JPH08201399A - Inching mechanism - Google Patents

Inching mechanism

Info

Publication number
JPH08201399A
JPH08201399A JP7007468A JP746895A JPH08201399A JP H08201399 A JPH08201399 A JP H08201399A JP 7007468 A JP7007468 A JP 7007468A JP 746895 A JP746895 A JP 746895A JP H08201399 A JPH08201399 A JP H08201399A
Authority
JP
Japan
Prior art keywords
piezoelectric body
piezoelectric
movement mechanism
fine movement
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7007468A
Other languages
Japanese (ja)
Inventor
Takeshi Murayama
健 村山
Yoshihiro Hoshino
吉弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP7007468A priority Critical patent/JPH08201399A/en
Publication of JPH08201399A publication Critical patent/JPH08201399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an inching mechanism capable of reducing the whole size and securing a sufficient stroke. CONSTITUTION: This inching mechanism 11 is constituted of a cylindrical piezoelectric body 12a, a piezoelectric body 12b having a smaller diameter, and a piezoelectric body 12c having a further smaller diameter. The piezoelectric body 12b (not shown in the figure) is arranged in the piezoelectric body 12a, and the upper section of the piezoelectric body 12c is arranged in the piezoelectric body 12b. The lower ends of the piezoelectric bodies 12a, 12b and the upper ends of the piezoelectric bodies 12b, 12c are connected together by connecting rings. A common electrode is arranged on the inner faces of the piezoelectric bodies 12a, 12b, 12c, electrodes 13X1 -13Y3 generating the displacement in the X, Y axis directions are arranged at the lower sections of the piezoelectric bodies 12a, 12c, and a cantilever 4 having a probe 5 is fixed at the lower end of the piezoelectric body 12c via a fixing member 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極めて微小な変位を発
生させる微動機構に関し、特に走査型プローブ顕微鏡に
好適な微動機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine movement mechanism for generating extremely small displacements, and particularly to a fine movement mechanism suitable for a scanning probe microscope.

【0002】[0002]

【従来の技術】μmオーダの微小な変位を発生させる微
動機構は種々の装置で使用される。このような装置の一
例として、走査型プローブ顕微鏡が挙げられる。走査型
プローブ顕微鏡には、検出物理量によりトンネル顕微
鏡、原子間力顕微鏡、磁気力顕微鏡等があり、原子オー
ダの測定分解能を有し、各種被検体の形状計測等の各種
分野に適用されている。これらのうち、原子間力顕微鏡
を図により説明する。
2. Description of the Related Art A fine movement mechanism for generating a fine displacement on the order of μm is used in various devices. An example of such a device is a scanning probe microscope. The scanning probe microscope includes tunnel microscopes, atomic force microscopes, magnetic force microscopes, and the like depending on the detected physical quantity, has a measurement resolution of atomic order, and is applied to various fields such as shape measurement of various objects. Of these, the atomic force microscope will be described with reference to the drawings.

【0003】図9は原子間力顕微鏡の側面図、図10は
図9に示す線X−Xに沿う断面図である。各図で、X、
Y、Zは座標軸を示す。1は微動機構であり、この微動
機構1は、円筒形状の圧電体2およびこの圧電体2に貼
着、蒸着等により配置された複数の電極で構成されてい
る。これら電極のうち、電極3X1 、3X2 は圧電体2
の上部においてX軸方向に対向して配置された対向電
極、電極3X3 、3X4は圧電体2の下部においてX軸
方向に対向して配置された対向電極、電極3Y1、3Y2
は圧電体2の上部においてY軸方向に対向して配置さ
れた対向電極、電極3Y3 、3Y4 は圧電体2の下部に
おいてY軸方向に対向して配置された対向電極、3Zは
圧電体2の中間においてその全周に配置された電極であ
る。図2に明らかなように、圧電体2の内面全周には共
通電極3Cが配置されている。このような微動機構1は
例えば特開平2−266201号公報等で開示されてい
る。
FIG. 9 is a side view of the atomic force microscope, and FIG. 10 is a sectional view taken along line XX shown in FIG. In each figure, X,
Y and Z indicate coordinate axes. Reference numeral 1 denotes a fine movement mechanism. The fine movement mechanism 1 is composed of a cylindrical piezoelectric body 2 and a plurality of electrodes arranged on the piezoelectric body 2 by sticking, vapor deposition or the like. Of these electrodes, the electrodes 3X 1 and 3X 2 are the piezoelectric body 2
Counter electrodes and electrodes 3X 3 and 3X 4 that are arranged to face each other in the X-axis direction in the upper part of the electrode, and counter electrodes 3Y 1 and 3Y 2 that are arranged to face the X-axis direction in the lower part of the piezoelectric body 2.
Is a counter electrode arranged in the upper part of the piezoelectric body 2 so as to face it in the Y-axis direction, electrodes 3Y 3 and 3Y 4 are counter electrodes arranged in the lower part of the piezoelectric body 2 so as to face the Y-axis direction, and 3Z is a piezoelectric body. In the middle of 2, the electrodes are arranged around the entire circumference. As is apparent from FIG. 2, the common electrode 3C is arranged on the entire circumference of the inner surface of the piezoelectric body 2. Such a fine movement mechanism 1 is disclosed in, for example, Japanese Patent Laid-Open No. 2-266201.

【0004】4はカンチレバー、5はカンチレバー4の
先端に固定された探針、6はカンチレバー4を微動機構
1の端部に固定する固定部材である。7はこの原子間力
顕微鏡の測定対象である被検体を示し、その表面形状が
測定される。8はレーザ発信機、9は光検出器であり、
図に二点鎖線で示すように、レーザ発信機8からのレー
ザ光をカンチレバー4での背面に反射させ、その反射光
を光検出器9で検出する。
Reference numeral 4 is a cantilever, 5 is a probe fixed to the tip of the cantilever 4, and 6 is a fixing member for fixing the cantilever 4 to the end of the fine movement mechanism 1. Reference numeral 7 denotes an object to be measured by this atomic force microscope, the surface shape of which is measured. 8 is a laser transmitter, 9 is a photodetector,
As shown by the chain double-dashed line in the figure, the laser light from the laser oscillator 8 is reflected on the back surface of the cantilever 4, and the reflected light is detected by the photodetector 9.

【0005】上記の構成において、圧電体2は、+極性
の電圧を印加すると伸長し、−極性の電圧を印加すると
縮む。そこで、微動機構1の共通電極3Cを0Vとし、
電極3X1 に+EV、電極3X2 に−EV、電極3X3
に−EV、電極3X4 に+EVを印加すると、圧電体2
は図9に破線で示すように変形する。この結果、探針5
はX軸方向に距離xだけ変位する。通常、微動機構の寸
法は数10mm、変位は数μm〜100μmの領域であ
り、図示破線の変形は誇張して描かれている。
In the above structure, the piezoelectric body 2 expands when a positive polarity voltage is applied, and contracts when a negative polarity voltage is applied. Therefore, the common electrode 3C of the fine movement mechanism 1 is set to 0V,
Electrode 3X 1 + EV, Electrode 3X 2 -EV, Electrode 3X 3
The -EV, by applying a + EV to the electrode 3X 4, the piezoelectric body 2
Deforms as shown by the broken line in FIG. As a result, the probe 5
Is displaced by a distance x in the X-axis direction. Usually, the size of the fine movement mechanism is several tens of mm, the displacement is in the region of several μm to 100 μm, and the deformation of the broken line in the drawing is exaggerated.

【0006】上記の構成においては、上側の対向電極と
下側の対向電極の極性を逆にして圧電体2の上部と下部
の変形モードを逆にすることにより、探針5の平行な変
位が可能となる。Y軸方向の変位についても電極3Y1
〜3Y4 に対して同様な電圧を印加することにより同様
に変位を行うことができる。上記各電極の電圧の大きさ
を変化させることにより、探針5のX、Y軸方向の走査
を正確に行うことができる。なお、電極3Zに電圧を印
加すると、その電圧に応じて圧電体2がZ軸方向に伸縮
する。
In the above structure, the polarities of the upper and lower counter electrodes are reversed and the deformation modes of the upper and lower portions of the piezoelectric body 2 are reversed, whereby the parallel displacement of the probe 5 is caused. It will be possible. For displacement in the Y-axis direction, electrode 3Y 1
It is possible to perform displacement in the same manner by applying the same voltage to ~3Y 4. By changing the magnitude of the voltage of each electrode, scanning of the probe 5 in the X and Y axis directions can be performed accurately. When a voltage is applied to the electrode 3Z, the piezoelectric body 2 expands and contracts in the Z-axis direction according to the voltage.

【0007】上記の手段を用いた走査の間、探針5と被
検体7との間に原子間力が作用すると、カンチレバー4
にたわみを生じ、このたわみの量はレーザ発信機8およ
び光検出器9により検出される。ここで、当該走査の
間、カンチレバー4の上記たわみの量を一定に保持する
ように電極3Zの電圧を制御して圧電体2を伸縮させる
と、この伸縮量(電圧)が被検体7の表面形状を表すこ
とになり、その測定ができる。このような測定におい
て、仮に、X、Y軸方向の走査を圧電体2の上部のみ又
は下部のみの変形で行うと、図に一点鎖線の矢印Aで示
すように探針5に円弧運動が生じ、X軸、Y軸方向に平
行な走査ができなくなり、被検体7の表面形状の高精度
の測定を行うことができなくなる。
When an atomic force acts between the probe 5 and the subject 7 during scanning using the above means, the cantilever 4
Bending is generated, and the amount of this bending is detected by the laser transmitter 8 and the photodetector 9. Here, when the piezoelectric body 2 is expanded / contracted by controlling the voltage of the electrode 3Z so as to keep the amount of the deflection of the cantilever 4 constant during the scanning, this expansion / contraction amount (voltage) is the surface of the subject 7. It represents the shape and can measure it. In such a measurement, if scanning in the X and Y axis directions is performed by deforming only the upper part or only the lower part of the piezoelectric body 2, an arc motion of the probe 5 occurs as shown by a dashed line arrow A in the figure. , It becomes impossible to perform scanning parallel to the X-axis and Y-axis directions, and the surface shape of the subject 7 cannot be measured with high accuracy.

【0008】[0008]

【発明が解決しようとする課題】上記原子間力顕微鏡だ
けでなく、その他の走査型プローブ顕微鏡や他の装置に
おいて微動機構に要求される機能は、(1)軸間干渉が
ない正確な変位が可能であり、(2)微動機構自体の寸
法が小さく、しかも充分なストロークが確保でき、
(3)剛性が高く高速応答が可能であることである。
Not only the atomic force microscope but also other scanning probe microscopes and other devices are required to have a function required for a fine movement mechanism. (2) The size of the fine movement mechanism itself is small, and a sufficient stroke can be secured,
(3) High rigidity and high-speed response are possible.

【0009】ここで、図9、10に示す装置についてみ
ると、この装置は上記(1)の機能は満たしているもの
の、上記(2)、(3)の機能に対しては満足し得るも
のではない。即ち、被検体7には可成り大きな凹凸(段
差)を有するものがあり、このような被検体7の測定の
場合には、相当大きなZ軸方向のストロークが必要であ
る。このためには、Z軸方向の伸縮を行う電極3Zの長
さLZ を長くすればよいが、長さLZ を長くすると全体
の寸法Lが大きくなり、その微動機構を装着する装置の
小型化も困難になり、しかも、長さLが長くなることに
より微動機構の剛性も低下することとなる。
Referring to the apparatus shown in FIGS. 9 and 10, the apparatus satisfies the function (1) above, but can satisfy the functions (2) and (3) above. is not. That is, there are some objects 7 having considerably large irregularities (steps), and in the case of measuring such an object 7, a considerably large Z-axis direction stroke is required. For this purpose, the length L Z of the electrode 3Z that expands and contracts in the Z-axis direction may be lengthened, but if the length L Z is lengthened, the overall dimension L becomes large, and the device for mounting the fine movement mechanism is small in size. Also, it becomes difficult to realize this, and the rigidity of the fine movement mechanism is also lowered due to the length L being increased.

【0010】本発明の目的は、上記従来技術における課
題を解決し、全体の寸法を小さくすることができ、しか
も充分なストロークを確保することができる微動機構を
提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a fine movement mechanism capable of reducing the overall size and ensuring a sufficient stroke.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、圧電体に複数の電極を配置し、これら電
極に選択的に所定の電圧を印加することにより前記圧電
素子の自由端を任意方向に任意量変位させる微動機構に
おいて、前記圧電体を、径が異なる少なくとも2つの中
空の筒体で構成し、これら径が異なる各圧電体を、それ
らの少なくとも一部が径方向において互いに重なる状態
で順次連結するとともに、各圧電体に所要の電極を配置
したことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a piezoelectric element having a plurality of electrodes arranged thereon and selectively applying a predetermined voltage to the electrodes, thereby freeing the piezoelectric element. In a fine movement mechanism for displacing an end in an arbitrary amount by an arbitrary amount, the piezoelectric body is composed of at least two hollow cylindrical bodies having different diameters, and at least a part of each of the piezoelectric bodies having different diameters is radially arranged. It is characterized in that the electrodes are sequentially connected in a state of being overlapped with each other, and a required electrode is arranged on each piezoelectric body.

【0012】[0012]

【作用】筒体形状の径の大きな圧電体の内部に径の小さ
な圧電体を入れ込むことにより、それら圧電体をそれら
の径方向において重なりが生じるように配置し、内外の
圧電体を順次連結する。この構成により、圧電体の長さ
方向において同じストロークを得る場合には長さ方向の
寸法を小さくすることができ、同一寸法であればより大
きなストロークを得ることができる。
[Function] By inserting a small-diameter piezoelectric body inside a cylindrical-shaped large-diameter piezoelectric body, the piezoelectric bodies are arranged so that they overlap in the radial direction, and the inner and outer piezoelectric bodies are sequentially connected. To do. With this configuration, when the same stroke is obtained in the length direction of the piezoelectric body, the dimension in the length direction can be reduced, and a larger stroke can be obtained with the same dimension.

【0013】[0013]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は本発明の第1の実施例に係る微動機構の側
面図、図2は図1に示す線II−IIに沿う断面図、図3は
図2に示す線III −III に示す断面図である。なお、図
2および図3は図1に対して拡大した寸法で描かれてい
る。これらの図で、X、Y、Zは座標軸、4はカンチレ
バー、5は探針、6は被検体であり、これらは図9に示
すものと同じである。11は微動機構、16は微動機構
11にカンチレバー4を固定する固定部材である。
The present invention will be described below with reference to the illustrated embodiments. 1 is a side view of a fine movement mechanism according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II shown in FIG. 1, and FIG. 3 is a sectional view taken along line III-III shown in FIG. Is. 2 and 3 are drawn with enlarged dimensions with respect to FIG. In these figures, X, Y, and Z are coordinate axes, 4 is a cantilever, 5 is a probe, and 6 is a subject, which are the same as those shown in FIG. Reference numeral 11 is a fine movement mechanism, and 16 is a fixing member for fixing the cantilever 4 to the fine movement mechanism 11.

【0014】微動機構11は円筒形状の3つの圧電体と
それら各圧電体に配置された電極で構成されている。各
図で、12aは外側の圧電体、12bは圧電体12aよ
り径が小さく、かつ、長さ方向の寸法も僅かに小さい圧
電体、12cは圧電体12bより径が小さく、かつ、長
さ方向の寸法は圧電体12a、12bよりはるかに大き
い圧電体である。圧電体12aの内側に圧電体12b
が、又、圧電体12bの内側に圧電体12cの上部が配
置され、圧電体12aの下端と圧電体12bの下端とが
連結リングR1 で連結され、圧電体12bの上端と圧電
体12cの上端とが連結リングR2 で連結されている。
圧電体12a、12b、および圧電体12cの上部がそ
れらの径方向において重なることになる。
The fine movement mechanism 11 is composed of three cylindrical piezoelectric bodies and electrodes arranged on the respective piezoelectric bodies. In each figure, 12a is an outer piezoelectric body, 12b is a piezoelectric body having a diameter smaller than that of the piezoelectric body 12a, and a dimension in the lengthwise direction is slightly smaller. 12c is a diameter smaller than that of the piezoelectric body 12b and is in the lengthwise direction. Is much larger than the piezoelectric bodies 12a and 12b. Inside the piezoelectric body 12a, the piezoelectric body 12b
However, the upper part of the piezoelectric body 12c is arranged inside the piezoelectric body 12b, the lower end of the piezoelectric body 12a and the lower end of the piezoelectric body 12b are connected by a connecting ring R 1 , and the upper end of the piezoelectric body 12b and the piezoelectric body 12c. The upper end is connected by a connecting ring R 2 .
The upper portions of the piezoelectric bodies 12a, 12b and the piezoelectric body 12c overlap in their radial direction.

【0015】13C1 、13C2 、13C3 は各圧電体
12a、12b、12cの内面に配置された共通電極で
ある。13X1 、13X2 は圧電体12aの表面に配置
されX軸方向において対向する対向電極、13Y1 、1
3Y2 は圧電体12aの表面に配置されY軸方向におい
て対向する対向電極である。13Z1 は圧電体12bの
表面に配置されたZ軸方向の伸縮を行う伸縮電極、13
2 は圧電体12cの上部の表面に配置されたZ軸方向
の伸縮を行う伸縮電極である。13X3 、13X4 は圧
電体12aの下部の表面に配置されX軸方向において対
向する対向電極、13Y3 、13Y4 は圧電体12aの
下部の表面に配置されY軸方向において対向する対向電
極である。
13C 1 , 13C 2 and 13C 3 are common electrodes arranged on the inner surfaces of the piezoelectric bodies 12a, 12b and 12c. 13X 1 and 13X 2 are counter electrodes arranged on the surface of the piezoelectric body 12a and facing each other in the X-axis direction, 13Y 1 and 1
3Y 2 is a counter electrode arranged on the surface of the piezoelectric body 12a and facing each other in the Y-axis direction. 13Z 1 is a stretchable electrode arranged on the surface of the piezoelectric body 12b to stretch and shrink in the Z-axis direction, 13Z 1
Z 2 is an expansion / contraction electrode arranged on the surface of the upper portion of the piezoelectric body 12c to expand / contract in the Z-axis direction. 13X 3 and 13X 4 are counter electrodes arranged on the lower surface of the piezoelectric body 12a and facing each other in the X-axis direction, and 13Y 3 and 13Y 4 are counter electrodes arranged on the lower surface of the piezoelectric body 12a and facing each other in the Y-axis direction. is there.

【0016】次に、上記微動機構11の動作を図4を参
照しながら説明する。図4は各圧電体12a〜12cの
変形を示す図であり、これら圧電体のみが線で描かれ、
変形は誇張して描かれている。さきに述べた従来例と同
じく、共通電極13C1 、13C2 、13C3 を0Vと
し、電極13X1 に+EV、電極13X2 に−EV、
又、電極13X3 に−EV、電極13X4 に+EVをそ
れぞれ印加すると、圧電体12a、12cは図4に示す
ように変形する。
Next, the operation of the fine movement mechanism 11 will be described with reference to FIG. FIG. 4 is a diagram showing the deformation of each piezoelectric body 12a to 12c, and only these piezoelectric bodies are drawn by lines,
The transformation is exaggerated. As in the conventional example described above, the common electrodes 13C 1 , 13C 2 and 13C 3 are set to 0V, the electrode 13X 1 is + EV, the electrode 13X 2 is −EV,
Further, -EV the electrode 13X 3, when a + EV to electrode 13X 4 respectively applied, the piezoelectric 12a, 12c is deformed as shown in FIG.

【0017】一方、電極13Z1 に対して圧電体12b
を縮める方向に電圧を印加し、同時に、電極13Z2
対して圧電体12bを伸長する方向に電圧を印加する
と、圧電体12bの縮みにより圧電体12cはZ軸方向
(下方)に変位し、さらに圧電体12cの伸長により当
該圧電体12cはZ軸方向(下方)に変位する。即ち、
2つのZ軸方向(下方)への変位が加算されることにな
り、当該方向へのストロークは大きくなる。
On the other hand, the piezoelectric body 12b is connected to the electrode 13Z 1 .
When a voltage is applied in a direction that contracts the piezoelectric body 12b to the electrode 13Z 2 at the same time, a contraction of the piezoelectric body 12b causes the piezoelectric body 12c to be displaced in the Z-axis direction (downward), Further, due to the extension of the piezoelectric body 12c, the piezoelectric body 12c is displaced in the Z-axis direction (downward). That is,
The displacements in the two Z-axis directions (downward) are added, and the stroke in that direction becomes large.

【0018】このように、本実施例では、微動機構を径
の異なる3つの円筒形状の圧電体を径方向で重ねた状態
で連結したので、従来の微動機構に比較してほぼZ軸電
極の寸法分だけ長さ方向の寸法を短くすることができ、
しかも、Z軸方向のストロークを大きくすることがで
き、これにより、この微動機構を用いる装置を小型化す
ることができ、かつ、これをプローブ顕微鏡に用いた場
合には、大きな段差を有する被検体の測定にも対応する
ことができる。
As described above, in this embodiment, since the fine movement mechanism is connected in the state where three cylindrical piezoelectric bodies having different diameters are overlapped in the radial direction, the fine movement mechanism has substantially the same Z-axis electrode as that of the conventional fine movement mechanism. The dimension in the length direction can be shortened by the dimension,
Moreover, the stroke in the Z-axis direction can be increased, whereby the device using this fine movement mechanism can be downsized, and when this is used in a probe microscope, an object having a large step difference can be obtained. Can also be used for measurement.

【0019】図5は本発明の第2の実施例に係る微動機
構の側面図である。この図で、4はカンチレバー、5は
探針であり、図1に示すものと同じである。21は本実
施例の微動機構を示す。微動機構21は3つの円筒形状
の圧電体22a、22b、22cおよびそれら圧電体に
配置された各電極で構成されている。圧電体22aと圧
電体22cは同一の内外径を有し、圧電体22cは圧電
体22aの上方に配置されている。圧電体22bは圧電
体22a、22cの内径より小さな外径寸法に構成さ
れ、圧電体22aおよび圧電体22cの内部に配置され
ている。圧電体22aの上端は固定部に固定され、圧電
体22cの下端には固定部材26を介してカンチレバー
4が固定されている。内部の圧電体22bの下端は圧電
体22aの下端に、上端は圧電体22cの上端に固定さ
れている。このような構成は、後述する図6で、より明
瞭に示される。
FIG. 5 is a side view of the fine movement mechanism according to the second embodiment of the present invention. In this figure, 4 is a cantilever and 5 is a probe, which is the same as that shown in FIG. Reference numeral 21 denotes the fine movement mechanism of this embodiment. The fine movement mechanism 21 is composed of three cylindrical piezoelectric bodies 22a, 22b, 22c and electrodes arranged on these piezoelectric bodies. The piezoelectric body 22a and the piezoelectric body 22c have the same inner and outer diameters, and the piezoelectric body 22c is arranged above the piezoelectric body 22a. The piezoelectric body 22b has an outer diameter dimension smaller than the inner diameters of the piezoelectric bodies 22a and 22c, and is arranged inside the piezoelectric bodies 22a and 22c. The upper end of the piezoelectric body 22a is fixed to the fixing portion, and the cantilever 4 is fixed to the lower end of the piezoelectric body 22c via a fixing member 26. The lower end of the piezoelectric body 22b inside is fixed to the lower end of the piezoelectric body 22a, and the upper end is fixed to the upper end of the piezoelectric body 22c. Such a configuration is shown more clearly in FIG. 6 described below.

【0020】さきの実施例と同じく、各圧電体22a、
22b、22cの内面には共通電極が配置されている。
23X1 、23X2 は圧電体22aの表面に配置されX
軸方向において対向する対向電極、23Y1 、23Y2
は圧電体22aの表面に配置されY軸方向において対向
する対向電極である(電極23Y2 は図面には現れてい
ない)。23X3 、23X4 は圧電体22cの表面に配
置されX軸方向において対向する対向電極、23Y3
23Y4 は圧電体22cの表面に配置されY軸方向にお
いて対向する対向電極である(電極23Y2 は図面には
現れていない)。又、図には現れないが圧電体22bの
表面にはZ軸方向の伸縮を行う伸縮電極が配置されてい
る。これら各電極に、さきの実施例と同じく選択的に所
定の電圧を印加することにより、微動機構21に任意の
変位を発生させることができるのは明らかである。この
変位の一発生形態を図6に示す。
As in the previous embodiment, each piezoelectric body 22a,
A common electrode is arranged on the inner surfaces of 22b and 22c.
23X 1 and 23X 2 are arranged on the surface of the piezoelectric body 22a and X
Counter electrodes 23Y 1 and 23Y 2 that face each other in the axial direction
Are counter electrodes arranged on the surface of the piezoelectric body 22a and facing each other in the Y-axis direction (the electrode 23Y 2 is not shown in the drawing). 23X 3 , 23X 4 are counter electrodes arranged on the surface of the piezoelectric body 22c and facing each other in the X-axis direction, 23Y 3 ,
Reference numeral 23Y 4 is a counter electrode arranged on the surface of the piezoelectric body 22c and facing in the Y-axis direction (the electrode 23Y 2 is not shown in the drawing). Further, although not shown in the figure, an expansion / contraction electrode for expanding / contracting in the Z-axis direction is arranged on the surface of the piezoelectric body 22b. Obviously, it is possible to generate an arbitrary displacement in the fine movement mechanism 21 by selectively applying a predetermined voltage to each of these electrodes as in the previous embodiment. One form of this displacement is shown in FIG.

【0021】図6は微動機構21のX軸方向の変位発生
時の各圧電体22a〜22cの変形を示す図であり、こ
れら圧電体のみが線で描かれ、変形は誇張して描かれて
いる。この図で、R3 は圧電体22aの下端と圧電体2
2bの下端を連結する連結リング、R4 は圧電体22b
の上端と圧電体22cの上端を連結する連結リングであ
る。又、xは図示の変位における変位量を示す。
FIG. 6 is a diagram showing the deformation of the piezoelectric bodies 22a to 22c when the displacement of the fine movement mechanism 21 in the X-axis direction occurs. Only these piezoelectric bodies are drawn by lines, and the deformation is exaggerated. There is. In this figure, R 3 is the lower end of the piezoelectric body 22a and the piezoelectric body 2a.
A connecting ring for connecting the lower ends of 2b, R 4 is a piezoelectric body 22b
Is a connecting ring that connects the upper end of the piezoelectric body 22c and the upper end of the piezoelectric body 22c. Further, x represents the displacement amount in the illustrated displacement.

【0022】このように、本実施例でもZ軸方向の変位
を行う圧電体を、X、Y軸方向の変位を行う圧電体の内
部に配置したので、さきの実施例と同じく、微動機構の
長さ方向の寸法を小さくすることができるとともに、Z
軸方向の変位を行う圧電体の長さを大きくすることがで
きるので、Z軸方向のストロークを大きくすることがで
きる。
As described above, in this embodiment as well, since the piezoelectric body which is displaced in the Z-axis direction is arranged inside the piezoelectric body which is displaced in the X- and Y-axis directions, the fine movement mechanism of the same manner as in the previous embodiment is used. The size in the length direction can be reduced and Z
Since the length of the piezoelectric body that is displaced in the axial direction can be increased, the stroke in the Z-axis direction can be increased.

【0023】さらに本実施例は、さきの実施例に比較し
て次のような効果を有する。即ち、円筒型の圧電体にお
いて、その軸方向と直交する方向の変位は、円筒の直径
と厚さに依存するので、さきの実施例のように異なる径
の圧電体を用いた場合には印加電圧に対する変位量の調
整を必要とするが、本実施例では、軸方向と直交する方
向の変位に寄与する各圧電体は同一径であるので、上記
の調整は大幅に簡素化されるという効果を奏する。
Further, this embodiment has the following effects as compared with the previous embodiment. That is, in the cylindrical piezoelectric body, the displacement in the direction orthogonal to the axial direction depends on the diameter and thickness of the cylinder, and therefore when a piezoelectric body having a different diameter is used as in the previous embodiment, it is applied. Although it is necessary to adjust the amount of displacement with respect to the voltage, in the present embodiment, since the piezoelectric bodies that contribute to the displacement in the direction orthogonal to the axial direction have the same diameter, the above-described adjustment is greatly simplified. Play.

【0024】図7は本発明の第3の実施例に係る微動機
構の断面図である。この図で、4はカンチレバー、5は
探針であり、図1に示すものと同じである。31は本実
施例の微動機構を示す。微動機構21は2つの円筒形状
の圧電体32a(Z)、32b(XY)およびそれら圧
電体に配置された各電極で構成されている。圧電体32
a(Z)の径は圧電体32b(XY)の径より小さく、
その下部が圧電体32b(XY)の内部に配置され、両
者はそれらの下端で連結リングR5 により連結されてい
る。圧電体32a(Z)の上端は固定部に固定されてい
る。40は圧電体32b(XY)の径より大きな径を有
する円筒形状の構造体であり、その上端は連結リングR
6 により圧電体32b(XY)の上端と連結され、下端
には固定部材36を介してカンチレバー4が固定されて
いる。
FIG. 7 is a sectional view of a fine movement mechanism according to the third embodiment of the present invention. In this figure, 4 is a cantilever and 5 is a probe, which is the same as that shown in FIG. Reference numeral 31 denotes a fine movement mechanism of this embodiment. The fine movement mechanism 21 is composed of two cylindrical piezoelectric bodies 32a (Z) and 32b (XY) and respective electrodes arranged on these piezoelectric bodies. Piezoelectric body 32
The diameter of a (Z) is smaller than the diameter of the piezoelectric body 32b (XY),
The lower part thereof is arranged inside the piezoelectric body 32b (XY), and the two are connected at their lower ends by a connecting ring R 5 . The upper end of the piezoelectric body 32a (Z) is fixed to the fixed portion. Reference numeral 40 is a cylindrical structure having a diameter larger than that of the piezoelectric body 32b (XY), the upper end of which is a connecting ring R
It is connected to the upper end of the piezoelectric body 32b (XY) by 6 and the cantilever 4 is fixed to the lower end via a fixing member 36.

【0025】圧電体32a(Z)、32b(XY)の内
面にはそれぞれ共通電極が配置され、圧電体32a
(Z)の外面全周にはZ軸方向の伸縮を行う伸縮電極が
配置され、圧電体32b(XY)の外面にはX軸方向に
おいて対向する対向電極およびY軸方向において対向す
る対向電極が配置されているが、これら電極の配置はさ
きの各実施例に準じるので、その図示は省略する。図8
は微動機構31の変位発生時の圧電体32b(XY)の
変形を示す図であり、各圧電体のみが線で描かれ、変形
は誇張して描かれている。
A common electrode is arranged on each of the inner surfaces of the piezoelectric bodies 32a (Z) and 32b (XY).
An expandable electrode that expands and contracts in the Z-axis direction is arranged all around the outer surface of (Z), and a counter electrode facing in the X-axis direction and a counter electrode facing in the Y-axis direction are provided on the outer surface of the piezoelectric body 32b (XY). Although the electrodes are arranged, the arrangement of these electrodes is the same as that in each of the above-described embodiments, and therefore the illustration thereof is omitted. FIG.
FIG. 4 is a diagram showing deformation of the piezoelectric body 32b (XY) when displacement of the fine movement mechanism 31 occurs. Only the piezoelectric bodies are drawn by lines, and the deformation is exaggerated.

【0026】本実施例もさきの各実施例と同様、微動機
構の長さ方向の寸法を小さくすることができ、かつ、さ
きの各実施例よりも全体構成が簡素である。なお、X、
Y軸方向の変位を行う圧電体が1つのみであるので、当
該方向の変位特性が多少犠牲になるが、実際には圧電体
の変位が微小であるため、多くの場合、実用上支障は生
じないし、又、変位誤差が生じても適切な補正手段で補
正すればよい。
Similar to each of the preceding embodiments, this embodiment can reduce the dimension of the fine movement mechanism in the lengthwise direction, and the overall structure is simpler than each of the preceding embodiments. Note that X,
Since there is only one piezoelectric body that displaces in the Y-axis direction, the displacement characteristics in that direction are somewhat sacrificed. Even if a displacement error does not occur, it may be corrected by an appropriate correction means.

【0027】なお、上記各実施例の説明では、各圧電体
を円筒形状に構成する例について説明したが、円筒に限
ることはなく、他の形状の筒体であっても使用可能であ
る。又、圧電体の重なりの数を増加させれば、より大き
な変位量を得ることができるのは明らかである。
In the description of each of the above embodiments, an example in which each piezoelectric body is formed in a cylindrical shape has been described. However, the shape is not limited to a cylinder, and a cylindrical body having another shape can be used. Further, it is obvious that a larger displacement amount can be obtained by increasing the number of overlapping piezoelectric bodies.

【0028】[0028]

【発明の効果】以上述べたように、本発明では、変位を
行う圧電体を、径が異なる少なくとも2つの中空の筒体
で構成し、これら径が異なる各圧電体を、それらの少な
くとも一部がそれらの径方向において互いに重なる状態
で順次連結したので、各軸方向のストロークを確保しな
がら長さ方向の寸法を小さくすることができる。
As described above, in the present invention, the piezoelectric body for displacement is composed of at least two hollow cylindrical bodies having different diameters, and at least a part of each of the piezoelectric bodies having different diameters is arranged. Since they are sequentially connected in a state of overlapping each other in the radial direction, it is possible to reduce the dimension in the length direction while ensuring the stroke in each axial direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る微動機構の側面図
である。
FIG. 1 is a side view of a fine movement mechanism according to a first embodiment of the present invention.

【図2】図1に示す線II−IIに沿う断面図である。FIG. 2 is a sectional view taken along line II-II shown in FIG.

【図3】図2に示す線III −III に示す断面図である。FIG. 3 is a sectional view taken along line III-III shown in FIG.

【図4】図1に示す圧電体の変形を示す図である。FIG. 4 is a diagram showing a modification of the piezoelectric body shown in FIG.

【図5】本発明の第2の実施例に係る微動機構の側面図
である。
FIG. 5 is a side view of a fine movement mechanism according to a second embodiment of the present invention.

【図6】図5に示す圧電体の変形を示す図である。6 is a diagram showing a modification of the piezoelectric body shown in FIG.

【図7】本発明の第3の実施例に係る微動機構の側面図
である。
FIG. 7 is a side view of a fine movement mechanism according to a third embodiment of the present invention.

【図8】図7に示す圧電体の変形を示す図である。8 is a diagram showing a modification of the piezoelectric body shown in FIG.

【図9】従来のプローブ顕微鏡の側面図である。FIG. 9 is a side view of a conventional probe microscope.

【図10】図9に示す線X−Xに沿う断面図である。10 is a cross-sectional view taken along line XX shown in FIG.

【符号の説明】[Explanation of symbols]

4 カンチレバー 5 探針 11 微動機構 12a、12c 圧電体 13X1 〜13Y4 電極 16 固定部材4 cantilevers 5 probe 11 fine movement mechanism 12a, 12c piezoelectric 13X 1 ~13Y 4 electrode 16 fixed member

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧電体に複数の電極を配置し、これら電
極に選択的に所定の電圧を印加することにより前記圧電
素子の自由端を任意方向に任意量変位させる微動機構に
おいて、前記圧電体を、径が異なる少なくとも2つの中
空の筒体で構成し、これら径が異なる各圧電体を、それ
らの少なくとも一部が径方向において互いに重なる状態
で順次連結するとともに、各圧電体に所要の電極を配置
したことを特徴とする微動機構。
1. A fine movement mechanism in which a plurality of electrodes are arranged on a piezoelectric body and a free end of the piezoelectric element is displaced by an arbitrary amount in an arbitrary direction by selectively applying a predetermined voltage to these electrodes, Is composed of at least two hollow cylindrical bodies having different diameters, and the piezoelectric bodies having different diameters are sequentially connected in a state where at least some of them overlap each other in the radial direction, and a required electrode is provided for each piezoelectric body. A fine movement mechanism characterized by having a.
【請求項2】 請求項1において、前記各中空の筒体
は、径の大きな第1の圧電体と、径の小さな第2の圧電
体と、前記第1の圧電体と前記第2の圧電体との中間の
径を有する第3の圧電体とで構成され、前記所要の電極
は、前記第1の圧電体、前記第2の圧電体、および前記
第3の圧電体の内面にそれぞれ配置された共通電極、前
記第1の圧電体の外面に対向して配置されその筒体の径
方向の変位を与える第1の対向電極群、前記第2の圧電
体の外面全周およびこれに連結部を介して続く前記第3
の圧電体の一部の外面全周に配置されそれら筒体の径方
向と直交する方向の変位を与える伸縮電極、および前記
第3の圧電体の他部の外面に対向して配置されその筒体
の径方向の変位を与える第2の対向電極群であることを
特徴とする微動機構。
2. The hollow cylindrical body according to claim 1, wherein each hollow cylindrical body has a first piezoelectric body having a large diameter, a second piezoelectric body having a small diameter, the first piezoelectric body and the second piezoelectric body. A third piezoelectric body having an intermediate diameter to the body, and the required electrodes are respectively arranged on the inner surfaces of the first piezoelectric body, the second piezoelectric body, and the third piezoelectric body. Common electrode, a first counter electrode group which is arranged so as to face the outer surface of the first piezoelectric body and gives a displacement in the radial direction of the cylindrical body, and the entire outer circumference of the second piezoelectric body and is connected thereto. The third that continues through the section
Expandable electrodes arranged on the entire outer circumference of a part of the piezoelectric body for giving displacement in a direction orthogonal to the radial direction of the cylindrical body, and the cylinder arranged so as to face the outer surface of the other part of the third piezoelectric body. A fine movement mechanism which is a second counter electrode group for giving a radial displacement of the body.
【請求項3】 請求項1において、前記中空の筒体は、
第1の圧電体と、この第1の圧電体より小さな径の第2
の圧電体と、この第2の圧電体より大きな径を有する第
3の圧電体とで構成され、前記所要の電極は、前記第1
の圧電体、前記第2の圧電体、および前記第3の圧電体
の内面にそれぞれ配置された共通電極、前記第1の圧電
体の外面に対向して配置されその筒体の径方向の変位を
与える第1の対向電極群、前記第2の圧電体の外面全周
に配置されそれら筒体の径方向と直交する方向の変位を
与える伸縮電極、および前記第3の圧電体の外面に対向
して配置されその筒体の径方向の変位を与える第2の対
向電極群であることを特徴とする微動機構。
3. The hollow cylindrical body according to claim 1,
The first piezoelectric body and the second piezoelectric body having a diameter smaller than that of the first piezoelectric body
And a third piezoelectric body having a diameter larger than that of the second piezoelectric body, and the required electrode is the first piezoelectric body.
Of the piezoelectric body, the second piezoelectric body, and the common electrode respectively disposed on the inner surfaces of the third piezoelectric body, and the radial displacement of the cylindrical body disposed so as to face the outer surface of the first piezoelectric body. A first counter electrode group for providing the electric field, an expandable electrode arranged on the entire outer circumference of the second piezoelectric body for giving a displacement in a direction orthogonal to the radial direction of the cylindrical body, and facing the outer surface of the third piezoelectric body. A fine movement mechanism that is a second counter electrode group that is arranged in a manner to provide a radial displacement of the cylindrical body.
【請求項4】 請求項1において、前記中空の筒体は、
第1の圧電体と、この第1の圧電体より大きな径の第2
の圧電体とで構成され、前記所要の電極は、前記第1の
圧電体と前記第2の圧電体の内面にそれぞれ配置された
共通電極、前記第1の圧電体の外面全周に配置されその
筒体の径方向と直交する方向の変位を与える伸縮電極、
および前記第3の圧電体の外面に対向して配置されその
筒体の径方向の変位を与える対向電極群であることを特
徴とする微動機構。
4. The hollow cylindrical body according to claim 1,
The first piezoelectric body and the second piezoelectric body having a diameter larger than that of the first piezoelectric body.
And the required electrodes are arranged on the entire circumference of the outer surface of the first piezoelectric body and the common electrodes arranged on the inner surfaces of the first piezoelectric body and the second piezoelectric body, respectively. A telescopic electrode that gives a displacement in a direction orthogonal to the radial direction of the cylindrical body,
And a group of opposed electrodes which are arranged so as to oppose the outer surface of the third piezoelectric body and which displace the cylindrical body in the radial direction.
【請求項5】 請求項2又は請求項3又は請求項4にお
いて、前記対向電極群は、それらが配置された筒体の軸
と直交する第1の軸方向において対向する第1の対向電
極と前記第1の軸と当該筒体の軸とに直交する第2の軸
方向において対向する第2の対向電極とで構成されるこ
とを特徴とする微動機構。
5. The counter electrode group as claimed in claim 2, the counter electrode group, and the counter electrode group, which oppose each other in a first axial direction orthogonal to an axis of a cylindrical body in which the counter electrode group is arranged. A fine movement mechanism comprising a first counter electrode and a second counter electrode opposed in a second axis direction orthogonal to the axis of the tubular body.
【請求項6】 請求項5において、前記対向電極の各電
極に印加する電圧の極性は、変更可能であることを特徴
とする微動機構。
6. The fine movement mechanism according to claim 5, wherein the polarity of the voltage applied to each electrode of the counter electrode is changeable.
JP7007468A 1995-01-20 1995-01-20 Inching mechanism Pending JPH08201399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7007468A JPH08201399A (en) 1995-01-20 1995-01-20 Inching mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7007468A JPH08201399A (en) 1995-01-20 1995-01-20 Inching mechanism

Publications (1)

Publication Number Publication Date
JPH08201399A true JPH08201399A (en) 1996-08-09

Family

ID=11666638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7007468A Pending JPH08201399A (en) 1995-01-20 1995-01-20 Inching mechanism

Country Status (1)

Country Link
JP (1) JPH08201399A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130573A (en) * 1997-05-20 1999-02-02 Jeol Ltd Holder holding device
US6359329B1 (en) 1998-09-04 2002-03-19 Nec Corporation Embedded wiring structure and method for forming the same
US20100306885A1 (en) * 2006-08-15 2010-12-02 Georgia Tech Research Corporation Cantilevers with Integrated Actuators for Probe Microscopy
US9443730B2 (en) 2014-07-18 2016-09-13 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US9837271B2 (en) 2014-07-18 2017-12-05 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US10460932B2 (en) 2017-03-31 2019-10-29 Asm Ip Holding B.V. Semiconductor device with amorphous silicon filled gaps and methods for forming

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130573A (en) * 1997-05-20 1999-02-02 Jeol Ltd Holder holding device
US6359329B1 (en) 1998-09-04 2002-03-19 Nec Corporation Embedded wiring structure and method for forming the same
US20100306885A1 (en) * 2006-08-15 2010-12-02 Georgia Tech Research Corporation Cantilevers with Integrated Actuators for Probe Microscopy
US8321959B2 (en) * 2006-08-15 2012-11-27 Georgia Tech Research Corporation Cantilevers with integrated piezoelectric actuators for probe microscopy
US9443730B2 (en) 2014-07-18 2016-09-13 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US9837271B2 (en) 2014-07-18 2017-12-05 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US10460932B2 (en) 2017-03-31 2019-10-29 Asm Ip Holding B.V. Semiconductor device with amorphous silicon filled gaps and methods for forming

Similar Documents

Publication Publication Date Title
US7915787B2 (en) Actuator
JPS62171457A (en) Linear actuator
JPH08201399A (en) Inching mechanism
JP3135181U (en) Sensor that detects both acceleration and angular velocity
Vorbringer-Doroshovets et al. 0.1-nanometer resolution positioning stage for sub-10 nm scanning probe lithography
Ji et al. A micromachined 2DOF nanopositioner with integrated capacitive displacement sensor
Yang et al. Design and control of a multi-actuated nanopositioning stage with stacked structure
JP2007116889A (en) Actuator by inchworm drive
JP5339851B2 (en) Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same
Simu et al. Evaluation of a monolithic piezoelectric drive unit for a miniature robot
Darby et al. Inertial stick-slip actuator for active control of shape and vibration
JPH02271204A (en) Sample moving table
JP4378385B2 (en) Driving stage in scanning probe apparatus, scanning probe apparatus
JPH09117165A (en) Tremor unit
JP2006118916A (en) Surface information measuring instrument, and surface information measuring method
JPH067042B2 (en) Piezoelectric element fine movement mechanism
JPH06308164A (en) Micro probe device and multi-micro probe
JP2001304869A (en) Ring-shaped vibration type rate sensor
JP3892184B2 (en) Scanning probe microscope
JPH06201369A (en) Multiprobe head of scanning probe microscope
Maroufi et al. MEMS in Nanopositioning
JPH01187402A (en) Scan tunnel microscope
JPH0298033A (en) Cylindrical piezoelectric actuator
Toshiyoshi et al. A digital-to-analog converter of displacement by an integrated micromechanism
JPH08101220A (en) Scanning probe microscope