-26 2022-04-07 エーエスエムエル ネザーランズ ビー.ブイ. Reflector manufacturing method and related reflectors

Similar Documents

Publication Publication Date Title
TWI434132B (en) Euv reticle substrates with high thermal conductivity
TWI294637B (en) Chuck, lithographic projection apparatus, method of manufacturing a chuck and device manufacturing method
JP5337714B2 (en) EUV projection exposure apparatus
JP3047541B2 (en) Reflective mask and defect repair method
US6453005B2 (en) SiO2-coated mirror substrate for EUV
JP2002299228A (en) Reticle, aligner using the same and exposure method
JP2003045782A (en) Reflection-type reduced projection optical system and projection aligner using the same
JP7061666B2 (en) Assemblies for use in semiconductor photolithography and how to manufacture the same
JP3301249B2 (en) Reflection optical element and method of manufacturing the same
JP2007108194A (en) Method for manufacturing multilayer film mirror, method for manufacturing optical system, exposure device, and method for manufacturing device
JPH11345760A (en) Aligner
JP4444971B2 (en) Method for joining at least a first member and a second member
JPH08201593A (en) Non-spherical surface reflection optical element
JPH0868897A (en) Reflection mirror and its production method
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
JP2003218023A (en) X-ray reflecting mirror, x-ray exposure transfer apparatus, and method of manufacturing semiconductor device
JPH08201592A (en) Non-spherical surface reflection optical element
JPH10339799A (en) Reflecting mirror and its manufacturing method
JP3291953B2 (en) Optical element for reflection
JPH08222497A (en) Reflection-type mask
JPH0868898A (en) Reflection mirror and its production method
JPH08201589A (en) X-ray spectroscopic element
JPH08271697A (en) Optical device for x-ray microscope
JPH0772318A (en) Reflector and illumination device and exposure device using the same as well as production of device
JP2022533985A (en) Split double-sided wafer and reticle clamp