JPH08201590A - Optical element for reflection - Google Patents

Optical element for reflection

Info

Publication number
JPH08201590A
JPH08201590A JP7010453A JP1045395A JPH08201590A JP H08201590 A JPH08201590 A JP H08201590A JP 7010453 A JP7010453 A JP 7010453A JP 1045395 A JP1045395 A JP 1045395A JP H08201590 A JPH08201590 A JP H08201590A
Authority
JP
Japan
Prior art keywords
reflection
optical element
substrate
reflecting
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7010453A
Other languages
Japanese (ja)
Other versions
JP3291953B2 (en
Inventor
Motohide Kageyama
元英 影山
Katsuhiko Murakami
勝彦 村上
Shinya Hara
信也 原
Kiyoto Majima
清人 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP01045395A priority Critical patent/JP3291953B2/en
Publication of JPH08201590A publication Critical patent/JPH08201590A/en
Application granted granted Critical
Publication of JP3291953B2 publication Critical patent/JP3291953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE: To provide an optical element for reflection (for example, an optical element for reflection having an equal function to a theoretical mirror for Koehler's illumination) fulfilling both of strict accuracy of shape and accuracy of roughness. CONSTITUTION: On the curved surface 4 of a base plate 1 having a curved surface 4, a reflection part 2 having a plurality of reflection plane or a rough reflection plane 6 isolated by a groove 3 is contacted to make an optical element for reflection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反射用光学素子に関す
るものであり、特にX線縮小投影露光装置、X線顕微鏡
等のX線光学機器の照明系に好適な反射用光学素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection optical element, and more particularly to a reflection optical element suitable for an illumination system of X-ray optical equipment such as an X-ray reduction projection exposure apparatus and an X-ray microscope.

【0002】[0002]

【従来の技術】近年、半導体集積回路素子の微細化に伴
い、光の回折限界によって制限される光学系の解像力を
向上させるために、従来の紫外線に代わって、これより
波長の短いX線を使用した投影リソグラフィー技術が開
発されている。この技術に使用されるX線縮小投影露光
装置は、主としてX線源、照明光学系、マスク、結像光
学系、ウェハーステージ等により構成される。
2. Description of the Related Art In recent years, with the miniaturization of semiconductor integrated circuit devices, in order to improve the resolution of an optical system which is limited by the diffraction limit of light, conventional X-rays are replaced with X-rays having a shorter wavelength. The projection lithography technique used has been developed. The X-ray reduction projection exposure apparatus used in this technique is mainly composed of an X-ray source, an illumination optical system, a mask, an imaging optical system, a wafer stage and the like.

【0003】X線源には、放射光やレーザープラズマX
線源等が使用される。照明光学系は反射面に斜め方向か
ら入射したX線を反射させる斜入射ミラー、反射面が多
層膜により形成される多層膜ミラー、および所定波長の
X線のみを反射または透過させるフィルター等により構
成され、マスク上を所望の波長のX線で照明する。
The X-ray source includes synchrotron radiation and laser plasma X.
A radiation source or the like is used. The illumination optical system is composed of an oblique incidence mirror that reflects X-rays obliquely incident on the reflection surface, a multilayer mirror whose reflection surface is formed of a multilayer film, and a filter that reflects or transmits only X-rays of a predetermined wavelength. Then, the mask is illuminated with X-rays having a desired wavelength.

【0004】マスクには透過型マスクと反射型マスクと
がある。透過型マスクは、X線を良く透過する物質から
なる薄いメンブレン上にX線を吸収する物質を所定形状
に設けることによってパターンを形成したものである。
一方、反射型マスクは、例えば、X線を反射する多層膜
上に反射率の低い部分を所定形状に設けることによって
パターンを形成したものである。
The mask includes a transmission type mask and a reflection type mask. The transmissive mask has a pattern formed by providing a substance that absorbs X-rays in a predetermined shape on a thin membrane made of a substance that transmits X-rays well.
On the other hand, the reflective mask is, for example, a pattern formed by providing a portion having a low reflectance in a predetermined shape on a multilayer film that reflects X-rays.

【0005】このようなマスク上に形成されたパターン
は、複数の多層膜ミラー等で構成された投影結像光学系
により、フォトレジストが塗布されたウェハー上に結像
することで該レジストに転写される。なお、X線は大気
に吸収されて減衰するため、その光路は全て所定真空度
に維持されている。一般に、光学系の収差が充分に小さ
くて収差の影響が無視できるような回折限界の結像にお
いては、光学系の解像力は結像系の性能だけでなく、物
体(リソグラフィーの場合はマスク)の照明方法に左右
される。
The pattern formed on such a mask is transferred onto the resist by forming an image on a wafer coated with a photoresist by a projection imaging optical system composed of a plurality of multilayer film mirrors and the like. To be done. Since X-rays are absorbed by the atmosphere and attenuated, all the optical paths thereof are maintained at a predetermined vacuum degree. Generally, in diffraction-limited imaging in which the aberration of the optical system is sufficiently small and the influence of the aberration can be ignored, the resolving power of the optical system depends not only on the performance of the imaging system but also on the object (mask in the case of lithography). It depends on the lighting method.

【0006】結像系の入射側開口数に対する照明光の開
口数の比をコヒーレンスファクターσという。σ=0の
場合をコヒーレント照明による結像といい、この場合に
は、物体は単一な方向から入射する平行光束で照明され
る。この時、光学系の伝達関数(OTF)は、図9に示
すように、NA/λ(NAは結像系の出射側開口数、λ
は照明光の波長)で決まる空間周波数までは一定の値を
示すが、この空間周波数を越えると0になり解像しな
い。
The ratio of the numerical aperture of illumination light to the incident numerical aperture of the image forming system is called a coherence factor σ. The case of σ = 0 is called image formation by coherent illumination, and in this case, the object is illuminated with a parallel light flux incident from a single direction. At this time, as shown in FIG. 9, the transfer function (OTF) of the optical system is NA / λ (NA is the exit side numerical aperture of the imaging system, λ
Indicates a constant value up to the spatial frequency determined by the wavelength of the illumination light), but when it exceeds this spatial frequency, it becomes 0 and is not resolved.

【0007】一方、σ=1の場合をインコヒーレント照
明による結像といい、この場合には物体は結像系の入射
側開口全体を満たすような発散角を持つ光線で照明され
る。この時、OTFは空間周波数が高くなるに従い徐々
に低下するが、2NA/λの空間周波数までは0になら
ない。従って、像のコントラストは低下するものの、イ
ンコヒーレント照明の方が高い空間周波数のパターンま
で解像することができる。そこで、回折限界の解像力が
要求される露光装置の照明光学系には、解像力とコント
ラストとを勘案して0<σ<1の部分インコヒーレント
照明が用いられている。
On the other hand, the case of σ = 1 is called image formation by incoherent illumination. In this case, the object is illuminated with a ray having a divergence angle that fills the entire entrance side aperture of the image forming system. At this time, the OTF gradually decreases as the spatial frequency increases, but does not become 0 up to the spatial frequency of 2NA / λ. Therefore, although the image contrast is reduced, incoherent illumination can resolve a pattern with a higher spatial frequency. Therefore, in the illumination optical system of the exposure apparatus, which requires a diffraction-limited resolution, partial incoherent illumination of 0 <σ <1 is used in consideration of the resolution and the contrast.

【0008】実際の露光装置において、マスク上の例え
ば120×120mm程度の広い領域を照明する場合に
は、前述のような部分コヒーレント照明の条件を満たす
ことと、照度を均一にすることが要求される。そのよう
な条件を満たす照明光学系として、図10に示すような
ケーラー照明光学系が広く一般に使用されている。以下
にケーラー照明光学系の機能を簡単に説明する。
In the case of illuminating a wide area of, for example, about 120 × 120 mm on a mask in an actual exposure apparatus, it is required to satisfy the conditions of the partial coherent illumination as described above and make the illuminance uniform. It As an illumination optical system that satisfies such a condition, a Koehler illumination optical system as shown in FIG. 10 is widely and generally used. The function of the Koehler illumination optical system will be briefly described below.

【0009】光源19から出射した光線は、まず第1の
レンズ20により平行光束に変換された後、オプティカ
ルインテグレーター21へ入射する。オプティカルイン
テグレーター21は平行光束を空間的に分割し、さらに
分割した各光束を集束させるので、光源19の多重化さ
れた像22が形成される。紫外光を用いた露光装置にお
いては、オプティカルインテグレーター21としてフラ
イアイレンズが一般に用いられている。
The light beam emitted from the light source 19 is first converted into a parallel light beam by the first lens 20, and then enters the optical integrator 21. The optical integrator 21 spatially splits the parallel light flux and focuses each of the split light fluxes, so that a multiplexed image 22 of the light source 19 is formed. In an exposure apparatus that uses ultraviolet light, a fly-eye lens is generally used as the optical integrator 21.

【0010】次に、この光源像22から発散する光線
は、第2のレンズ23により平行光束に変換された後、
物体24を照明する。異なる光源像22から発した光線
束は異なる方向から物体24へ入射する。この時、途中
(第1のレンズ20とオプティカルインテグレーター2
1の間)の平行光束の太さが照明光のNA(開口数)を
決め、多重化された光源像22からの発散角が照明領域
の大きさを決めることになる。点光源から発した光線を
平行光束に変換して物体を照明するので、照度ムラは小
さい。また、照明の開口数の変更も容易である。
Next, the light rays diverging from the light source image 22 are converted into parallel light fluxes by the second lens 23,
Illuminate the object 24. Ray bundles emitted from different light source images 22 enter the object 24 from different directions. At this time, on the way (first lens 20 and optical integrator 2
The thickness of the parallel light flux (between 1) determines the NA (numerical aperture) of the illumination light, and the divergence angle from the multiplexed light source image 22 determines the size of the illumination area. Since the light emitted from the point light source is converted into a parallel light flux to illuminate the object, the illuminance unevenness is small. Moreover, it is easy to change the numerical aperture of the illumination.

【0011】X線投影露光装置において、以上のような
ケーラー照明光学系を実現するためには、図10に示し
たものと等価な光学系を全て反射光学系(例えば多層膜
ミラーを用いたもの)で構成する必要がある。そのよう
な光源を多重化するための光学素子として、図11に示
すようなケーラー照明用ミラーがJ.B.Murphyらによって
提案されている(Appl. Opt.,32(34)6920(1993))。
In order to realize the Koehler illumination optical system as described above in the X-ray projection exposure apparatus, all the optical systems equivalent to those shown in FIG. 10 are reflective optical systems (for example, those using a multilayer film mirror). ) Must be configured. As an optical element for multiplexing such light sources, a Koehler illumination mirror as shown in FIG. 11 has been proposed by JB Murphy et al. (Appl. Opt., 32 (34) 6920 (1993)).

【0012】かかるケーラー照明用ミラーの提案は、理
論的なものであり、実物が存在するわけではない。該ケ
ーラー照明用ミラーは、その反射面の厳密な形状精度及
びあらさ精度(面精度)の両方が要求されるので、作製
が非常に困難であるからである。しかし、かかるケーラ
ー照明用ミラーがもし存在すれば、前述のX線投影露光
装置のようにレンズ光学系を適用できないX線光学系
や、その他の光学系にも用いることができるので、その
適用範囲は様々な装置に広がる。
The proposal of such a mirror for Koehler illumination is theoretical, and there is no real thing. This is because the mirror for Koehler illumination requires both strict shape accuracy and roughness accuracy (surface accuracy) of its reflecting surface, and is extremely difficult to manufacture. However, if such a mirror for Koehler illumination is present, it can be used for an X-ray optical system to which a lens optical system cannot be applied, such as the above-mentioned X-ray projection exposure apparatus, and other optical systems. Extends to a variety of devices.

【0013】例えば、近年急速に進歩している医学や生
物工学の分野では、通常の可視光(λ=約400nm〜
800nm)を用いる顕微鏡よりも分解能が高く、しか
も生きた試料(以下生物試料という、例えば、細胞、バ
クテリア、精子、染色体、ミトコンドリア、べん毛な
ど)も鮮明に観察することができる高解像度顕微鏡とし
て、可視光に代えて波長λ=2〜5nmの軟X線を用い
るX線顕微鏡が検討され開発されつつある。
For example, in the fields of medicine and biotechnology, which have been rapidly advancing in recent years, ordinary visible light (λ = about 400 nm
As a high-resolution microscope that has a higher resolution than a microscope that uses 800 nm) and that can also clearly observe living samples (hereinafter referred to as biological samples, such as cells, bacteria, sperms, chromosomes, mitochondria, flagella). , X-ray microscopes using soft X-rays having a wavelength λ of 2 to 5 nm instead of visible light have been studied and are being developed.

【0014】例えば、図12は、このようなX線顕微鏡
の簡単な構造と光学系を示したものである。図12にお
いて、X線発生器12から出射したX線は、X線照明光
学系13により集光されて試料カプセル14中の試料に
照射される。そして、試料を透過したX線は、X線拡大
光学系15により、試料の像をX線撮像装置16上に結
像させる。X線発生器12からX線撮像装置16までの
光路長は、例えば2m程度である。
For example, FIG. 12 shows a simple structure and optical system of such an X-ray microscope. In FIG. 12, the X-rays emitted from the X-ray generator 12 are condensed by the X-ray illumination optical system 13 and applied to the sample in the sample capsule 14. Then, the X-ray transmitted through the sample forms an image of the sample on the X-ray imaging device 16 by the X-ray magnifying optical system 15. The optical path length from the X-ray generator 12 to the X-ray imaging device 16 is, for example, about 2 m.

【0015】17は真空容器で、18はこの容器内を真
空にするための排気装置である。X線照明光学系13に
前記ケーラー照明用ミラーを用いることができれば、ケ
ーラー照明光学系を構成することができる。
Reference numeral 17 is a vacuum container, and 18 is an exhaust device for evacuating the inside of the container. If the Koehler illumination mirror can be used for the X-ray illumination optical system 13, the Koehler illumination optical system can be configured.

【0016】[0016]

【発明が解決しようとする課題】前記ケーラー照明用ミ
ラーは、点光源からの光束を拡げ、またムラをなくすた
めに、光束を分割平面で反射させて1点に集収束させる
機能を満足しなければならない。前記ケーラー照明用ミ
ラーの反射面形状は、連続的な凹面鏡の反射凹面に似た
形状であるが、連続的な凹面鏡の反射面形状とは異な
る。前記ケーラー照明用ミラーの反射面は、複数の平面
が互いに隔離されて配列されたものであり、その配列
は、各平面の中心部における法線が1点に集まるように
なされている。
The Koehler illumination mirror must satisfy the function of reflecting the light beam from the split plane and converging it to one point in order to spread the light beam from the point light source and to eliminate the unevenness. I have to. The reflection surface shape of the Koehler illumination mirror is similar to the reflection concave surface of the continuous concave mirror, but different from the reflection surface shape of the continuous concave mirror. The reflecting surface of the mirror for Koehler illumination is formed by arranging a plurality of planes so as to be separated from each other, and the arrangement is such that the normal line at the center of each plane is gathered at one point.

【0017】従来、反射ミラーは、軸対称であろうと自
由曲面であろうと、主としてNC工作機により加工製作
されてきた。しかし、このような従来の加工方法では、
前記ケーラー照明用ミラーのように厳密な形状精度及び
あらさ精度が要求される反射用光学素子を作製すること
はできなかった。
Conventionally, the reflection mirror, whether it is axially symmetric or a free-form surface, has been mainly processed and manufactured by an NC machine tool. However, in such a conventional processing method,
It has not been possible to fabricate a reflection optical element that requires strict shape accuracy and roughness accuracy like the Koehler illumination mirror.

【0018】そのため、前記ケーラー照明用ミラーの提
案のように、厳密な形状精度及びあらさ精度が要求され
る反射用光学素子は、単に理論的なものであり、実際に
は利用することができない(実物が存在しない)という
問題点があった。本発明はかかる問題点に鑑みてなされ
たものであり、厳密な形状精度及びあらさ精度を満たす
反射用光学素子(例えば、前記理論的なケーラー照明用
ミラーと同等の機能を有する反射用光学素子)を提供す
ることを目的とする。
Therefore, the reflection optical element, which requires strict shape accuracy and roughness accuracy, as proposed by the Koehler illumination mirror, is merely theoretical and cannot be used in practice ( There is a problem that there is no real thing). The present invention has been made in view of the above problems, and a reflection optical element satisfying strict shape accuracy and roughness accuracy (for example, a reflection optical element having a function equivalent to that of the theoretical Koehler illumination mirror). The purpose is to provide.

【0019】[0019]

【課題を解決するための手段】そのため、本発明は第一
に「曲面を有する基板の該曲面に、溝部により隔てた複
数の反射平面又は反射略平面を有する反射部材を接合し
てなる反射用光学素子(請求項1)」を提供する。ま
た、本発明は第二に「前記基板の曲面が球面であり、か
つ、前記複数の反射平面又は反射略平面の各法線が前記
球面の中心を通るように、前記球面に前記反射部材が接
合されてなることを特徴とする請求項1記載の反射用光
学素子(請求項2)」を提供する。
Therefore, a first aspect of the present invention is "for reflection, which is formed by joining a reflective member having a plurality of reflective flat surfaces or reflective substantially flat surfaces separated by grooves to the curved surface of a substrate having a curved surface. An optical element (claim 1) ". Further, the present invention is secondly “the curved surface of the substrate is a spherical surface, and the reflective member is provided on the spherical surface so that each normal line of the plurality of reflective planes or substantially reflective planes passes through the center of the spherical surface. The reflective optical element according to claim 1 (claim 2), which is formed by bonding.

【0020】また、本発明は第三に「前記基板と前記反
射部材とが陽極接合法により接合されてなることを特徴
とする請求項1又は2記載の反射用光学素子(請求項
3)」を提供する。また、本発明は第四に「反射面にX
線反射用多層膜を設けたことを特徴とする請求項1〜3
記載の反射用光学素子(請求項4)」を提供する。
The present invention is thirdly "the reflection optical element according to claim 1 or 2, wherein the substrate and the reflection member are bonded by an anodic bonding method (claim 3)". I will provide a. In the fourth aspect of the present invention, the "X
4. A multilayer film for line reflection is provided, which is characterized in that
A reflective optical element (claim 4) ".

【0021】[0021]

【作用】厳密な形状精度及びあらさ精度を満たす反射用
光学素子(例えば、前記理論的なケーラー照明用ミラー
と同等機能を有する反射用光学素子)は、曲面4を有す
る基板1の該曲面4に、溝部3により隔てた複数の反射
平面又は反射略平面6を有する反射部材2を接合してな
る反射用光学素子(請求項1)により実現することがで
きる(図1参照)。
A reflecting optical element satisfying strict shape accuracy and roughness accuracy (for example, a reflecting optical element having a function equivalent to that of the theoretical mirror for Kohler illumination) is formed on the curved surface 4 of the substrate 1 having the curved surface 4. It can be realized by a reflection optical element (claim 1) formed by joining a reflection member 2 having a plurality of reflection planes or reflection planes 6 separated by a groove portion 3 (see FIG. 1).

【0022】本発明の反射用光学素子を製造する方法の
一例を示すと、先ず、平板状部材(例えば、シリコンウ
ェハ)2aを用意し、該部材2aに溝部3を形成して反
射部材2を作製する(図5の1.参照)。溝部3は例え
ば、ダイシング加工又はエッチング加工により形成でき
る。溝部3をダイシング加工により形成する場合には、
溝部3の幅はダイシングのブレードの幅(例えば、20
μm、100μm)に対応する大きさとなるが、溝部3
をエッチング加工により形成する場合には、さらに小さ
い幅にすることができる。
As an example of a method for manufacturing the reflection optical element of the present invention, first, a flat plate member (for example, a silicon wafer) 2a is prepared, and a groove 3 is formed in the member 2a to form the reflection member 2. It is produced (see 1. in FIG. 5). The groove portion 3 can be formed by, for example, a dicing process or an etching process. When the groove 3 is formed by dicing,
The width of the groove 3 is the width of the dicing blade (for example, 20
μm, 100 μm), but the groove 3
In the case of forming by etching, the width can be made smaller.

【0023】ダイシング加工には、エッチング加工にお
けるフォトリソ工程のように手間のかかる工程がないの
で、加工機さえ用意できれば、簡単に加工を行うことが
できる。しかし、前記したように、ダイシング加工で
は、ブレードの幅等の機械的な制約のために細い溝のよ
うな精度の高い形状を加工するのに限界がある。そこ
で、より高い精度が要求される場合には、工程は長くな
るが、エッチング加工により溝部3を形成するとよい。
Since the dicing process does not require a labor-intensive process like the photolithography process in the etching process, the process can be easily performed if a processing machine is prepared. However, as described above, the dicing process has a limit in processing a highly accurate shape such as a thin groove due to mechanical restrictions such as the width of the blade. Therefore, if higher accuracy is required, the process becomes longer, but the groove 3 may be formed by etching.

【0024】次に、曲面4を有する基板1の該曲面4
に、溝部3を形成した反射部材2を例えば陽極接合法に
より接合して(図5の2.参照)、反射用光学素子が完
成する(図5の3.参照)。陽極接合法については、後
で詳述する。基板1の曲面4と反射部材2の接合を行う
とき、特に、接合面である基板1の曲面4が凹面の場合
には、凹面に最近接した反射部材2の平面(接合面)部
分から接合が行われるので、接合部分に空気溜まりがで
きやすい。
Next, the curved surface 4 of the substrate 1 having the curved surface 4
Then, the reflection member 2 in which the groove 3 is formed is joined by, for example, an anodic bonding method (see 2. in FIG. 5) to complete the reflection optical element (see 3. in FIG. 5). The anodic bonding method will be described in detail later. When the curved surface 4 of the substrate 1 and the reflecting member 2 are joined, particularly when the curved surface 4 of the substrate 1 which is the joining surface is a concave surface, the flat surface (joint surface) of the reflecting member 2 which is closest to the concave surface is joined. Therefore, air is likely to be accumulated at the joint.

【0025】そのため、空気溜まりができないように、
空気抜きのための穴5を基板1又は反射部材2に設ける
ことが好ましい(図1参照、基板1に穴5を設けた
例)。空気抜きの穴5を基板1に設ける場合、穴5はそ
の上に位置する反射部材2の反射面部分の変形に影響を
及ぼすので、光学特性が特に要求されない反射面部分6
aの下側に位置する基板部分に、必要最小限の大きさに
て設けることが好ましい。
Therefore, to prevent air accumulation,
It is preferable to provide holes 5 for venting air in the substrate 1 or the reflecting member 2 (see FIG. 1, an example in which the holes 5 are provided in the substrate 1). When the air vent hole 5 is provided in the substrate 1, the hole 5 affects the deformation of the reflecting surface portion of the reflecting member 2 located thereabove, and therefore the reflecting surface portion 6 which is not particularly required to have optical characteristics.
It is preferable to provide the substrate portion located on the lower side of a with the minimum necessary size.

【0026】また、空気抜きの穴5を反射部材2に設け
る場合は、光学特性が特に要求されない反射面部分に穴
5を設けることが好ましい。従って、空気抜きの穴5は
例えば、基板1又は反射部材2の中心に最小限の大きさ
にて設けることが好ましい。以上、本発明の反射用光学
素子を製造する方法の一例を示した。
When the air vent hole 5 is provided in the reflecting member 2, it is preferable to provide the hole 5 in the reflecting surface portion where optical characteristics are not particularly required. Therefore, the air vent hole 5 is preferably provided in the center of the substrate 1 or the reflection member 2 with a minimum size. Heretofore, an example of the method for producing the reflective optical element of the present invention has been shown.

【0027】本発明の反射用光学素子にかかる基板1の
曲面4と反射部材2の接合により、基板曲面4の形状精
度が接合後の反射部材2に転写される。即ち、反射部材
2の接合面は接合後、基板曲面4にならって変形するこ
とで、基板曲面4の形状精度が接合後の反射部材2に転
写される(図5の3.参照)。反射部材2の接合面は接
合後、基板曲面4にならって変形するが、本発明では反
射部材2の反射面側に複数の反射面(反射平面又は反射
略平面)6を隔てる溝部3を設けている。そのため、反
射部材2の接合面が変形する際に生じる応力を該溝部3
を設けた部分(溝部形成部分)に集中させて、複数の反
射面6の変形を抑制することができる。
By joining the curved surface 4 of the substrate 1 and the reflecting member 2 according to the reflecting optical element of the present invention, the shape accuracy of the curved surface 4 of the substrate is transferred to the reflecting member 2 after joining. That is, the joining surface of the reflecting member 2 is deformed following the joining of the curved surface 4 of the substrate after joining, whereby the shape accuracy of the curved surface 4 of the substrate is transferred to the reflecting member 2 after joining (see 3. in FIG. 5). The bonding surface of the reflecting member 2 is deformed following the curved surface 4 of the substrate after bonding, but in the present invention, the groove portion 3 for separating a plurality of reflecting surfaces (reflection planes or reflection substantially planes) 6 is provided on the reflection surface side of the reflection member 2. ing. Therefore, the stress generated when the joint surface of the reflecting member 2 is deformed is reduced by the groove 3
It is possible to suppress the deformation of the plurality of reflecting surfaces 6 by concentrating it on the portion where the groove is formed (groove portion forming portion).

【0028】また、反射部材2において、反射面6部分
と溝部3形成部分の剛性差を大きくする程、前記応力を
溝部3形成部分に集中させて、複数の反射面6の変形を
抑制する効果が増大する。但し、前記剛性差が大きすぎ
て、溝部3形成部分への応力集中による該部分の変形が
過大になると、基板曲面4の形状精度が接合後の反射部
材2に転写される度合いが低下する。
Further, in the reflecting member 2, the larger the difference in rigidity between the reflecting surface 6 portion and the groove portion 3 forming portion, the more the stress is concentrated on the groove portion 3 forming portion, thereby suppressing deformation of the plurality of reflecting surfaces 6. Will increase. However, when the difference in rigidity is too large and the deformation of the groove 3 due to stress concentration on the portion is excessive, the accuracy of the shape of the curved surface 4 of the substrate is less likely to be transferred to the reflecting member 2 after joining.

【0029】従って、前記反射面6の変形抑制及び前記
形状精度の転写の両方を考慮した剛性差を持たせること
が好ましい。前記剛性差を大きくするには、例えば、反
射面6部分の厚さを溝部3形成部分に対して大きくする
か、或いは、溝部3の幅(一辺の長さ)を反射面6部分
(溝部3により隔てられた各反射面部分)の幅(一辺の
長さ)に対して小さくすれば良い。なお、溝部3の幅を
反射面6部分の幅に対して小さくすることは、反射面6
全体の面積を大きくして、反射光学素子としての機能を
増大する上でも好ましい。
Therefore, it is preferable to provide a rigidity difference in consideration of both the deformation suppression of the reflection surface 6 and the transfer of the shape accuracy. In order to increase the rigidity difference, for example, the thickness of the reflecting surface 6 portion is made larger than that of the groove portion 3 forming portion, or the width (length of one side) of the groove portion 3 is set to the reflecting surface 6 portion (groove portion 3). It is sufficient to reduce the width (length of one side) of each reflection surface portion (separated by). It should be noted that making the width of the groove 3 smaller than the width of the portion of the reflective surface 6 means that the reflective surface 6
It is also preferable to increase the area of the whole and to increase the function as a reflective optical element.

【0030】溝部3の平面投影形状は、容易に加工で
き、しかも平面座標系において表示しやすい形状が好ま
しく、例えば、図1(a)に示す回転対称な格子形状が
好ましい。本発明の反射用光学素子において、前記基板
1の曲面4が球面であり、かつ、前記複数の反射平面又
は反射略平面6の各法線が前記球面の中心Cを通るよう
に、前記球面に前記反射部材2が接合されてなる反射用
光学素子(請求項2)は、前記理論的なケーラー照明用
ミラーと同等の機能を有する。
The plane projection shape of the groove 3 is preferably a shape that can be easily processed and can be easily displayed in a plane coordinate system. For example, the rotationally symmetric lattice shape shown in FIG. 1A is preferable. In the reflection optical element of the present invention, the curved surface 4 of the substrate 1 is a spherical surface, and the normal surface of the plurality of reflection planes or the reflection approximate plane 6 passes through the center C of the spherical surface. The reflection optical element (claim 2) formed by bonding the reflection member 2 has a function equivalent to that of the theoretical mirror for Kohler illumination.

【0031】なお、前記複数の反射平面又は反射略平面
6の各法線が前記球面(曲面4)の中心を通るように、
前記球面に前記反射部材2を接合するためには、例え
ば、溝部3の平面投影形状を図1(a)に示す回転対称
な格子形状にするとよい。また、本発明の反射用光学素
子は、基板曲面4と反射部材2の接合が陽極接合法によ
りなされたものが好ましい(請求項3)。
The normal lines of the plurality of reflection planes or reflection planes 6 pass through the center of the spherical surface (curved surface 4).
In order to join the reflection member 2 to the spherical surface, for example, the planar projection shape of the groove portion 3 may be formed into a rotationally symmetric lattice shape shown in FIG. Further, the reflective optical element of the present invention is preferably one in which the curved surface 4 of the substrate and the reflective member 2 are bonded by an anodic bonding method (claim 3).

【0032】接合法としては、有機系接着剤、ロウ付又
はハンダ付などで用いられる金属系接着剤、ガラス系接
着剤等の接着剤を用いる接合法と、レーザー溶接、シー
ム溶接、超音波溶接等の溶接による接合法と、さらに陽
極接合法をあげることができる。なお、溶接による接合
法には、接合材を介して二つの部材を接合する方法と接
合材を介さないで直接二つの部材を接合する方法があ
る。
As a joining method, a joining method using an adhesive such as an organic adhesive, a metal adhesive used for brazing or soldering, a glass adhesive, laser welding, seam welding, ultrasonic welding And the like, and the anodic bonding method. The joining method by welding includes a method of joining two members through a joining material and a method of joining two members directly without a joining material.

【0033】かかる接合法のうち、接着剤又は接合材を
用いる接合法により、前記基板曲面4及び反射部材2を
接合した場合、基板曲面(基板の接合面)4と反射部材
2の接合面4’との間に接着剤層又は接合材層が介在す
ることになるが、この層の厚さが大きいと、基板曲面4
の形状精度を接合後の反射部材2に転写することが困難
となる。
When the substrate curved surface 4 and the reflecting member 2 are joined by a joining method using an adhesive or a joining material among such joining methods, the curved surface of the substrate (the joining surface of the substrate) 4 and the joining surface 4 of the reflecting member 2 are joined. ', An adhesive layer or a bonding material layer will be interposed, but if the thickness of this layer is large, the curved surface of the substrate 4
It becomes difficult to transfer the shape accuracy of the above to the reflecting member 2 after joining.

【0034】また、基板曲面(基板の接合面)4と反射
部材2の接合面4’との間に接着剤層又は接合材層が介
在すると、熱膨張率や塑性の相違による接合強度の低下
という問題や、経年変化による接合強度の劣化という問
題が起こりやすくなる。接合材を用いない溶接法によ
り、基板1と反射部材2を接合する場合は、基板1又は
反射部材2をその融点又は軟化点以上に加熱する必要が
あるので、形状精度を保持したまま接合することが困難
である。
Further, when an adhesive layer or a bonding material layer is interposed between the curved surface of the substrate (bonding surface of the substrate) 4 and the bonding surface 4'of the reflecting member 2, the bonding strength decreases due to the difference in thermal expansion coefficient and plasticity. And the problem of deterioration of joint strength due to aging. When the substrate 1 and the reflecting member 2 are joined by a welding method that does not use a joining material, it is necessary to heat the substrate 1 or the reflecting member 2 to the melting point or the softening point or higher, so that the joining is performed while maintaining the shape accuracy. Is difficult.

【0035】従って、接合法としては、比較的低温での
接合が可能であり、しかも接合材を用いる必要がなく、
そのため、基板曲面4の形状精度を接合後の反射部材2
に正確に転写することができる陽極接合法が好ましい。
陽極接合法は、接合を行う2部材間に直流電圧を印加す
ることにより、本来(直流電圧を印加しない場合)の接
合温度よりも低い温度での接合を可能とする接合法であ
り、誘電体(例えば、ガラスやセラミックス)と金属類
(単位金属、合金、半導体)の接合に適用できる。
Therefore, as the joining method, it is possible to join at a relatively low temperature, and it is not necessary to use a joining material.
Therefore, the shape accuracy of the curved surface 4 of the substrate is adjusted so that the reflecting member 2 after joining
The anodic bonding method is preferable because it enables accurate transfer.
The anodic bonding method is a bonding method that enables bonding at a temperature lower than the original (when no DC voltage is applied) bonding temperature by applying a DC voltage between two members to be bonded. It can be applied to joining (for example, glass or ceramics) and metals (unit metal, alloy, semiconductor).

【0036】陽極接合を行う場合、先ず、接合される誘
電体及び金属類の各接合面を研磨して平滑化することが
好ましい。この平滑化により、接合強度増大の効果が得
られる。例えば、0.05μm以下の表面粗さにすることが
好ましい。陽極接合においては、両材料の接合面を重ね
合わせて、誘電体の軟化点及び金属類の融点よりも低い
温度で加熱し、比較的高い直流電圧を両材料間に印加す
ることで、両者の接合がなされる。このときの極性は、
金属類側を+、誘電体側を−にする。
When performing anodic bonding, it is preferable to first polish and smooth each bonding surface of the dielectric and metal to be bonded. This smoothing has the effect of increasing the bonding strength. For example, it is preferable that the surface roughness be 0.05 μm or less. In anodic bonding, the bonding surfaces of both materials are superposed, heated at a temperature lower than the softening point of the dielectric and the melting point of the metal, and a relatively high DC voltage is applied between the two materials, Bonding is done. The polarity at this time is
Set the metal side to + and the dielectric side to-.

【0037】加熱温度は、材料の組み合わせや接合面の
平滑度に依存するが、300〜600°Cの場合が多
い。接合面の平滑度が良い程、また誘電体の硬度が小さ
い程、より低い加熱温度での接合が可能となる。印加す
る電圧は直流電圧であり、交流電圧の場合には接合はな
されない。また極性は金属類側を必ず+にする。印加電
圧の大きさは、材料の組み合わせ、接合面の平滑度、加
熱温度に依存するが、200〜2000Vの場合が多
く、一般には1000V前後が適当である。上限値は、
スパークによる破壊を起こさない上限の値となる。
The heating temperature depends on the combination of materials and the smoothness of the joint surface, but is often 300 to 600 ° C. The better the smoothness of the joint surface and the smaller the hardness of the dielectric material, the lower the heating temperature the joint becomes possible. The applied voltage is a DC voltage, and in the case of an AC voltage, no junction is made. Also, the polarity must be + on the metal side. The magnitude of the applied voltage depends on the combination of materials, the smoothness of the joint surface, and the heating temperature, but it is often 200 to 2000 V, and about 1000 V is generally suitable. The upper limit is
It is the upper limit value that does not cause destruction by sparks.

【0038】電圧の印加時間(接合が完了する時間)
は、加熱温度及び印加電圧に依存するが、加熱温度が高
い程、印加電圧が高い程、短時間となり、一般には数分
程度である。陽極接合は、一般には空気中で行われる
が、酸素、スチーム、窒素、水素、アルゴン、真空、ホ
ーミングガスの雰囲気下でも行うことができる。
Voltage application time (bonding completion time)
Depends on the heating temperature and the applied voltage, but the higher the heating temperature and the higher the applied voltage, the shorter the time, and generally about several minutes. Anodic bonding is generally carried out in air, but it can also be carried out in an atmosphere of oxygen, steam, nitrogen, hydrogen, argon, vacuum or homing gas.

【0039】陽極接合による接合強度を増大するため
に、被接合材料である誘電体と金属類の熱膨張率の差が
小さい組み合わせを選択することが好ましい。例えば、
熱膨張率の差が50%以下の組み合わせが好ましい。陽
極接合に好適な誘電体としては、例えば、軟質ガラス
(例えば、ホウケイ酸ガラス)、硬質ガラス、光学ガラ
ス、セラミック(例えば、βアルミナセラミックス)、
溶融石英、サファイア、磁器類などがあり、またこれら
の誘電体それぞれとの組み合わせとして好適な金属類と
しては、例えば、コバール、クロム合金、タンタル、シ
リコン、ゲルマニウム、モリブデン、タングステン、G
aAsなどがある。
In order to increase the bonding strength by anodic bonding, it is preferable to select a combination having a small difference in the coefficient of thermal expansion between the dielectric material and the metal which are the materials to be bonded. For example,
A combination in which the difference in coefficient of thermal expansion is 50% or less is preferable. Examples of dielectrics suitable for anodic bonding include soft glass (for example, borosilicate glass), hard glass, optical glass, ceramics (for example, β-alumina ceramics),
There are fused quartz, sapphire, porcelain and the like, and as metals suitable for combination with each of these dielectrics, for example, kovar, chromium alloy, tantalum, silicon, germanium, molybdenum, tungsten, G
aAs and the like.

【0040】前記好適な誘電体と、該誘電体との熱膨張
率の差が50%よりも大きい金属類との組み合わせの場
合でも、金属類を薄膜状にすれば、接合強度の増大が可
能である。このような金属類としては、例えば、銅、
鉄、ニッケル、鉄−ニッケル合金、クロム、アルミニウ
ム、マグネシウム、チタン、ベリリウムなどがある。以
上の材料の組み合わせのうち、陽極接合に特に好適なも
のは、汎用性と加工精度の点から、ホウケイ酸ガラスと
シリコンの組み合わせである。この組み合わせによる陽
極接合では、比較的低い接合温度で、しかも短時間で接
合を行うことができる。
Even in the case of a combination of the above-mentioned suitable dielectric material and a metal material having a difference in coefficient of thermal expansion from the dielectric material of more than 50%, the bonding strength can be increased by forming the metal material into a thin film. Is. Examples of such metals include copper,
Examples include iron, nickel, iron-nickel alloys, chromium, aluminum, magnesium, titanium and beryllium. Of the combinations of the above materials, the one particularly suitable for anodic bonding is a combination of borosilicate glass and silicon in terms of versatility and processing accuracy. In anodic bonding by this combination, bonding can be performed at a relatively low bonding temperature and in a short time.

【0041】本発明の反射用光学素子の反射面にX線反
射用多層膜を設けると(請求項4)該素子をX線光学素
子として使用することができる。X線反射用多層膜とし
ては、例えば、Mo/Si、Mo/Si化合物、Ru/
Si、Ru/Si化合物、Rh/Si、Rh/Si化合
物、W/C、W/Si、Ni/C、Cr/C、Mo/B
4 C、Mo/SiC、Ru/B4 C、Ni/V25
Cr/V2 5 の組み合わせのうち、いずれか一つの組
み合わせで、交互に複数回積層したものが使用できる。
When an X-ray reflection multilayer film is provided on the reflection surface of the reflection optical element of the present invention (claim 4), the element can be used as an X-ray optical element. Examples of the multilayer film for X-ray reflection include Mo / Si, Mo / Si compound, Ru /
Si, Ru / Si compound, Rh / Si, Rh / Si compound, W / C, W / Si, Ni / C, Cr / C, Mo / B
4 C, Mo / SiC, Ru / B 4 C, Ni / V 2 O 5 ,
Among the combinations of Cr / V 2 O 5 , any one of them can be used by alternately stacking a plurality of times.

【0042】反射面にX線反射用多層膜を設けた光学素
子(請求項4)を製作する方法としては大きくわけて、
多層膜を形成した後に陽極接合を行う方法と、陽極接合
した後に多層膜を形成する方法がある。基板と反射部材
との接合面の曲面度(例えば曲率)が小さい場合には、
接合後でも所望の多層膜(構成層の膜厚比及び各構成層
の膜厚が一定の交互多層膜)を形成しやすいが、曲面度
(例えば曲率)が大きい場合には、接合後に所望の多層
膜を形成しようとすると、成膜条件の設定等、成膜工程
が煩雑になる。そのため接合面の曲面度(例えば曲率)
が大きい場合には、接合前に多層膜を形成するとよい。
The method of manufacturing an optical element (claim 4) having a reflection surface provided with a multilayer film for X-ray reflection is broadly divided into the following:
There are a method of performing anodic bonding after forming the multilayer film and a method of forming the multilayer film after performing anodic bonding. When the degree of curvature (for example, curvature) of the joint surface between the substrate and the reflecting member is small,
It is easy to form a desired multi-layered film (alternating multi-layered film in which the film thickness ratio of constituent layers and the film thickness of each constituent layer are constant) even after bonding, but when the degree of curved surface (for example, curvature) is large, the desired multilayered film can be formed after bonding. When a multilayer film is to be formed, the film forming process such as setting film forming conditions becomes complicated. Therefore, the degree of curvature of the joint surface (eg curvature)
When the value is large, it is advisable to form a multilayer film before joining.

【0043】本発明においては、両方法を提案すること
で、反射面にX線反射用多層膜を設けた光学素子(請求
項4)の製法を接合面の形状に関わらずに提供できる。
本発明にかかる反射用光学素子は、各種装置の光学系
(例えば、顕微鏡等の照明光学系)に用いることができ
る。さらに、多層膜を成膜した光学素子はX線顕微鏡や
X線リソグラフィー装置の照明光学系にも適用すること
ができる。また、本発明の反射用光学素子を製造する方
法は、光学素子だけでなく各種機械系要素のの製造にも
適用できる。
In the present invention, by proposing both methods, it is possible to provide a method for producing an optical element (claim 4) having a reflecting surface provided with a multilayer film for X-ray reflection, regardless of the shape of the joint surface.
The reflection optical element according to the present invention can be used in an optical system of various devices (for example, an illumination optical system such as a microscope). Further, the optical element having the multilayer film formed thereon can be applied to an illumination optical system of an X-ray microscope or an X-ray lithography apparatus. In addition, the method for producing the reflective optical element of the present invention can be applied not only to the optical element but also to various mechanical system elements.

【0044】以下、本発明を実施例により更に具体的に
説明するが、本発明はこれらの例に限定されるものでは
ない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0045】[0045]

【実施例1】図1は本実施例の光学素子の平面図(a)
及び断面図(b)であり、該光学素子は、曲面4を有す
る基板1の該曲面4に、溝部3により隔てた複数の反射
面(反射面又は反射略平面)6を有する反射部材2を接
合してなる反射用光学素子である。
Embodiment 1 FIG. 1 is a plan view of an optical element of this embodiment (a).
FIG. 3B is a cross-sectional view (b), in which the optical element has a reflecting member 2 having a plurality of reflecting surfaces (reflecting surfaces or reflecting substantially flat surfaces) 6 separated by a groove 3 on the curved surface 4 of a substrate 1 having a curved surface 4. It is a reflection optical element formed by joining.

【0046】前記基板1の曲面4は形状精度のよい球面
であり、かつ、前記複数の反射面6の各法線が前記球面
の中心Cを通るように、前記球面に前記反射部材2が接
合されている。基板1の材料にはホウケイ酸ガラスを、
反射部材2の材料にはシリコンを使用した。また、基板
1と反射部材2の接合は、陽極接合法により行った。
The curved surface 4 of the substrate 1 is a spherical surface with good shape accuracy, and the reflecting member 2 is joined to the spherical surface so that each normal of the plurality of reflecting surfaces 6 passes through the center C of the spherical surface. Has been done. Borosilicate glass is used as the material of the substrate 1.
Silicon was used as the material of the reflecting member 2. Further, the substrate 1 and the reflecting member 2 were joined by the anodic joining method.

【0047】以下、本実施例の光学素子を作製する手順
を示す。先ず、シリコンを材料とする平板状部材2aを
用意し、該部材2aにダイシング法又はエッチング法に
より溝部3を形成して反射部材2を作製した(図5の
1.参照)。エッチング法では、平板状部材(シリコン
ウェハ)2a上にSiO2 を蒸着しさらにレジスト8を
塗布した後、マスクを用いてフォトリソを行った。次
に、SiO2 ドライエッチを行い、KOH等を使用して
面方位によるエッチングレートの違いを利用したウェッ
トエッチングにより溝部3を形成した。
The procedure for producing the optical element of this example will be described below. First, a flat plate-shaped member 2a made of silicon was prepared, and the groove 3 was formed in the member 2a by a dicing method or an etching method to manufacture the reflecting member 2 (see 1. in FIG. 5). In the etching method, SiO 2 was vapor-deposited on the flat plate-shaped member (silicon wafer) 2a, and the resist 8 was further applied, and then photolithography was performed using a mask. Next, SiO 2 dry etching was performed, and the groove 3 was formed by wet etching using KOH or the like by utilizing the difference in etching rate depending on the plane orientation.

【0048】図1(a)に示すように、溝部3の平面投
影形状は、容易に加工でき、しかも平面座標系において
表示しやすい形状である、回転対称な格子形状とした。
反射部材において、反射面部分と溝部形成部分の剛性差
を大きくするために、溝部3の幅と溝部形成部分の厚さ
に対して、反射面部分の厚さ及び一辺の長さを大きくし
た。即ち、溝部3の幅100μm、溝部形成部分の厚さ
150μmに対して、反射面部分の厚さ2mm及び一辺
の長さ2mmとした。
As shown in FIG. 1 (a), the plane projection shape of the groove portion 3 is a rotationally symmetric lattice shape which can be easily processed and is easily displayed in a plane coordinate system.
In the reflecting member, in order to increase the rigidity difference between the reflecting surface portion and the groove portion forming portion, the thickness of the reflecting surface portion and the length of one side are larger than the width of the groove portion 3 and the thickness of the groove portion forming portion. That is, the width of the groove portion 3 was 100 μm, the thickness of the groove portion forming portion was 150 μm, and the thickness of the reflecting surface portion was 2 mm and the length of one side was 2 mm.

【0049】陽極接合を行う前に、先ず、反射部材2の
反射面部分を研磨して最大表面粗さを0.001 μm以下と
した。また、接合される反射部材(シリコン)2及び基
板(ホウケイ酸ガラス)1の各接合面を研磨して平滑化
(0.05μm以下の最大表面粗さ)した。陽極接合は、反
射部材(シリコン)2及び基板(ホウケイ酸ガラス)1
を約400℃に加熱した状態において、反射部材(シリ
コン)2側の極性を+、基板(ホウケイ酸ガラス)1側
の極性を−にして、直流電圧約600Vを印加して行い
約10分で接合が完了した。
Before performing anodic bonding, first, the reflection surface portion of the reflection member 2 was polished to have a maximum surface roughness of 0.001 μm or less. Further, the respective bonding surfaces of the reflecting member (silicon) 2 and the substrate (borosilicate glass) 1 to be bonded were polished and smoothed (maximum surface roughness of 0.05 μm or less). Anodic bonding is performed using a reflective member (silicon) 2 and a substrate (borosilicate glass) 1
Is heated to about 400 ° C., the polarity of the reflection member (silicon) 2 side is set to +, the polarity of the substrate (borosilicate glass) 1 side is set to −, and a DC voltage of about 600 V is applied for about 10 minutes. Joining is completed.

【0050】基板1と反射部材2を陽極接合したとき、
溝部形成部分において最大変形量1μmの変形が生じた
のに対して、反射面部分では殆ど変形が起こらず、反射
面6部分の最大表面粗さを0.001 μm以下に保持するこ
とができた。尚、接合面である基板の曲面形状によって
は、前記最大変形量の値がさらに大きくなるが、その場
合には、反射面6部分の厚さをさらに大きくすること
で、反射面6の変形量が光学系で要求される表面粗さ精
度の範囲に入るようにすればよい。
When the substrate 1 and the reflecting member 2 are anodically bonded,
While the maximum deformation amount of 1 μm was generated in the groove portion forming portion, almost no deformation was generated in the reflecting surface portion, and the maximum surface roughness of the reflecting surface 6 portion could be maintained at 0.001 μm or less. It should be noted that, depending on the curved surface shape of the substrate that is the bonding surface, the value of the maximum deformation amount is further increased. In that case, by further increasing the thickness of the reflection surface 6 portion, the deformation amount of the reflection surface 6 is increased. Should be within the range of surface roughness accuracy required for the optical system.

【0051】基板1の曲面4と反射部材2の接合を行う
とき、特に、本実施例のように接合面である基板1の曲
面4が凹面の場合には、凹面に最近接した反射部材の平
面(接合面)部分から接合が行われるので、接合部分に
空気溜まりができやすい。そのため、本実施例では、空
気溜まりができないように、空気抜きのための穴5を基
板1に設けた。なお、空気抜きの穴5は、その上に位置
する反射部材2の反射面部分の変形に影響を及ぼすの
で、光学特性を特に要求されない反射面部分(中心部
分)6aの下側に位置する基板部分に必要最小限の大き
さにて設けた。
When the curved surface 4 of the substrate 1 and the reflecting member 2 are bonded together, particularly when the curved surface 4 of the substrate 1 which is the bonding surface as in this embodiment is concave, the reflecting member closest to the concave surface is Since the bonding is performed from the flat surface (bonding surface) portion, air is likely to be accumulated in the bonding portion. Therefore, in this embodiment, the holes 1 for venting air are provided in the substrate 1 so that air cannot be collected. Since the air vent hole 5 affects the deformation of the reflecting surface portion of the reflecting member 2 located thereabove, the substrate portion located below the reflecting surface portion (central portion) 6a which is not particularly required to have optical characteristics. The minimum size required.

【0052】[0052]

【実施例2】図2は本実施例の光学素子の断面図であ
る。該光学素子は、曲面を有する基板1の該曲面上に誘
電体層9を設け、該誘電体層9を介して前記基板1と、
溝部3により隔てた複数の反射面(反射面又は反射略平
面)6を有する反射部材2とを接合してなる反射用光学
素子である。
[Embodiment 2] FIG. 2 is a sectional view of an optical element of the present embodiment. In the optical element, a dielectric layer 9 is provided on the curved surface of a substrate 1 having a curved surface, and the substrate 1 is provided with the dielectric layer 9 interposed therebetween.
The reflecting optical element is formed by joining a reflecting member 2 having a plurality of reflecting surfaces (reflecting surfaces or reflecting planes) separated by a groove 3.

【0053】前記基板1の曲面は球面であり、かつ、前
記複数の反射面6の各法線が前記球面の中心を通るよう
に、前記球面に前記反射部材2が接合されている。な
お、誘電体層9はパイレックスガラス(ホウケイ酸ガラ
ス)を基板1上に蒸着することにより設けた。誘電体層
9の厚さは0.2 〜2μmが好ましいが、本実施例では0.
4 μmとした。
The curved surface of the substrate 1 is a spherical surface, and the reflecting member 2 is joined to the spherical surface so that the respective normals of the plurality of reflecting surfaces 6 pass through the center of the spherical surface. The dielectric layer 9 was provided by depositing Pyrex glass (borosilicate glass) on the substrate 1. The thickness of the dielectric layer 9 is preferably 0.2 to 2 μm, but in the present embodiment, it is 0.1.
It was 4 μm.

【0054】基板1の材料にはステンレスを、反射部材
2の材料にはシリコンウェハを使用した。また、基板1
と反射部材2の接合は、陽極接合法により行った。基板
1と反射部材2を陽極接合したとき、溝部形成部分にお
いて最大変形量1μmの変形が生じたのに対して、反射
面部分では殆ど変形が起こらず、最大表面粗さ0.001 μ
m以下の反射面6とすることができた。
Stainless steel was used as the material of the substrate 1 and a silicon wafer was used as the material of the reflecting member 2. Also, the substrate 1
The reflection member 2 and the reflection member 2 were bonded by the anodic bonding method. When the substrate 1 and the reflection member 2 were anodically bonded, the groove formed portion was deformed by a maximum deformation amount of 1 μm, while the reflection surface portion was hardly deformed and the maximum surface roughness was 0.001 μm.
The reflective surface 6 of m or less could be obtained.

【0055】[0055]

【実施例3】図3は本実施例の光学素子の断面図であ
る。該光学素子は、溝部3により隔てた複数の反射面
(反射面又は反射略平面)6を有する反射部材2の接合
面に金属類層(シリコン薄膜層)10を設け、該金属類
層10を介して前記反射部材2と、曲面を有する基板1
の該曲面とを接合してなる反射用光学素子である。金属
類層10の厚さは0.2 〜2μmが好ましいが、本実施例
では0.4 μmとした。
Third Embodiment FIG. 3 is a sectional view of an optical element of this embodiment. In the optical element, a metal layer (silicon thin film layer) 10 is provided on a joint surface of a reflection member 2 having a plurality of reflection surfaces (reflection surfaces or reflection planes) separated by a groove 3, and the metal layers 10 are provided. The reflection member 2 via the substrate 1 having a curved surface
The optical element for reflection is formed by joining the curved surface of the optical element. Although the thickness of the metal layer 10 is preferably 0.2 to 2 μm, it is 0.4 μm in this embodiment.

【0056】前記基板1の曲面は球面であり、かつ、前
記複数の反射面6の各法線が前記球面の中心を通るよう
に、前記球面に前記反射部材2が接合されている。基板
1及び反射部材2の材料にはホウケイ酸ガラスを使用し
た。また、基板1と反射部材2の接合は、陽極接合法に
より行った。基板1と反射部材2を陽極接合したとき、
溝部形成部分において最大変形量1μmの変形が生じた
のに対して、反射面部分では殆ど変形が起こらず、最大
表面粗さ0.001 μm以下の反射面6とすることができ
た。
The curved surface of the substrate 1 is a spherical surface, and the reflecting member 2 is joined to the spherical surface so that the normals of the plurality of reflecting surfaces 6 pass through the center of the spherical surface. Borosilicate glass was used as the material of the substrate 1 and the reflection member 2. Further, the substrate 1 and the reflecting member 2 were joined by the anodic joining method. When the substrate 1 and the reflection member 2 are anodically bonded,
The maximum deformation amount of 1 μm was generated in the groove forming portion, whereas the deformation was hardly generated in the reflecting surface portion, and the reflecting surface 6 having the maximum surface roughness of 0.001 μm or less could be obtained.

【0057】[0057]

【実施例4】図4は本実施例の光学素子の断面図であ
る。該光学素子は、曲面4を有する基板1の該曲面4
に、溝部3により隔てた複数の反射面(反射面又は反射
略平面)6を有する反射部材2を接合してなり、さらに
前記反射面6上にはX線反射多層膜7が形成されてなる
反射用光学素子である。
Fourth Embodiment FIG. 4 is a sectional view of an optical element of this embodiment. The optical element is the curved surface 4 of the substrate 1 having the curved surface 4.
And a reflection member 2 having a plurality of reflection surfaces (reflection surfaces or reflection planes) separated by a groove portion 3 are joined to each other, and an X-ray reflection multilayer film 7 is formed on the reflection surface 6. It is a reflection optical element.

【0058】前記基板1の曲面4は球面であり、かつ、
前記複数の反射面6の各法線が前記球面の中心を通るよ
うに、前記球面に前記反射部材2が接合されている。基
板1の材料にはホウケイ酸ガラスを、反射部材2の材料
にはシリコンを使用した。また、基板1と反射部材2の
接合は、陽極接合法により行った。前記反射面6上への
多層膜7の形成は、陽極接合を行う前に行った。即ち、
先ず、平板状部材(シリコンウェハ)2aに多層膜7を
成膜した(図6の1.参照)。成膜には、イオンビーム
スパッタ装置やマグネトロンスパッタ装置等の成膜装置
を用いた。多層膜7は、Mo/Siを50〜100ペア
成膜して形成した。
The curved surface 4 of the substrate 1 is a spherical surface, and
The reflecting member 2 is joined to the spherical surface so that each normal line of the plurality of reflecting surfaces 6 passes through the center of the spherical surface. Borosilicate glass was used as the material of the substrate 1, and silicon was used as the material of the reflecting member 2. Further, the substrate 1 and the reflecting member 2 were joined by the anodic joining method. The multilayer film 7 was formed on the reflective surface 6 before anodic bonding. That is,
First, the multilayer film 7 was formed on the flat plate-shaped member (silicon wafer) 2a (see 1. in FIG. 6). For film formation, a film forming apparatus such as an ion beam sputtering apparatus or a magnetron sputtering apparatus was used. The multilayer film 7 was formed by depositing 50 to 100 pairs of Mo / Si.

【0059】次に、多層膜7を成膜した平板状部材2a
に溝部3を形成するが、前記のエッチング加工では、多
層膜7が劣化するおそれがあるので、あまり好ましくな
い。そのため、本実施例では、ダイシング加工によって
溝部3を形成して反射部材2を作製した(図6の2.参
照)。次に、反射部材2を前記基板1の球面上に陽極接
合により接合した(図6の3.参照)。その際、基板1
より大きめの反射部材2を用いて、その端部に電極11
aを接合すればよい。また、基板1と同じ大きさの反射
部材を用いるときは、反射部材2の端部反射面に多層膜
7を成膜しないで、或いは、成膜した多層膜のうち、反
射部材2の端部反射面上の多層膜7を剥離して、該端部
反射面に電極11aを接合すればよい。
Next, the flat plate-shaped member 2a on which the multilayer film 7 is formed
Although the groove 3 is formed in the groove 3, the above-described etching process is not preferable because the multilayer film 7 may be deteriorated. Therefore, in this example, the groove 3 was formed by the dicing process to manufacture the reflecting member 2 (see 2. in FIG. 6). Next, the reflection member 2 was bonded onto the spherical surface of the substrate 1 by anodic bonding (see 3. in FIG. 6). At that time, the substrate 1
A larger reflective member 2 is used, and the electrode 11 is
It suffices to join a. When a reflecting member having the same size as the substrate 1 is used, the multilayer film 7 is not formed on the end reflection surface of the reflecting member 2, or the end portion of the reflecting member 2 of the formed multilayer film is not formed. The multilayer film 7 on the reflecting surface may be peeled off, and the electrode 11a may be bonded to the end reflecting surface.

【0060】基板1と反射部材2を陽極接合したとき、
溝部形成部分において最大変形量1μmの変形が生じた
のに対して、反射面部分では殆ど変形が起こらず、最大
表面粗さ0.001 μm以下の反射面6を有する光学素子を
作製できた(図6の4.参照)。なお、X線反射多層膜
7には、Mo/Siの交互多層膜を用いた。本実施例の
光学素子は、X線光学素子として使用することができ
た。
When the substrate 1 and the reflecting member 2 are anodically bonded,
While the maximum deformation amount of 1 μm was generated in the groove forming portion, almost no deformation was generated in the reflecting surface portion, and an optical element having a reflecting surface 6 having a maximum surface roughness of 0.001 μm or less could be manufactured (FIG. 6). 4)). As the X-ray reflective multilayer film 7, a Mo / Si alternating multilayer film was used. The optical element of this example could be used as an X-ray optical element.

【0061】[0061]

【実施例5】図4は本実施例の光学素子の断面図であ
る。該光学素子は、曲面4を有する基板1の該曲面4
に、溝部3により隔てた複数の反射面(反射面又は反射
略平面)6を有する反射部材2を接合してなり、さらに
前記反射面6上にはX線反射多層膜7が形成されてなる
反射用光学素子である。
Fifth Embodiment FIG. 4 is a sectional view of an optical element of this embodiment. The optical element is the curved surface 4 of the substrate 1 having the curved surface 4.
And a reflection member 2 having a plurality of reflection surfaces (reflection surfaces or reflection planes) separated by a groove portion 3 are joined to each other, and an X-ray reflection multilayer film 7 is formed on the reflection surface 6. It is a reflection optical element.

【0062】前記基板1の曲面は球面であり、かつ、前
記複数の反射面の各法線が前記球面の中心を通るよう
に、前記球面に前記反射部材2が接合されている。基板
1の材料にはホウケイ酸ガラスを、反射部材2の材料に
はシリコンを使用した。また、基板1と反射部材2の接
合は、陽極接合法により行った。前記反射面6上への多
層膜7の形成は、陽極接合を行った(図7の2.3.参
照)後に行った(図7の4.参照)。即ち、先ず、実施
例1と同様の工程(図7の1.2.3.参照)にて光学
素子を作製した後、該光学素子の反射面6に多層膜7を
成膜した。
The curved surface of the substrate 1 is a spherical surface, and the reflecting member 2 is joined to the spherical surface so that the normals of the plurality of reflecting surfaces pass through the center of the spherical surface. Borosilicate glass was used as the material of the substrate 1, and silicon was used as the material of the reflecting member 2. Further, the substrate 1 and the reflecting member 2 were joined by the anodic joining method. The multilayer film 7 was formed on the reflecting surface 6 after anodic bonding (see 2.3 in FIG. 7) (see 4. in FIG. 7). That is, first, after manufacturing an optical element in the same process as in Example 1 (see 1.2.3. In FIG. 7), the multilayer film 7 was formed on the reflecting surface 6 of the optical element.

【0063】光学素子の反射面6に多層膜7を成膜する
この方法は、多層膜を用いる光学素子において一般的に
行われている製造方法の一つである。この一般的な方法
が使用できるので、作業上の大きな変更がなく、反射面
上への多層膜7の形成を陽極接合を行う前に行う実施例
6の場合よりも、X線光学素子作製の作業性が良かっ
た。
This method of forming the multi-layer film 7 on the reflecting surface 6 of the optical element is one of the manufacturing methods generally used for the optical element using the multi-layer film. Since this general method can be used, the X-ray optical element can be manufactured more easily than in the case of Example 6 in which the multilayer film 7 is formed on the reflecting surface before the anodic bonding without making a large change in work. Workability was good.

【0064】なお、X線反射多層膜7には、Mo/Si
の交互多層膜を用いた。本実施例の光学素子は、X線光
学素子として使用することができた。
The X-ray reflection multilayer film 7 contains Mo / Si.
The alternate multilayer film of was used. The optical element of this example could be used as an X-ray optical element.

【0065】[0065]

【実施例6】図4は本実施例の光学素子の断面図であ
る。該光学素子は、曲面4を有する基板1の該曲面4
に、溝部3により隔てた複数の反射面(反射面又は反射
略平面)6を有する反射部材2を接合してなり、さらに
前記反射面6上にはX線反射多層膜7が形成されてなる
反射用光学素子である。
Sixth Embodiment FIG. 4 is a sectional view of an optical element of this embodiment. The optical element is the curved surface 4 of the substrate 1 having the curved surface 4.
And a reflection member 2 having a plurality of reflection surfaces (reflection surfaces or reflection planes) separated by a groove portion 3 are joined to each other, and an X-ray reflection multilayer film 7 is formed on the reflection surface 6. It is a reflection optical element.

【0066】前記基板1の曲面4は球面であり、かつ、
前記複数の反射面6の各法線が前記球面の中心を通るよ
うに、前記球面に前記反射部材2が接合されている。基
板1の材料にはホウケイ酸ガラスを、反射部材2の材料
にはシリコンを使用した。また、基板1と反射部材2の
接合は、陽極接合法により行った。前記反射面6上への
多層膜7の形成は、陽極接合を行う前に行った。即ち、
先ずシリコンを材料とする平板状部材2aを用意し、該
部材2aにダイシング法又はエッチング法により溝部3
を形成して反射部材2を作製した(図8の1.参照)。
The curved surface 4 of the substrate 1 is a spherical surface, and
The reflecting member 2 is joined to the spherical surface so that each normal line of the plurality of reflecting surfaces 6 passes through the center of the spherical surface. Borosilicate glass was used as the material of the substrate 1, and silicon was used as the material of the reflecting member 2. Further, the substrate 1 and the reflecting member 2 were joined by the anodic joining method. The multilayer film 7 was formed on the reflective surface 6 before anodic bonding. That is,
First, a flat plate-shaped member 2a made of silicon is prepared, and the groove 3 is formed on the member 2a by a dicing method or an etching method.
To form the reflection member 2 (see 1. in FIG. 8).

【0067】次に、反射部材2の反射面部分を研磨して
最大表面粗さを0.001 μm以下とした後、反射部材2上
に多層膜7を成膜し(図8の2.参照)、さらに陽極接
合により反射部材2を基板1の球面に接合して(図8の
3.参照)、本実施例のX線用反射光学素子を作製した
(図8の4.参照)。なお、X線反射多層膜7には、M
o/Siの交互多層膜を用いた。本実施例の光学素子
は、X線光学素子として使用することができた。
Next, after polishing the reflecting surface portion of the reflecting member 2 to a maximum surface roughness of 0.001 μm or less, a multilayer film 7 is formed on the reflecting member 2 (see 2. in FIG. 8). Further, the reflecting member 2 was joined to the spherical surface of the substrate 1 by anodic bonding (see 3. in FIG. 8), and the X-ray reflective optical element of this example was manufactured (see 4. in FIG. 8). The X-ray reflection multilayer film 7 has M
An alternating multilayer film of o / Si was used. The optical element of this example could be used as an X-ray optical element.

【0068】以上説明した実施例にかかる反射用光学素
子は、点光源を多重化できるケーラー照明用のミラーと
して適用できる。また、反射面にX線反射多層膜を形成
することにより、レンズ光学系の組めないX線光学系に
おいても、ケーラー照明用ミラーとして適用できる。そ
の結果、X線顕微鏡、X線リソグラフィ装置等における
X線照明光学系の性能を向上させることができる。
The reflection optical element according to the above-described embodiments can be applied as a mirror for Koehler illumination which can multiplex point light sources. Further, by forming an X-ray reflective multilayer film on the reflecting surface, it can be applied as a Koehler illumination mirror even in an X-ray optical system in which a lens optical system cannot be assembled. As a result, the performance of the X-ray illumination optical system in an X-ray microscope, an X-ray lithography apparatus, etc. can be improved.

【0069】実施例では、本発明にかかる光学素子の製
法も開示しているが、同形状の光学素子を機械加工等に
よって製作する方法と比べると、基板準備、溝部形成、
陽極接合と大きく分けて3つある工程全部でも、加工に
要する時間が短くてすみ、しかも、汎用技術を適用でき
るので、加工技術レベルの点で容易である。実施例で
は、X線反射多層膜の形成についても3種類の製法を開
示しているがその工程は、通常基板に多層膜を成膜する
場合と同様であり、特別な装置を用いないで短時間に該
光学素子を製造することができる。
The embodiment also discloses a method of manufacturing an optical element according to the present invention. However, compared with a method of manufacturing an optical element of the same shape by machining or the like, substrate preparation, groove formation,
Even in all of the three steps, which are roughly divided into anodic bonding, the time required for processing is short, and since general-purpose technology can be applied, it is easy in terms of processing technology level. In the examples, three types of manufacturing methods are disclosed for forming the X-ray reflective multilayer film, but the steps are the same as those for forming the multilayer film on a normal substrate, and a short process can be performed without using a special device. The optical element can be manufactured in time.

【0070】[0070]

【発明の効果】以上説明したように、本発明の反射用光
学素子は、厳密な形状精度及びあらさ精度の両方を満足
するので、例えば、前記理論的なケーラー照明用ミラー
と同等の機能を有する反射用光学素子として実用に供す
ることができる。
As described above, the reflection optical element of the present invention satisfies both strict shape accuracy and roughness accuracy, and therefore has a function equivalent to that of the theoretical mirror for Koehler illumination. It can be put to practical use as an optical element for reflection.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、実施例1の光学素子の平面図(a)及び断
面図(b)である。
FIG. 1 is a plan view (a) and a sectional view (b) of an optical element of Example 1.

【図2】は、実施例2の光学素子の断面図である。FIG. 2 is a sectional view of an optical element of Example 2.

【図3】は、実施例3の光学素子の断面図である。FIG. 3 is a sectional view of an optical element of Example 3.

【図4】は、実施例4、5、6の光学素子の断面図であ
る。
FIG. 4 is a cross-sectional view of optical elements of Examples 4, 5, and 6.

【図5】は、実施例1の光学素子を製造する方法の工程
説明図である。
5A to 5C are process explanatory diagrams of the method for manufacturing the optical element of Example 1. FIGS.

【図6】は、実施例4の光学素子を製造する方法の工程
説明図である。
6A to 6C are process explanatory diagrams of a method of manufacturing the optical element of Example 4. FIGS.

【図7】は、実施例5の光学素子を製造する方法の工程
説明図である。
7A to 7C are process explanatory diagrams of a method of manufacturing the optical element of Example 5. FIGS.

【図8】は、実施例6の光学素子を製造する方法の工程
説明図である。
FIG. 8 is a process explanatory view of a method for manufacturing an optical element of Example 6.

【図9】は、σの各値におけるOTFと空間周波数の関
係を示す説明図である。
FIG. 9 is an explanatory diagram showing the relationship between OTF and spatial frequency at each value of σ.

【図10】は、ケーラー照明光学系の概念を説明する説
明図である。
FIG. 10 is an explanatory diagram illustrating the concept of a Koehler illumination optical system.

【図11】は、理論的なケーラー照明用ミラーの概念を
説明する説明図である。
FIG. 11 is an explanatory diagram illustrating a concept of a theoretical mirror for Kohler illumination.

【図12】は、一般的なX線顕微鏡の構成図である。FIG. 12 is a configuration diagram of a general X-ray microscope.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1・・・基板 2・・・反射部材 2a・・・平板状部材 3・・・溝部 4・・・基板の曲面(接合面) 4’・・反射部材の接合面 5・・・空気抜き穴 6・・・反射面 7・・・X線反射多層膜 8・・・レジスト 9・・・誘電体(ホウケイ酸ガラス)層 10・・・金属類(シリコン)層 11・・・電極 11a・・反射部材側電極 11b・・基板側電極 12・・・X線発生器 13・・・X線照明光学系 14・・・試料カプセル 15・・・X線拡大光学系 16・・・X線撮像装置 17・・・真空容器 18・・・排気装置 19・・・光源 20・・・第1のレンズ 21・・・オプティカルインテグレーター 22・・・多重化された光源像 23・・・第2のレンズ 24・・・物体 25・・・入射光
以 上
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Reflecting member 2a ... Flat plate member 3 ... Groove part 4 ... Curved surface (joint surface) of substrate 4 '... Bonding surface of reflecting member 5 ... Air vent hole 6・ ・ ・ Reflecting surface 7 ・ ・ ・ X-ray reflection multilayer film 8 ・ ・ ・ Resist 9 ・ ・ ・ Dielectric (borosilicate glass) layer 10 ・ ・ ・ Metal (silicon) layer 11 ・ ・ ・ Electrode 11a Member side electrode 11b ... Substrate side electrode 12 ... X-ray generator 13 ... X-ray illumination optical system 14 ... Sample capsule 15 ... X-ray magnifying optical system 16 ... X-ray imaging device 17・ ・ ・ Vacuum container 18 ・ ・ ・ Exhaust device 19 ・ ・ ・ Light source 20 ・ ・ ・ First lens 21 ・ ・ ・ Optical integrator 22 ・ ・ ・ Multiplexed light source image 23 ・ ・ ・ Second lens 24 ・..Object 25 ... Incident light
that's all

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真島 清人 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoto Majima 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 曲面を有する基板の該曲面に、溝部によ
り隔てた複数の反射平面又は反射略平面を有する反射部
材を接合してなる反射用光学素子。
1. A reflective optical element comprising a substrate having a curved surface and a reflective member having a plurality of reflective flat surfaces or reflective substantially flat surfaces separated by a groove portion, which are bonded to the curved surface.
【請求項2】 前記基板の曲面が球面であり、かつ、前
記複数の反射平面又は反射略平面の各法線が前記球面の
中心を通るように、前記球面に前記反射部材が接合され
てなることを特徴とする請求項1記載の反射用光学素
子。
2. The curved surface of the substrate is a spherical surface, and the reflective member is bonded to the spherical surface so that the normals of the plurality of reflective flat surfaces or the reflective substantially flat surfaces pass through the center of the spherical surface. The reflective optical element according to claim 1, wherein:
【請求項3】 前記基板と前記反射部材とが陽極接合法
により接合されてなることを特徴とする請求項1又は2
記載の反射用光学素子。
3. The substrate according to claim 1, wherein the substrate and the reflecting member are bonded by an anodic bonding method.
The reflective optical element described.
【請求項4】 反射面にX線反射用多層膜を設けたこと
を特徴とする請求項1〜3記載の反射用光学素子。
4. An optical element for reflection according to claim 1, wherein a multilayer film for X-ray reflection is provided on the reflection surface.
JP01045395A 1995-01-26 1995-01-26 Optical element for reflection Expired - Fee Related JP3291953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01045395A JP3291953B2 (en) 1995-01-26 1995-01-26 Optical element for reflection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01045395A JP3291953B2 (en) 1995-01-26 1995-01-26 Optical element for reflection

Publications (2)

Publication Number Publication Date
JPH08201590A true JPH08201590A (en) 1996-08-09
JP3291953B2 JP3291953B2 (en) 2002-06-17

Family

ID=11750572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01045395A Expired - Fee Related JP3291953B2 (en) 1995-01-26 1995-01-26 Optical element for reflection

Country Status (1)

Country Link
JP (1) JP3291953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021057A (en) * 2014-06-19 2016-02-04 キヤノン株式会社 Optical element having multiple optical functional surfaces, spectral device, and manufacturing method of the same
CN113960708A (en) * 2021-10-26 2022-01-21 苏州众为光电有限公司 Cutting method of narrow-band filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021057A (en) * 2014-06-19 2016-02-04 キヤノン株式会社 Optical element having multiple optical functional surfaces, spectral device, and manufacturing method of the same
JP2017207775A (en) * 2014-06-19 2017-11-24 キヤノン株式会社 Optical element with a plurality of optical functional surfaces, spectroscopic instrument, and method for manufacturing the same
CN113960708A (en) * 2021-10-26 2022-01-21 苏州众为光电有限公司 Cutting method of narrow-band filter

Also Published As

Publication number Publication date
JP3291953B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US6453005B2 (en) SiO2-coated mirror substrate for EUV
JP4108788B2 (en) Broadband UV imaging system using both catadioptric principles
TWI434132B (en) Euv reticle substrates with high thermal conductivity
JP2010519725A (en) Manufacturing method of facet mirror and projection exposure apparatus
TWI484220B (en) Unit-magnification large-format catadioptric lens for microlithography
JPH04234722A (en) Compensation type optical system
WO1993025938A1 (en) Imaging and illumination system with aspherization and aberration correction by phase steps
JP6618529B2 (en) Electrostatic clamp and method for manufacturing the same
JP2014078032A (en) Deep ultraviolet spectral range expansion type catadioptric imaging system
JP2013250556A5 (en)
JP2003045782A (en) Reflection-type reduced projection optical system and projection aligner using the same
JP3301249B2 (en) Reflection optical element and method of manufacturing the same
KR20220019704A (en) Mirrors especially for microlithographic projection exposure apparatus
WO2002016992A1 (en) Optical element holding device
JP2007108194A (en) Method for manufacturing multilayer film mirror, method for manufacturing optical system, exposure device, and method for manufacturing device
JP3291953B2 (en) Optical element for reflection
JPH0868897A (en) Reflection mirror and its production method
JPH08201593A (en) Non-spherical surface reflection optical element
TW200407954A (en) Lithographic apparatus and device manufacturing method
JPH1026698A (en) Device for forming thin film under vacuum and method for manufacturing reflector
JP2003218023A (en) X-ray reflecting mirror, x-ray exposure transfer apparatus, and method of manufacturing semiconductor device
JPH08222497A (en) Reflection-type mask
JPH08201589A (en) X-ray spectroscopic element
JPH10339799A (en) Reflecting mirror and its manufacturing method
JPH08201592A (en) Non-spherical surface reflection optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees