JPH08201269A - Apparatus for accelerated spectral test of deterioration of optical property - Google Patents

Apparatus for accelerated spectral test of deterioration of optical property

Info

Publication number
JPH08201269A
JPH08201269A JP2606595A JP2606595A JPH08201269A JP H08201269 A JPH08201269 A JP H08201269A JP 2606595 A JP2606595 A JP 2606595A JP 2606595 A JP2606595 A JP 2606595A JP H08201269 A JPH08201269 A JP H08201269A
Authority
JP
Japan
Prior art keywords
light
optical axis
mirror
light flux
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2606595A
Other languages
Japanese (ja)
Other versions
JP2957917B2 (en
Inventor
Choichi Suga
長市 須賀
Yoji Watanabe
洋二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP2606595A priority Critical patent/JP2957917B2/en
Publication of JPH08201269A publication Critical patent/JPH08201269A/en
Application granted granted Critical
Publication of JP2957917B2 publication Critical patent/JP2957917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE: To provide a device which can project the light of a light source from low light energy to high light energy without changing the spectral distribution of the light source and, at the same time, can project monochromatic light or a continuous spectrum for easily discriminating a deteriorated wavelength or wavelength region by switching. CONSTITUTION: An optically accelerated spectral deterioration testing device is divided into a light source chamber 1, optical system chamber 2, and testing chamber 3. In the chamber 1, a light quantity adjusting filter 8 is provided for adjusting the transmitting quantity of a luminous flux condensed by means of an elliptic mirror 4. In the chamber 2, a movable stage 20 is provided and a light projecting optical system is constituted by fixing a bifocal lens 1, plane mirror 22, and collimator lens 23 on the stage 20. In addition, an analyzing optical system is constituted of an incident slit fixed on the stage 20 and concave mirror and planar diffraction grating provided on the outside of the stage 20 in the chamber 2 and emission slit provided in the chamber 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工業材料、製品の光劣化
を加速試験すると共にそれら材料製品の劣化波長あるい
は劣化波長帯を容易に識別するための装置に関わり、特
に、光源の分光分布を変えずに低い光エネルギーから高
い光エネルギーまで光源の光を照射できかつ劣化波長あ
るいは劣化波長帯を容易に識別するための単色光または
連続スペクトルを切換えて照射できる装置に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for accelerating the photo-deterioration of industrial materials and products and for easily identifying the deterioration wavelength or deterioration wavelength band of those materials and products. The present invention relates to an apparatus capable of irradiating light of a light source from low light energy to high light energy without changing and irradiating by switching monochromatic light or continuous spectrum for easily identifying a deterioration wavelength or a deterioration wavelength band.

【0002】[0002]

【従来の技術】地表に到達する太陽の光エネルギーは最
大約1.0Kw/m2 であり、季節、地域、時間等によ
って異なっている。さて近年、材料製品の光劣化促進試
験は太陽光の分光分布に比較的近似したキセノンランプ
を光源とする、JIS(日本工業規格)B7754「キ
セノンアークランプ式耐光性及び耐候性試験機」に規定
の装置が多く使用されている。
2. Description of the Related Art The maximum light energy of the sun that reaches the surface of the earth is about 1.0 Kw / m 2 , which varies depending on the season, region, time and the like. By the way, in recent years, the photodegradation acceleration test for material products is specified in JIS (Japanese Industrial Standard) B7754 "Xenon arc lamp type light resistance and weather resistance tester", which uses a xenon lamp as a light source that is relatively close to the spectral distribution of sunlight. Many devices are used.

【0003】図5は水冷ロングアークキセノンランプを
光源50とした耐候光試験機51の一例である。図にお
いて、試験槽52の中央に光源50として定格7kWの
水冷ロングアークキセノンランプが配置してあり、この
光源50の中心から約46cm離れた位置でこの光源5
0を中心に回転する回転枠53に試料25が取付けられ
ており、所定の温湿度条件下で、0.8kW/m2 程度
の光エネルギーの白色光を連続的あるいは間欠的に照射
するように構成されている。また、図示しないが、光源
50と試料25との位置を近づけ(例えば光源50の中
心から約24cm)、より高い光エネルギー(0.8〜
3.0kW/m2 程度)の白色光を照射し、光劣化をさ
らに促進しようとする装置も開発され、使用されてい
る。また、より高い光エネルギーを得るには、光源50
と試料25の距離を近づける方法の他に、定格の大きい
光源を用いる方法が考えられる。
FIG. 5 shows an example of a weather resistance tester 51 using a water-cooled long arc xenon lamp as a light source 50. In the figure, a water-cooled long arc xenon lamp having a rating of 7 kW is arranged as a light source 50 in the center of a test tank 52, and the light source 5 is placed at a position about 46 cm away from the center of the light source 50.
A sample 25 is attached to a rotary frame 53 that rotates around 0, and white or white light with a light energy of about 0.8 kW / m 2 is continuously or intermittently irradiated under a predetermined temperature and humidity condition. It is configured. Further, although not shown, the positions of the light source 50 and the sample 25 are brought close to each other (for example, about 24 cm from the center of the light source 50), and higher light energy (0.8 to
A device that irradiates white light of about 3.0 kW / m 2 ) to further promote photodegradation has also been developed and used. Further, in order to obtain higher light energy, the light source 50
In addition to the method of reducing the distance between the sample 25 and the sample 25, a method of using a light source with a large rating can be considered.

【0004】また、こうした耐候光試験機51には、試
料25の受ける光エネルギーを一定に制御するために、
光源50の光エネルギーを常時モニターし、光源50の
点灯電流電圧を調節するエネルギー調節装置が付帯して
ある。さらに、屋外における昼と夜を再現するために光
源50の点灯と消灯を任意の時間間隔で繰返すランプ点
灯制御装置(図示せず)、試験槽52内の温湿度の制御
装置等(図示せず)も付帯されている。図において、5
4はヒーター、55は冷却器、38は送風機であり、試
験槽52内の温度の制御を空気循環で行うようになって
いる。また、56は冷却器55に連絡する冷凍機、57
は回転枠53の回転装置である。
In addition, in order to control the light energy received by the sample 25 at a constant level, the weather resistance tester 51 is equipped with
An energy adjusting device for constantly monitoring the light energy of the light source 50 and adjusting the lighting current voltage of the light source 50 is attached. Further, a lamp lighting control device (not shown) that repeatedly turns on and off the light source 50 at arbitrary time intervals to reproduce day and night outdoors, a control device for temperature and humidity in the test tank 52, etc. (not shown). ) Is also attached. In the figure, 5
4 is a heater, 55 is a cooler, and 38 is a blower, and the temperature inside the test tank 52 is controlled by air circulation. Further, 56 is a refrigerator that communicates with the cooler 55, and 57
Is a rotating device of the rotating frame 53.

【0005】図6は、材料製品の劣化波長または劣化波
長域を促進調査するための分光老化試験機60の一例で
ある。図において、光源室1には楕円鏡4の第1焦点に
定格5kWの空冷ショートアークキセノンランプが光源
5として配置してあり、楕円鏡4の第2焦点に入射スリ
ット26が設けてある。このスリット26を通過した光
は光学系室2で凹面鏡27を経て平行光束として平面回
折格子28に至り、所定の波長範囲を一定間隔で単一波
長に分光し、凹面鏡27aの焦点位置に照射するように
構成されている。従って、凹面鏡27の焦点位置に配し
た試料25には所定波長範囲の連続スペクトルが照射さ
れることになる。尚、光源室1配した平面鏡22は装置
を小形にするために光路を折曲げるためのものである。
また、試料25の直前に配したハーフミラー61によっ
て試料25の照射光の一部を受光器群62に導き、試料
25に照射される連続スペクトルのエネルギーを測定で
きるようになっている。また、63は熱線吸収フィルタ
ーである。
FIG. 6 shows an example of a spectral aging tester 60 for accelerating and investigating a deterioration wavelength or a deterioration wavelength range of a material product. In the figure, in the light source chamber 1, an air-cooled short arc xenon lamp rated at 5 kW is arranged as a light source 5 at the first focus of the elliptic mirror 4, and an entrance slit 26 is provided at the second focus of the elliptic mirror 4. The light passing through the slit 26 passes through the concave mirror 27 in the optical system chamber 2 to reach the plane diffraction grating 28 as a parallel light flux, and splits a predetermined wavelength range into a single wavelength at a constant interval and irradiates the focal position of the concave mirror 27a. Is configured. Therefore, the sample 25 placed at the focal position of the concave mirror 27 is irradiated with the continuous spectrum in the predetermined wavelength range. The plane mirror 22 arranged in the light source chamber 1 is for bending the optical path in order to make the device compact.
Further, a half mirror 61 arranged immediately in front of the sample 25 guides a part of the irradiation light of the sample 25 to the photodetector group 62 so that the energy of the continuous spectrum with which the sample 25 is irradiated can be measured. Further, 63 is a heat ray absorption filter.

【0006】また、図示しないがこの凹面鏡27の焦点
位置に試料25を配する代わりに、特定の分光波長に対
応する位置に出射スリット(この分光波長の幅より狭い
スリット)を設ければ、これを通過した光は単色光とな
り、適当な位置に試料を配置することによって試料のよ
り広い範囲に単色光を照射できることになる。また、平
面回折格子28の角度を変えること、即ち凹面鏡27か
らの光の受光角度を変えることによって、凹面鏡27の
焦点位置に分光される光の波長域を変えることも可能で
ある。
Although not shown, instead of disposing the sample 25 at the focal position of the concave mirror 27, if an exit slit (slit narrower than the spectral wavelength width) is provided at a position corresponding to a specific spectral wavelength, The light that has passed through becomes monochromatic light, and by arranging the sample at an appropriate position, it is possible to irradiate a wider range of the sample with monochromatic light. Further, by changing the angle of the plane diffraction grating 28, that is, by changing the light receiving angle of the light from the concave mirror 27, it is possible to change the wavelength range of the light dispersed at the focal position of the concave mirror 27.

【0007】[0007]

【発明が解決しようとする課題】さて、上記のような耐
候光試験機において、光源と試料の距離を著しく近づけ
ること、キセノンランプの定格を著しく大きくすること
は試料が受ける熱量も多くなり、その影響を排除するこ
とは装置の大型化、機構の複雑化を招き現実的でない。
従って、こうした装置において、例えば地表に到達する
太陽光の最大光エネルギーの5倍、10倍の光エネルギ
ーを試料に照射することは実質的に不可能であった。
In the weather resistance tester as described above, if the distance between the light source and the sample is remarkably reduced, and if the rating of the xenon lamp is remarkably increased, the amount of heat received by the sample is also increased. It is not realistic to eliminate the influence because it causes the size of the device to be large and the mechanism to be complicated.
Therefore, in such a device, it was substantially impossible to irradiate the sample with light energy which is 5 times or 10 times the maximum light energy of sunlight reaching the surface of the earth.

【0008】また、キセノンランプは使用時間に伴って
その光エネルギーが低下するため、耐候光試験機に使用
する際は、一般に光エネルギーを常時モニターし、その
低下に伴って、ランプの点灯電流電圧を自動的に調節す
ることによって光エネルギーを一定にする、いわゆるエ
ネルギー自動調節装置が付帯されている。ところがキセ
ノンランプは点灯電流電圧によって分光分布に差異が生
じる。このため、極端に異なる電流電圧で制御する、即
ち、ランプの定格に対して極端に低いエネルギーから定
格までの広い範囲で制御しようとすると、分光分布に大
きな差異が生じるため正確な再現性を有する試験はでき
ない。また、より光エネルギーの大きな試験を行おうと
して大定格のキセノンランプを使用する場合、低い光エ
ネルギーの試験を行うには当然定格より著しく低い電流
電圧でキセノンランプを点灯する必要があり、これは分
光分布に差異を生じさせると共に不安定な点灯あるいは
点灯不能となり、正確な耐候光試験が行えない。さら
に、屋外の日射状態の再現、例えば昼と夜を繰返しを再
現するために、キセノンランプの点灯と消灯を繰返すこ
とはランプ寿命を短くする要因になっていた。
Further, since the light energy of a xenon lamp decreases with the time of use, the light energy is generally constantly monitored when it is used in a weathering light tester, and the lighting current voltage of the lamp is reduced in accordance with the decrease. A so-called automatic energy adjustment device is attached to keep the light energy constant by automatically adjusting. However, the spectral distribution of the xenon lamp varies depending on the lighting current voltage. Therefore, if control is performed with extremely different current and voltage, that is, if control is performed over a wide range from extremely low energy to the rating of the lamp, a large difference will occur in the spectral distribution, resulting in accurate reproducibility. I can't test. Also, when using a large-rated xenon lamp in order to perform a test with a larger light energy, it is naturally necessary to turn on the xenon lamp at a current voltage significantly lower than the rating in order to perform a test with a low light energy. Accurate weather resistance test cannot be performed because it causes a difference in spectral distribution and causes unstable lighting or non-lighting. Further, repeating the lighting and extinguishing of the xenon lamp in order to reproduce the outdoor solar radiation state, for example, to reproduce day and night, has been a factor that shortens the lamp life.

【0009】また、光源を中心として試料を回転させて
も各試料に照射される光エネルギーは、試料の置かれて
いる位置で若干異なり、長時間の試験においては光エネ
ルギーの均整度が問題になっていた。そこで光エネルギ
ーの均一な場所を選び、極端に試料数を少なくして試験
をするか、試料位置を入れ換えるローテーションを行っ
ていた。
Further, even if the sample is rotated around the light source, the light energy applied to each sample is slightly different depending on the position where the sample is placed, and the uniformity of the light energy becomes a problem in a long-term test. Was becoming. Therefore, the location where the light energy is uniform was selected and the number of samples was extremely reduced to carry out the test, or the sample positions were exchanged for rotation.

【0010】また、上記のような分光老化試験機は、上
述したように特定波長域の光を分光して連続スペクトル
として試料に照射し、試料の劣化波長を促進して調査す
る目的や、特定の単色光を試料のより広い範囲に照射し
て特定の波長での劣化を促進試験する目的に用いられて
いる。
The above-described spectral aging tester disperses light in a specific wavelength range and irradiates the sample as a continuous spectrum as described above to accelerate the deterioration wavelength of the sample for investigation and It is used for the purpose of irradiating a wider range of the sample with the monochromatic light of the above to accelerate the deterioration test at a specific wavelength.

【0011】さて、試料に連続スペクトルを照射する場
合、常に同じ光エネルギーを照射するために光源の点灯
電流電圧を調節したのでは点灯電流電圧によって分光分
布が異なるため、連続スペクトル中の各波長の光エネル
ギー比率が異なることになる。従って、同一時間繰返し
試験しても各波長の積算光エネルギーは同一にはならな
い。このため、特に劣化波長あるいは劣化波長帯が複数
ある試料においては常に同一条件の試験を繰返し行うこ
とができない。
When irradiating a sample with a continuous spectrum, if the lighting current voltage of the light source is adjusted to always irradiate the same light energy, the spectral distribution varies depending on the lighting current voltage. The light energy ratio will be different. Therefore, even if the test is repeated for the same time, the integrated light energy of each wavelength will not be the same. Therefore, the test under the same condition cannot always be repeatedly performed especially on a sample having a plurality of deterioration wavelengths or deterioration wavelength bands.

【0012】また、試料に単色光を照射する場合、照射
される単色光の光エネルギーが極端に強すぎると異常な
劣化形態を示すものがある。こうした試料の劣化形態を
調査するには、予め異常を起こさない最大の光エネルギ
ー(単色光の照射強度)を求めておき、その光エネルギ
ーで試験を行えば、異常な劣化形態を示さず促進性のあ
る試験ができることになる。
In addition, when a sample is irradiated with monochromatic light, if the light energy of the monochromatic light with which the sample is irradiated is extremely strong, it may exhibit an abnormal deterioration form. In order to investigate the deterioration form of such a sample, the maximum light energy (irradiation intensity of monochromatic light) that does not cause abnormality is obtained in advance, and if the test is performed with this light energy, abnormal deterioration form is not shown There will be a certain test.

【0013】従来の分光老化試験機ではこのような試験
を行う技術思想はなく、また、単色光を照射する場合を
除き(単色光照射の場合は、試料の位置とスリットの距
離の関係から光エネルギーの調節ができる)構成的に不
可能であった。
The conventional spectral aging tester has no technical idea of performing such a test, and except for the case of irradiating with monochromatic light (in the case of monochromatic light irradiation, the light is affected by the relationship between the sample position and the slit distance). Energy could be adjusted).

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に、光源と該光源の光を集光するための集光鏡とからな
る光源部と、複数の同一形状の平板が前記集光鏡による
集光光束の光軸に直交する位置から少なくとも該光軸と
平行な位置まで回動しかつ各平板が該光軸と直交する位
置になったとき一平面状をなすように一体に構成され、
一平面状になったとき該光源の光束を完全に遮る位置に
配置した、光量を調節するための光量調節フィルター
と、角柱状で同一焦点距離または焦点距離の異なる複数
種のレンズを隙間なく並べて一体としかつ前記集光鏡の
焦点位置に配した、前記集光光束を均整化するための複
式焦点レンズと、複式焦点レンズを通過した光の向きを
変えるために、前記集光光束の光軸上に中心を一致しか
つ該光軸に対して傾けて配した平面鏡と、該平面鏡の反
射光を平行光束にするために、平面鏡の中心と中心が一
致するように配したコリメータレンズとからなる照射光
学系と、前記照射光学系及び入射スリット(後述)が固
定してあり、照射光学系及び入射スリットが前記集光光
束の外及びその光軸上を交互に位置するように移動させ
る光学系切換え機構と、前記集光光束の光軸上に位置す
るように移動したとき前記集光鏡の焦点位置になるよう
に光学系切換え機構に固定した入射スリットと、入射ス
リットからの光を回折格子(後述)に導き、出射スリッ
ト(後述)上に集光するために、前記集光光束の光軸上
に中心を一致しかつ平面鏡が該光軸上に位置するときそ
の後方に位置するように配した凹面鏡と、凹面鏡からの
光束を一定間隔の連続スペクトルに分光するために、前
記集光光束の光軸上に平面鏡が位置するとき、平面鏡及
びコリメータレンズの中心軸の延長線上に中心を一致し
て配した回折格子と、該回折格子で分光する波長範囲を
変更するために、該回折格子の角度を可変する角度可変
機構と、試験室(後述)内にあって、光学系切換え機構
に同期し、入射スリットが前記集光光束の光軸上に位置
するとき、コリメータレンズの光束に外れる位置から前
記平面鏡及びコリメータレンズを挟んだ回折格子の反対
側でかつ前記平面鏡及びコリメータレンズの中心軸の延
長線上に一致する位置に移動できるスリット移動機構を
備えた、単色光を照射するための出射スリットとからな
る分光光学系と、前記平面鏡からの光束が十分通過する
開口を有し、該開口を透明ガラスで覆った密閉形状で、
試験する温度及び湿度が調節可能な試験室と、試験室内
にあって、前記集光光束の光軸と平行でかつ少なくとも
前記凹面鏡の焦点位置まで移動可能な試料を載置するた
めの試料台と、さらに前記光量調節フィルターの各平板
の回動を別個にまたは同時に制御しかつ試験室内を設定
温湿度に制御する制御機構とからなる光加速分光劣化試
験装置をその手段とした。
In order to solve the above-mentioned problems, a light source section comprising a light source and a light collecting mirror for collecting the light of the light source, and a plurality of flat plates having the same shape are used as the light collecting mirror. Is integrally formed so as to form a plane when the flat plates are rotated from a position orthogonal to the optical axis of the condensed light flux to at least a position parallel to the optical axis and each flat plate is in a position orthogonal to the optical axis. ,
A light amount adjusting filter for adjusting the light amount, which is arranged at a position where the light flux of the light source is completely blocked when it becomes a single plane, and a plurality of types of lenses having a prismatic shape and having the same focal length or different focal lengths are arranged without a gap. A bifocal lens integrated and arranged at the focal position of the converging mirror for equalizing the condensing light flux, and an optical axis of the condensing light flux for changing the direction of light passing through the bifocal lens It is composed of a plane mirror whose center is aligned above and tilted with respect to the optical axis, and a collimator lens which is arranged so that the center of the plane mirror is aligned with the center of the plane mirror so that the reflected light of the plane mirror becomes a parallel light flux. An irradiation optical system, an irradiation optical system and an entrance slit (which will be described later) are fixed, and an optical system that moves the irradiation optical system and the entrance slit so that they are alternately positioned outside the condensed light flux and on the optical axis thereof. Switching mechanism , An entrance slit fixed to the optical system switching mechanism so that the focal point of the condensing mirror is reached when the light is moved so as to be positioned on the optical axis of the condensed light flux, and a diffraction grating for the light from the entrance slit (described later) A concave mirror, which is arranged so that its center coincides with the optical axis of the condensed light flux and is positioned behind the plane mirror when the plane mirror is located on the optical axis in order to guide the light to the exit slit (to be described later). In order to disperse the light beam from the concave mirror into a continuous spectrum with a constant interval, when the plane mirror is located on the optical axis of the condensed light beam, the centers are aligned on the extension lines of the center axes of the plane mirror and the collimator lens. And a variable angle mechanism for changing the angle of the diffraction grating in order to change the wavelength range to be separated by the diffraction grating, and a test chamber (described later) in synchronization with the optical system switching mechanism, The incident slit is the condensed light When it is located on the optical axis of the collimator lens, it can be moved from the position deviated from the light flux of the collimator lens to the position opposite to the diffraction grating sandwiching the plane mirror and the collimator lens and on the extension line of the central axes of the plane mirror and the collimator lens. With a slit moving mechanism, a spectroscopic optical system consisting of an exit slit for irradiating monochromatic light, and an opening through which the light flux from the plane mirror sufficiently passes, in a closed shape in which the opening is covered with transparent glass,
A test chamber in which the temperature and humidity to be tested are adjustable, and a sample table for placing a sample in the test chamber, which is parallel to the optical axis of the condensed light flux and is movable to at least the focal position of the concave mirror. Further, a light acceleration spectral deterioration test apparatus comprising a control mechanism for controlling the rotation of each flat plate of the light quantity adjusting filter separately or simultaneously and controlling the temperature and humidity inside the test chamber is used as the means.

【0015】[0015]

【作用】上記の手段を採用したことにより、光源の光を
集光することによって定格以上の光エネルギーが得られ
る。従来の耐候光試験機で採用されているエネルギー自
動調節装置は、例えばキセノンランプの点灯電流電圧を
調節することによって光エネルギーを一定にする方式の
ため、点灯電流電圧の差異により分光分布が異なる場合
があったが、光量調節フィルターはこれを構成する各平
板を回動することによって集光された光束の通過量を調
節する機構のため、光源の点灯電流電圧を可変する必要
はなく、従って分光分布に差異は生じない。また、キセ
ノンランプは定格に対して極端に低い点灯電圧電流で点
灯すること、即ち、定格に対して著しく低いエネルギー
からの試験ができず、昼と夜との条件を再現するには点
灯と消灯を繰返す必要がありランプの寿命を短くする要
因になっていたが、該フィルターは各平板を回動し、集
光光束の光量を調節することになるので、ランプの定格
に対して著しく低いエネルギーでの試験や昼夜の繰返し
が容易かつ安定的にできることになる。
By adopting the above-mentioned means, the light energy above the rated value can be obtained by condensing the light from the light source. The automatic energy adjuster used in the conventional weather resistance tester is a system that keeps the light energy constant by adjusting the lighting current voltage of the xenon lamp, for example, when the spectral distribution differs due to the difference of the lighting current voltage. However, since the light amount adjustment filter is a mechanism that adjusts the passing amount of the condensed light flux by rotating each flat plate that composes it, it is not necessary to change the lighting current voltage of the light source, so There is no difference in distribution. Also, the xenon lamp should be lit with an extremely low lighting voltage and current, that is, it cannot be tested from an energy significantly lower than the rating, and it should be turned on and off to reproduce the conditions of day and night. However, since the filter rotates each flat plate to adjust the amount of condensed light flux, the energy is significantly lower than the rated lamp. It will be easy and stable to carry out tests and repeat day and night.

【0016】複式焦点レンズ、即ち同一焦点距離または
異なる焦点距離のレンズを一体に組合せたもので、集光
光束を小口径のレンズで分割した形で試料面上に照射す
ることになり、各レンズからの照射光、即ち強度の異な
る照射光が試料面上で重なり合うことになり、集光光束
の照射ムラが均整化できるものである。
A bifocal lens, that is, a combination of lenses having the same focal length or different focal lengths, is used to illuminate a sample surface with a condensed light beam divided by a lens having a small aperture. The irradiation lights from the above, that is, the irradiation lights having different intensities are overlapped on the sample surface, and the irradiation unevenness of the condensed light flux can be balanced.

【0017】また、光学系切換え機構によって照射光学
系と分光光学系を集光光束の光軸上に位置するように交
互に移動し、試料に集光光束を照射することと試料に連
続スペクトルあるいは単色光を照射することの切換えが
できる。ここで、単色光の照射は連続スペクトル中の特
定波長を通過させればよいから、当該波長が出射スリッ
トの位置になるように回折格子の角度を可変するように
すればよい。
Further, the illuminating optical system and the spectroscopic optical system are alternately moved by the optical system switching mechanism so as to be located on the optical axis of the condensed light beam so that the sample is irradiated with the condensed light beam and the continuous spectrum or the sample is irradiated. The irradiation of monochromatic light can be switched. Here, since the irradiation of the monochromatic light only needs to pass a specific wavelength in the continuous spectrum, the angle of the diffraction grating may be changed so that the wavelength is located at the position of the exit slit.

【0018】[0018]

【実施例】以下本発明の一実施例を図面を用いて説明す
る。図1は試料に光源の集光光束を照射する場合の構成
を示す概要図、図2は試料に単色光を照射する場合の構
成を示す概要図、図3は試料に連続スペクトルを照射す
る場合の構成を示す概要図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration when a sample is irradiated with a condensed light flux of a light source, FIG. 2 is a schematic diagram showing a configuration when a sample is irradiated with monochromatic light, and FIG. 3 is a case where a sample is irradiated with a continuous spectrum. It is a schematic diagram showing the configuration of.

【0019】図1から図3において、本実施例の装置は
光源室1、光学系室2、試験室3に区分けされている。
光源室1は暗箱形状で、その内部に楕円鏡4が設けてあ
り、その第1焦点位置に光源として定格5.0kWの空
冷ショートアークキセノンランプ5が配してある。また
このランプ5の冷却は、楕円鏡4の中心部の開口からブ
ロワー6からの空気を冷却風としてランプ5に吹き付け
て行うようになっており、ブロワー6の冷却風は排気口
7から排出される。
1 to 3, the apparatus of this embodiment is divided into a light source chamber 1, an optical system chamber 2 and a test chamber 3.
The light source chamber 1 has a dark box shape, an elliptical mirror 4 is provided inside the light source chamber 1, and an air-cooled short arc xenon lamp 5 having a rating of 5.0 kW is arranged as a light source at the first focus position. Further, the lamp 5 is cooled by blowing air from the blower 6 as cooling air from the opening at the center of the elliptic mirror 4 onto the lamp 5, and the cooling air of the blower 6 is discharged from the exhaust port 7. It

【0020】また光源室1には図4に図示するような、
楕円鏡4によって集光された光束の通過量を調節するた
めの光量調節フィルター8が配してある。即ち、複数枚
の同一大きさの平板9がその平面の中心線を中心に回動
できるようにそれぞれ回転軸10に固定され、各回転軸
10は枠体11の内側で同一直線上となるように平板9
の幅と同一間隔で取付けてある。従って、各平板9の端
部が同時に各回転軸10が位置する直線上に位置すると
き枠体11内には各平板9からなる一平面が構成される
ことになる。また、この光量調節フィルター8は、前記
各平板9からなる一平面の中心が楕円鏡4によって集光
された光束の光軸(中心軸)と一致しかつ該一平面がこ
の光軸(中心軸)と直交する位置に配置してあり、該一
平面の大きさはこのとき該光束を十分遮る大きさになっ
ている。また各平板9の回転は、各回転軸10を一体に
回動可能に連結する連結棒12によって連結され、サー
ボモータ13に接続したギヤ14を介してこの連結棒1
2を動かすようになっている。また、平板9の回転角度
の調節を行うためにサーボモータ13に接続した前記ギ
ヤ14に歯合するギヤ14aに接続したポテンショメー
タ15が設けてある。
In the light source chamber 1, as shown in FIG.
A light amount adjusting filter 8 for adjusting the passing amount of the light flux condensed by the elliptic mirror 4 is arranged. That is, a plurality of flat plates 9 of the same size are fixed to the rotary shafts 10 so as to be rotatable around the center line of the planes, and the rotary shafts 10 are arranged on the same straight line inside the frame 11. On the flat plate 9
It is installed at the same interval as the width of. Therefore, when the end portions of the flat plates 9 are located on the straight line on which the rotary shafts 10 are located at the same time, a single plane composed of the flat plates 9 is formed in the frame body 11. Further, in the light quantity adjusting filter 8, the center of one plane made up of each of the flat plates 9 coincides with the optical axis (center axis) of the light beam condensed by the elliptical mirror 4, and the one plane has this optical axis (center axis). ), And the size of the one plane is such that the light flux is sufficiently blocked at this time. Further, the rotation of each flat plate 9 is connected by a connecting rod 12 that integrally rotatably connects the respective rotating shafts 10, and the connecting rod 1 is connected via a gear 14 connected to a servo motor 13.
It is designed to move 2. Further, a potentiometer 15 connected to a gear 14a that meshes with the gear 14 connected to the servomotor 13 is provided to adjust the rotation angle of the flat plate 9.

【0021】ここで、平板9の回転角度の調節は、エネ
ルギー設定調節器16に設定したエネルギー値と試料台
17に取付けた照射光の光エネルギーを受光する受光器
18からの出力とが一致するまでサーボモータ13と一
緒にポテンショメータ15を回転させ、両者が一致した
ときポテンショメータ15からサーボモータ13の停止
出力が発せられ、平板9の回転が停止するようになって
いる。尚、平板9の回転角度の範囲は集光光束の光軸に
直交する位置、即ち平板9が一平面状になる位置から該
光軸と平行な位置までの90度の範囲としてある。ま
た、本実施例では上記のようにサーボモータ13とポテ
ンショメータ15との組合せで平板9の回転角度を調節
する機構としたが、サーボモータ13の代わりに例えば
パルスモータを用いてもよい。
Here, in the adjustment of the rotation angle of the flat plate 9, the energy value set in the energy setting adjuster 16 and the output from the light receiver 18 which receives the light energy of the irradiation light attached to the sample stand 17 coincide with each other. The potentiometer 15 is rotated together with the servomotor 13 until the two coincide with each other, and the potentiometer 15 outputs a stop output of the servomotor 13 to stop the rotation of the flat plate 9. The range of the rotation angle of the flat plate 9 is a range of 90 degrees from the position orthogonal to the optical axis of the condensed light beam, that is, the position where the flat plate 9 is in a single plane to the position parallel to the optical axis. Further, in the present embodiment, the mechanism for adjusting the rotation angle of the flat plate 9 by the combination of the servo motor 13 and the potentiometer 15 is used as described above, but a pulse motor may be used instead of the servo motor 13, for example.

【0022】光学系室2は光源室1と連接した暗箱状
で、光源5の集光光束を十分通過する大きさの透明石英
ガラス19をはめ込んだ窓がこの連接部分に設けてあ
る。箱内には集光光束と直角に移動する移動台20が設
けてあり、移動台20上に、複式焦点レンズ21、平面
鏡22、コリメータレンズ23が固定してあり、照射光
学系を構成している。
The optical system chamber 2 is in the form of a dark box connected to the light source chamber 1, and a window in which a transparent quartz glass 19 having a size sufficient to pass the condensed light flux of the light source 5 is fitted is provided in this connected portion. A moving table 20 that moves at a right angle to the condensed light flux is provided in the box, and a bifocal lens 21, a plane mirror 22, and a collimator lens 23 are fixed on the moving table 20 to form an irradiation optical system. There is.

【0023】複式焦点レンズ21は角柱状で同一焦点距
離のレンズを隙間なく並べて一体としたもので、その中
心が光源5の集光光束の光軸上でかつ光源室1の楕円鏡
4の第2焦点の位置に、平面鏡22はその中心が前記集
光光束の光軸上で平面鏡22の中心を通る光軸の法線に
対して移動台20側に45度傾けて固定してある。また
コリメータレンズ23の中心は上記法線上に位置し、移
動台20に設けた開口にはめ込んである。またこの移動
台20はモーター24によって、複式焦点レンズ21、
平面鏡22及びコリメータレンズ23の中心が前記集光
光束の光軸上になる位置とこれら全体がこの集光光束か
ら外れる位置とを交互に移動できるようになっている。
従って、これらの中心が前記光軸上にあるとき、複式焦
点レンズ21を通過した光は、平面鏡22で直角に向き
を変え、コリメータレンズ23に照射され、ここで平行
光束となる。
The multifocal lens 21 is a prismatic lens having the same focal length arranged side by side without any gap, and the center thereof is on the optical axis of the condensed light beam of the light source 5 and the elliptic mirror 4 of the light source chamber 1. The plane mirror 22 is fixed at the bifocal position with the center tilted 45 degrees toward the movable table 20 with respect to the normal line of the optical axis passing through the center of the plane mirror 22 on the optical axis of the condensed light flux. The center of the collimator lens 23 is located on the normal line and is fitted in the opening provided in the movable table 20. In addition, the movable table 20 is driven by a motor 24 so that the bifocal lens 21,
The position where the center of the plane mirror 22 and the collimator lens 23 is on the optical axis of the condensed light beam and the position where the whole of them are out of the condensed light beam can be alternately moved.
Therefore, when these centers are on the optical axis, the light passing through the bifocal lens 21 changes its direction at a right angle by the plane mirror 22 and is applied to the collimator lens 23, where it becomes a parallel light flux.

【0024】さて、複式焦点レンズ21は、前記集光光
束を小口径のレンズで分割した形で試料25面上に照射
することになり、各小口径レンズからの照射光、即ち強
度の異なる照射光が試料25面上で重なり合うことにな
り、集光光束の照射ムラが均整化できるものであるか
ら、後述する試験室3内の試料台17を複式焦点レンズ
21を経た全ての光が重なる位置に移動し、ここで試料
25の照射を行えば試料25面は照射ムラがなくなるこ
とになる。また、試料25面に特定の波長域の光を照射
する場合は、例えば、コリメータレンズ23の平行光束
を十分覆いかつコリメータレンズ23に近接した位置に
波長選択フィルター(図示せず)を配置すればよい。
By the way, the multifocal lens 21 irradiates the condensed light flux on the surface of the sample 25 in the form of being divided by the lenses of small diameters, and the irradiation light from each small diameter lens, that is, the irradiation of different intensity. Since the lights are overlapped on the surface of the sample 25, and the unevenness of irradiation of the condensed light flux can be balanced, all the lights passing through the multifocal lens 21 on the sample table 17 in the test chamber 3 described later are overlapped. If the sample 25 is irradiated here, the surface of the sample 25 will have no uneven irradiation. When irradiating the surface of the sample 25 with light in a specific wavelength range, for example, a wavelength selection filter (not shown) may be arranged at a position that sufficiently covers the parallel light flux of the collimator lens 23 and is close to the collimator lens 23. Good.

【0025】また、分光光学系は光学系室2の移動台2
0上に固定した入射スリット26、移動台17外に配し
た凹面鏡27、平面回折格子28及び試験室3内に配し
た出射スリット29から構成されている。光源5の集光
光束を細線状として通過させるための入射スリット26
は、上記複式焦点レンズ21、平面鏡22及びコリメー
タレンズ23全体が前記集光光束から外れる位置にある
とき、この集光光束の光軸上に位置するように移動台2
0上に固定してある。平面回折格子28は、前記平面鏡
22の中心を通る集光光束の法線上で、平面鏡22を挟
んでコリメータレンズ23の反対側に図示しない固定具
を介して固定してあり、凹面鏡27は、移動台20の外
側でこの集光光束の光軸上に中心を一致しかつその反射
光が平面回折格子28に反射できる角度に傾けて固定し
てある。また、移動台20には入射スリット26が前記
集光光束の光軸上に位置するとき、該光軸と中心が一致
する位置に開口が設けてあり、凹面鏡27、平面回折格
子28を経た光が通過するようになっている。また凹面
鏡27の集光光束を細線状として通過する出射スリット
29は、後述する試験室3内にあり、コリメータレンズ
23の光束から外れた位置と前記集光光束と平行でかつ
前記平面鏡22の中心を通る集光光束の法線上で凹面鏡
27の焦点位置とに移動するためのスリット移動機構
(詳細図示せず)により移動可能に配してあり、その形
状は蓋の底にスリットを設けた形状で、試験室3の開口
を覆う大きさになっている。
Further, the spectroscopic optical system is a moving table 2 in the optical system chamber 2.
It is composed of an entrance slit 26 fixed on the surface 0, a concave mirror 27 arranged outside the movable table 17, a plane diffraction grating 28, and an exit slit 29 arranged inside the test chamber 3. Incident slit 26 for passing the condensed light flux of light source 5 in the form of a thin line
Is a movable table 2 so that the bifocal lens 21, the plane mirror 22, and the collimator lens 23 are located on the optical axis of the condensed light flux when the whole is out of the condensed light flux.
It is fixed on 0. The plane diffraction grating 28 is fixed to the opposite side of the collimator lens 23 across the plane mirror 22 on the normal line of the condensed light flux passing through the center of the plane mirror 22 through a fixture not shown, and the concave mirror 27 moves. The center is coincident with the optical axis of the condensed light flux outside the table 20, and the reflected light is inclined and fixed at an angle at which it can be reflected by the plane diffraction grating 28. Further, when the entrance slit 26 is located on the optical axis of the condensed light flux, an opening is provided in the movable table 20 at a position where the center coincides with the optical axis, and the light passing through the concave mirror 27 and the plane diffraction grating 28 is provided. Are supposed to pass through. The exit slit 29, which passes the condensed light flux of the concave mirror 27 in the form of a thin line, is in the test chamber 3 described later, and is located at a position deviated from the light flux of the collimator lens 23, parallel to the condensed light flux, and the center of the plane mirror 22. Is arranged by a slit moving mechanism (not shown in detail) for moving to the focal position of the concave mirror 27 on the normal line of the condensed light flux passing through, and its shape is a shape with a slit provided on the bottom of the lid. The size is such that it covers the opening of the test chamber 3.

【0026】また平面回折格子28はその角度が変えら
れるようになっている。即ち、この平面回折格子28は
回転軸30に固定され、この回転軸30に平面回折格子
28の反射面と直角にサインバー31が固定してあり、
該反射面及びサインバー31と直交して取付けたモータ
ーを備えた送り螺子機構32によって平面回折格子28
が連続的に回動するものである。
The angle of the plane diffraction grating 28 can be changed. That is, the plane diffraction grating 28 is fixed to the rotation axis 30, and the sine bar 31 is fixed to the rotation axis 30 at a right angle to the reflection surface of the plane diffraction grating 28.
A plane diffraction grating 28 is provided by a feed screw mechanism 32 having a motor mounted orthogonal to the reflection surface and the sine bar 31.
Rotate continuously.

【0027】従って、入射スリット26が前記集光光束
の光軸上に位置するとき、このスリット26を通過した
光は凹面鏡27に照射され、平面回折格子28に至り、
ここで所定の波長範囲を連続スペクトルに分光し、凹面
鏡27の焦点位置に照射することになり、試料25をこ
の位置に配置すると試料25面に連続スペクトルが照射
されることになる。ここで平面回折格子28の角度を変
えることによってこの焦点位置に照射される波長範囲が
変わることになり、試料25に照射される連続スペクト
ルの範囲を変えることができる。また、この焦点位置に
出射スリット29(スリット幅は特定波長の照射幅より
狭い)を位置させると、出射スリット29から単色光が
照射されることになり、即ち、平面回折格子28の回転
により照射する単色光が選択できることになり、同様に
平面回折格子28の角度を変えると出射スリット29か
ら異なる単色光が照射されることになる。
Therefore, when the entrance slit 26 is located on the optical axis of the condensed light beam, the light passing through the slit 26 is irradiated on the concave mirror 27 and reaches the plane diffraction grating 28.
Here, a predetermined wavelength range is split into a continuous spectrum and is irradiated on the focal position of the concave mirror 27. When the sample 25 is placed at this position, the surface of the sample 25 is irradiated with the continuous spectrum. Here, by changing the angle of the plane diffraction grating 28, the wavelength range irradiated to this focal position is changed, and the range of the continuous spectrum irradiated to the sample 25 can be changed. Further, when the exit slit 29 (slit width is narrower than the irradiation width of the specific wavelength) is located at this focal position, monochromatic light is irradiated from the exit slit 29, that is, the plane diffraction grating 28 is rotated. The monochromatic light to be selected can be selected, and similarly, when the angle of the plane diffraction grating 28 is changed, different monochromatic light is emitted from the exit slit 29.

【0028】試験室3は内槽33と外槽34の二重構造
で、光学系室2と連接している。内槽33の連接部分に
は前記コリメータレンズ23の平行光束が十分通過する
開口が設けてあり、該開口は透明石英ガラス19で塞が
れている。内槽33と外槽34とでなす空間には、ヒー
ター、冷却器などよりなる調温装置35及び加湿装置3
6があり、内槽33の対面する側壁にそれぞれ設けた空
気循環口37があり、一方の空気循環口37に対面する
内槽33と外槽34とでなす空間に送風機38が設けて
ある。従って、内槽33内の温度及び湿度は、調温装置
35及び加湿装置36、送風機38を作動させ、空気循
環によって行うことになる。また、温湿度の制御は試験
室3外に配した温湿度設定調節器39、内槽33内に配
した温度及び湿度センサー(図示せず)によって行われ
る。
The test chamber 3 has a dual structure of an inner tank 33 and an outer tank 34 and is connected to the optical system chamber 2. An opening through which the collimated light flux of the collimator lens 23 sufficiently passes is provided in the connecting portion of the inner tank 33, and the opening is closed with a transparent quartz glass 19. In the space formed by the inner tank 33 and the outer tank 34, a temperature control device 35 including a heater and a cooler and a humidifying device 3 are provided.
6, there is an air circulation port 37 provided on each side wall of the inner tub 33 facing each other, and a blower 38 is provided in a space formed by the inner tub 33 and the outer tub 34 facing one air circulation port 37. Therefore, the temperature and humidity in the inner tank 33 are controlled by operating the temperature controller 35, the humidifier 36, and the blower 38 to circulate the air. The temperature and humidity are controlled by a temperature / humidity setting controller 39 arranged outside the test chamber 3 and a temperature and humidity sensor (not shown) arranged inside the inner tank 33.

【0029】また、試験室3内には、集光光束の光軸上
で平面鏡22の中心を通る前記法線上に中心を位置する
試料台17が設けてある。この試料台17にはパンダグ
ラフ方式の試料台上下機構40が備えてあり、試料台1
7面を前記出射スリット29の移動に支障のない位置か
ら前記凹面鏡27の焦点位置まで移動できるようになっ
ている。
Further, in the test chamber 3, there is provided a sample table 17 whose center is located on the normal line passing through the center of the plane mirror 22 on the optical axis of the condensed light beam. The sample table 17 is provided with a pandagraph type sample table up-and-down mechanism 40.
The seven surfaces can be moved from a position that does not hinder the movement of the exit slit 29 to the focal position of the concave mirror 27.

【0030】ここで、本実施例の装置を用いて行った照
射実験の一例を説明する。定格5kWのショートアーク
キセノンランプ(電極間5mm)を直径700mmの楕
円鏡の第1焦点(f1=75)上に配し、第2焦点(f
2=900mm)上に複式焦点レンズを配した。平面鏡
は300mm×300mmの大きさで、複式焦点レンズ
から200mmの位置に45度傾けて、コリメータレン
ズは平面鏡の中心から200mmの位置に配し、平面鏡
の中心から600mm離れた位置に試料台の上面が位置
するようにした。光源は4.2kW点灯し、1000W
/m2 をエネルギー設定調節器に設定した。このときの
試料台上15箇所の光エネルギーを測定した結果は、最
大1038.3W/m2 、最低976.2W/m2 であ
った。これを一般に照度ムラを求める式「(最大照度−
最小照度)/(最大照度+最小照度)×100」に当て
はめると、照度ムラは3.1%であり、非常に均整度が
高かった。また、10000W/m2 に設定した場合も
ほぼ同一均整度が得られた。尚、図示しないが上記10
00W/m2 及び10000W/m2 の照射時におい
て、その分光分布は同一であった。
Here, an example of an irradiation experiment conducted using the apparatus of this embodiment will be described. A short arc xenon lamp rated at 5 kW (5 mm between electrodes) is placed on the first focus (f1 = 75) of an elliptical mirror with a diameter of 700 mm, and the second focus (f
2 = 900 mm) with a double focus lens. The plane mirror has a size of 300 mm × 300 mm, is tilted 45 degrees to the position of 200 mm from the bifocal lens, the collimator lens is arranged at a position of 200 mm from the center of the plane mirror, and the top surface of the sample table is located 600 mm away from the center of the plane mirror. To be located. Light source is 4.2kW, 1000W
/ M 2 was set on the energy setting controller. Result of light energy were measured of the sample table on 15 points at this time, the maximum 1038.3W / m 2, was the lowest 976.2W / m 2. In general, this is an expression for calculating the illuminance unevenness “(maximum illuminance −
Minimum illuminance) / (maximum illuminance + minimum illuminance) × 100 ”, the illuminance unevenness was 3.1%, and the uniformity was very high. Also, when set to 10000 W / m 2 , almost the same degree of uniformity was obtained. Although not shown, the above 10
At the time of irradiation of 00 W / m 2 and 10000 W / m 2 , their spectral distributions were the same.

【0031】[0031]

【効果】本発明によれば、光源の光を集光することによ
って定格以上の光エネルギーが得られる。また光量調節
フィルターにより、分光分布が同一で低い光エネルギー
から高い光エネルギーまで、かつ光源を点滅せずに昼と
夜との条件を試験できることになり、再現性よい試験が
できると共に光源の寿命を延ばすことができるようにな
った。また、複式焦点レンズの採用によりより均整度の
高い照射試験が可能になった。
[Effect] According to the present invention, light energy above the rated value can be obtained by condensing the light from the light source. In addition, the light intensity adjustment filter enables testing of low to high light energy with the same spectral distribution, and day and night conditions without blinking the light source, which enables reproducible tests and increases the life of the light source. It has become possible to postpone. In addition, the adoption of a bifocal lens made it possible to perform irradiation tests with a higher degree of uniformity.

【0032】さらに、照射光学系と分光光学系とを内包
することにより、集光光束の照射に加え、連続スペクト
ルあるいは単色光を照射することができ、汎用性の広い
装置となった。
Further, by incorporating the irradiation optical system and the spectroscopic optical system, it is possible to irradiate the continuous spectrum or monochromatic light in addition to the irradiation of the condensed light flux, and the apparatus has a wide versatility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の装置で、試料に光源の集光光
束を照射する場合の構成を示す概要図。
FIG. 1 is a schematic diagram showing a configuration when a sample is irradiated with a condensed light flux of a light source in an apparatus according to an embodiment of the present invention.

【図2】本発明の実施例の装置で、試料に単色光を照射
する場合の構成を示す概要図。
FIG. 2 is a schematic diagram showing a configuration in the case of irradiating a sample with monochromatic light in the apparatus of the embodiment of the present invention.

【図3】本発明の実施例の装置で、試料に連続スペクト
ルを照射する場合の構成を示す部分概要図。
FIG. 3 is a partial schematic diagram showing a configuration when a sample is irradiated with a continuous spectrum in the apparatus according to the embodiment of the present invention.

【図4】光量調節フィルターの構成を示す斜視図。FIG. 4 is a perspective view showing a configuration of a light amount adjustment filter.

【図5】キセノンランプを光源とした耐候光試験機の一
例の概要図。
FIG. 5 is a schematic view of an example of a weather resistance tester using a xenon lamp as a light source.

【図6】分光老化試験機の一例の概要図。FIG. 6 is a schematic diagram of an example of a spectral aging tester.

【符号の説明】[Explanation of symbols]

1 光源室 2 光学系室 3 試験室 4 楕円鏡 5 光源 6 光量調節フィルター 16 エネルギー設定調節器 17 試料台 20 移動台 21 複式焦点レンズ 22 平面鏡 23 コリメータレンズ 25 試料 26 入射スリット 27 凹面鏡 28 平面回折格子 29 出射スリット 39 温湿度設定調節器 40 試料上下機構 DESCRIPTION OF SYMBOLS 1 light source room 2 optical system room 3 test room 4 elliptical mirror 5 light source 6 light quantity adjusting filter 16 energy setting adjuster 17 sample table 20 moving table 21 multiple focusing lens 22 plane mirror 23 collimator lens 25 sample 26 entrance slit 27 concave mirror 28 plane diffraction grating 29 Output slit 39 Temperature / humidity setting controller 40 Sample up / down mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料の光劣化を促進試験する際に、照射
エネルギーを変化してもその分光分布は変化せず、かつ
試料に所要の分光した光を照射するための光学系を有す
るもので、光源と該光源の光を集光するための集光鏡と
からなる光源部と、複数の同一形状の平板が前記集光鏡
による集光光束の光軸に直交する位置から少なくとも該
光軸と平行な位置まで回動しかつ各平板が該光軸と直交
する位置になったとき一平面状をなすように一体に構成
され、一平面状になったとき該光源の光束を完全に遮る
位置に配置した、光量を調節するための光量調節フィル
ターと、角柱状で同一焦点距離または焦点距離の異なる
複数種のレンズを隙間なく並べて一体としかつ前記集光
鏡の焦点位置に配した、前記集光光束を均整化するため
の複式焦点レンズと、複式焦点レンズを通過した光の向
きを変えるために、前記集光光束の光軸上に中心を一致
しかつ該光軸に対して傾けて配した平面鏡と、該平面鏡
の反射光を平行光束にするために、平面鏡の中心と中心
が一致するように配したコリメータレンズとからなる照
射光学系と、前記照射光学系及び入射スリット(後述)
が固定してあり、照射光学系及び入射スリットが前記集
光光束の外及びその光軸上を交互に位置するように移動
させる光学系切換え機構と、前記集光光束の光軸上に位
置するように移動したとき前記集光鏡の焦点位置になる
ように光学系切換え機構に固定した入射スリットと、入
射スリットからの光を回折格子(後述)に導き、出射ス
リット(後述)上に集光するために、前記集光光束の光
軸上に中心を一致しかつ平面鏡が該光軸上に位置すると
きその後方に位置するように配した凹面鏡と、凹面鏡か
らの光束を一定間隔の連続スペクトルに分光するため
に、前記集光光束の光軸上に平面鏡が位置するとき、平
面鏡及びコリメータレンズの中心軸の延長線上に中心を
一致して配した回折格子と、該回折格子で分光する波長
範囲を変更するために、該回折格子の角度を可変する角
度可変機構と、試験室(後述)内にあって、光学系切換
え機構に同期し、入射スリットが前記集光光束の光軸上
に位置するとき、コリメータレンズの光束に外れる位置
から前記平面鏡及びコリメータレンズを挟んだ回折格子
の反対側でかつ前記平面鏡及びコリメータレンズの中心
軸の延長線上に一致する位置に移動できるスリット移動
機構を備えた、単色光を照射するための出射スリットと
からなる分光光学系と、前記平面鏡からの光束が十分通
過する開口を有し、該開口を透明ガラスで覆った密閉形
状で、試験する温度及び湿度が調節可能な試験室と、試
験室内にあって、前記集光光束の光軸と平行でかつ少な
くとも前記凹面鏡の焦点位置まで移動可能な試料を載置
するための試料台と、さらに前記光量調節フィルターの
各平板の回動を別個にまたは同時に制御しかつ試験室内
を設定温湿度に制御する制御機構とからなることを特徴
とする光加速分光劣化試験装置。
1. An optical system for irradiating a sample with the required spectrally divided light, when the irradiation deterioration energy of the sample is accelerated and tested, its spectral distribution does not change. A light source unit comprising a light source and a condenser mirror for condensing light from the light source; and a plurality of flat plates having the same shape, at least the optical axis from a position orthogonal to the optical axis of the light flux condensed by the condenser mirror. When the flat plates rotate to a position parallel to and are in a position orthogonal to the optical axis, they are integrally formed so as to form a flat surface, and when the flat surface is flat, the light flux of the light source is completely blocked. The light amount adjusting filter for adjusting the light amount, which is arranged at a position, and a plurality of kinds of lenses having a prismatic shape and having the same focal length or different focal lengths are arranged side by side without a gap and integrated and arranged at the focal position of the condenser mirror, A bifocal lens to balance the condensed light flux and A plane mirror whose center coincides with the optical axis of the condensed light flux and is inclined with respect to the optical axis in order to change the direction of the light passing through the bifocal lens; In order to achieve the above, an irradiation optical system including a collimator lens arranged so that the center of the plane mirror coincides with the center, and the irradiation optical system and an entrance slit (described later).
Is fixed, and the irradiation optical system and the entrance slit are located on the optical axis of the condensed light flux, and an optical system switching mechanism for moving the condensed light flux so as to be alternately positioned outside and on the optical axis of the condensed light flux. The entrance slit fixed to the optical system switching mechanism so that it will be at the focal point of the condenser mirror when moved like this, and the light from the entrance slit is guided to the diffraction grating (described later) and condensed on the exit slit (described later). In order to do so, a concave mirror arranged so that its center coincides with the optical axis of the condensed light flux and is positioned behind the plane mirror when the flat mirror is positioned on the optical axis, and a light flux from the concave mirror has a continuous spectrum at a constant interval. When a plane mirror is positioned on the optical axis of the converged light flux to disperse into, the diffraction grating whose center is arranged on the extension line of the center axes of the plane mirror and the collimator lens, and the wavelength to be dispersed by the diffraction grating To change the range An angle changing mechanism for changing the angle of the diffraction grating and a collimator lens in a test chamber (described later) in synchronization with an optical system switching mechanism and when the entrance slit is located on the optical axis of the condensed light flux. Irradiating monochromatic light, which is provided with a slit moving mechanism that can move from a position deviated from the light flux of the plane mirror to a position on the opposite side of the diffraction grating sandwiching the plane mirror and the collimator lens and on the extension line of the central axes of the plane mirror and the collimator lens. A test chamber having a spectroscopic optical system consisting of an exit slit for effecting, and an opening through which the light flux from the plane mirror sufficiently passes, the opening being covered with transparent glass, and the temperature and humidity being tested can be adjusted. A sample table for placing a sample in the test chamber, which is parallel to the optical axis of the condensed light flux and is movable to at least the focal position of the concave mirror; Light acceleration spectral degradation test apparatus characterized by comprising a rotation of the flat plate sections filter from the separate or simultaneous control and control mechanism for controlling the test chamber to set temperature and humidity.
JP2606595A 1995-01-20 1995-01-20 Optical accelerated spectral degradation test equipment Expired - Fee Related JP2957917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2606595A JP2957917B2 (en) 1995-01-20 1995-01-20 Optical accelerated spectral degradation test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2606595A JP2957917B2 (en) 1995-01-20 1995-01-20 Optical accelerated spectral degradation test equipment

Publications (2)

Publication Number Publication Date
JPH08201269A true JPH08201269A (en) 1996-08-09
JP2957917B2 JP2957917B2 (en) 1999-10-06

Family

ID=12183289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2606595A Expired - Fee Related JP2957917B2 (en) 1995-01-20 1995-01-20 Optical accelerated spectral degradation test equipment

Country Status (1)

Country Link
JP (1) JP2957917B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221502A (en) * 2004-02-02 2005-08-18 Atlas Material Testing Technology Llc Accelerated weathering test apparatus with full spectrum calibration, monitoring and control
JP2012078333A (en) * 2010-09-07 2012-04-19 Peccell Technologies Inc Environmental test apparatus
JP2015001487A (en) * 2013-06-18 2015-01-05 スガ試験機株式会社 Weatherometer
KR102351685B1 (en) * 2021-04-08 2022-01-17 주식회사 컬처플러스 Airborne Salinity Sensor and Sensor System Using Laser Induced Coupled Plasma Spectroscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624696B1 (en) * 2019-07-19 2023-04-11 The United States Of America As Represented By The Secretary Of The Navy Environmental sampling chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221502A (en) * 2004-02-02 2005-08-18 Atlas Material Testing Technology Llc Accelerated weathering test apparatus with full spectrum calibration, monitoring and control
JP2012078333A (en) * 2010-09-07 2012-04-19 Peccell Technologies Inc Environmental test apparatus
JP2015001487A (en) * 2013-06-18 2015-01-05 スガ試験機株式会社 Weatherometer
KR102351685B1 (en) * 2021-04-08 2022-01-17 주식회사 컬처플러스 Airborne Salinity Sensor and Sensor System Using Laser Induced Coupled Plasma Spectroscopy

Also Published As

Publication number Publication date
JP2957917B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US20100007877A1 (en) Narrow-band spectrometric Measurements
JP5554765B2 (en) Accelerated weathering test equipment with full spectrum calibration, monitoring and control
EP0513343B1 (en) Apparatus and method for precisely exposing radiation sensitive materials
CN202008060U (en) Sunlight irradiation simulating device
JP5900338B2 (en) Irradiation device
JPH08201269A (en) Apparatus for accelerated spectral test of deterioration of optical property
US6005661A (en) Optical system with wide measuring ranges
JPH09306201A (en) Quasi-sunlight lighting device
JP3173357B2 (en) Light stability test equipment
US2953963A (en) Comparison colorimeter
CN108709163A (en) A kind of light source output Wavelength tuning device
JP3295418B2 (en) Spectrometer
JPH07234181A (en) Spectral lighting equipment
CN221884032U (en) Intensity wavelength controllable sunlight simulator
US2727435A (en) Microscope illuminators
CN212963683U (en) Calibration device for metering characteristics of license plate lamp brightness test system
CN219957350U (en) Device for accurately measuring photosynthetic absorptivity
JPH0370176B2 (en)
KR20180048047A (en) Solar simulator
JPH11508053A (en) Analysis system
JPH04158244A (en) Promoting weatherability tester
KR200245662Y1 (en) Light Source
JPH01295135A (en) Atomic absorption spectrophotometer
MATsuI et al. Biological Studies on Light Quality in Environment Control II. Biological Spectrograph: With Special Reference to Operational Characteristics of the Instrument
JP3989360B2 (en) Quality evaluation device calibration method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees