JPH08201257A - Method for measuring degree of fatigue damage - Google Patents

Method for measuring degree of fatigue damage

Info

Publication number
JPH08201257A
JPH08201257A JP882195A JP882195A JPH08201257A JP H08201257 A JPH08201257 A JP H08201257A JP 882195 A JP882195 A JP 882195A JP 882195 A JP882195 A JP 882195A JP H08201257 A JPH08201257 A JP H08201257A
Authority
JP
Japan
Prior art keywords
fatigue damage
degree
roughness
structural member
square roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP882195A
Other languages
Japanese (ja)
Other versions
JP3305145B2 (en
Inventor
Masafumi Yamauchi
雅文 山内
Yasuharu Chuma
康晴 中馬
Masaji Kitade
正司 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00882195A priority Critical patent/JP3305145B2/en
Publication of JPH08201257A publication Critical patent/JPH08201257A/en
Application granted granted Critical
Publication of JP3305145B2 publication Critical patent/JP3305145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE: To provide a method by which the degree of fatigue damage of a structural member can be recognized and the remaining service life of the member can be estimated in early stage after the use of the member is started. CONSTITUTION: After the relation between the root-mean-square roughness Rrms, average center-line roughness, or average ten-point roughness and the degree of fatigue damage of the surface of a test piece is found by repetitively applying a fatigue load to the test piece, the surface dimension of a used structural member is measured and the fluctuation of the root-mean-square roughness Rrms, average center-line roughness, or average ten-point roughness is found from the measured results of the surface dimension. Then the degree of fatigue damage of the structural member is found by applying the fluctuation to the relation found from the test piece. Therefore, the fatigue damage and remaining service life of the used structural member can be quantitatively recognized in an early stage by using such a simple method as the measurement of the surface dimension.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低サイクル疲労負荷を
受ける機械構造物等に適用される疲労損傷度測定方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a degree of fatigue damage applied to a machine structure or the like which is subjected to a low cycle fatigue load.

【0002】[0002]

【従来の技術】従来の繰返疲労負荷を受ける機械構造物
等の疲労損傷度(使用繰返数N×100/破断繰返数N
f)については、構造物等に加えられる温度,圧力,応
力等を計測することにより測定されるものはあったが、
表面形状を計測することにより疲労損傷度を測定し、余
寿命を評価するものは見当らない。
2. Description of the Related Art Fatigue damage degree of a conventional mechanical structure or the like subjected to repeated fatigue load (repeated number of uses N × 100 / repeated number of breaks N)
Regarding f), there were some that were measured by measuring the temperature, pressure, stress, etc. applied to the structure, etc.
There is no one that measures the degree of fatigue damage by measuring the surface shape and evaluates the remaining life.

【0003】[0003]

【発明が解決しようとする課題】従来の構造物等の疲労
損傷度の計測については、前記のように構造物等に加え
られる温度,圧力,応力等を計測することにより行われ
ていた。
The conventional measurement of the degree of fatigue damage of a structure or the like has been performed by measuring the temperature, pressure, stress, etc. applied to the structure or the like as described above.

【0004】しかしながら、いずれの計測方法を用いた
場合にも、その計測結果より構造物等の余寿命を的確に
予測することはむずかしく、特に、寿命の初期段階でこ
れを予測することは不可能に近かった。本発明は上記の
課題を解決しようとするものである。
However, whichever measuring method is used, it is difficult to accurately predict the remaining life of a structure or the like based on the measurement results, and it is impossible to predict it particularly at the early stage of the life. Was close to The present invention is intended to solve the above problems.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明の疲労損傷度測定方法は、予め繰返疲労負
荷を受ける構造部材の試験片について表面の二乗平均粗
さと疲労損傷度の関係を求めておき、使用中の構造部材
について計測対象部位表面を鏡面に仕上げた後、最大負
荷荷重方向に直線状に表面の形状を計測し、この計測結
果から二乗平均粗さを計算し、更に、この二乗平均粗さ
について初期状態からの変化量を求めた後、上記予め求
めた二乗平均粗さと疲労損傷度の関係から上記構造部材
の疲労損傷度を求めることを特徴としている。
(1) In the fatigue damage level measuring method of the present invention, the relationship between the root mean square roughness of the surface and the fatigue damage level is obtained in advance for the test piece of the structural member subjected to repeated fatigue loading, and the structural member in use is measured. After finishing the surface of the part to a mirror surface, the surface shape is measured linearly in the direction of maximum load, the root mean square roughness is calculated from this measurement result, and the variation of this root mean square roughness from the initial state is calculated. After that, the fatigue damage degree of the structural member is calculated from the previously obtained relation between the root mean square roughness and the fatigue damage degree.

【0006】(2)本発明は、上記発明(1)に記載の
疲労損傷度測定方法において、二乗平均粗さに代えて中
心線平均粗さを用いることを特徴としている。
(2) The present invention is characterized in that the center line average roughness is used in place of the root mean square roughness in the fatigue damage degree measuring method according to the above-mentioned invention (1).

【0007】(3)本発明は、上記発明(1)に記載の
疲労損傷度測定方法において、二乗平均粗さに代えて十
点平均粗さを用いることを特徴としている。
(3) The present invention is characterized in that, in the fatigue damage level measuring method according to the above-mentioned invention (1), ten-point average roughness is used instead of the root mean square roughness.

【0008】[0008]

【作用】初期に滑らかな表面をもっていた構造部材が繰
返疲労負荷を受けると、まず、表面に塑性変形によるす
べり帯があらわれ、次に、突き出し、入り込み等の凹凸
があらわれ、ミクロき裂の発生・成長、マクロき裂の発
生・成長を経て破断へとつながる。
[Function] When a structural member that initially had a smooth surface is subjected to repeated fatigue loading, first a slip band appears due to plastic deformation on the surface, then irregularities such as protrusions and intrusions appear, and micro cracks occur.・ Growth, generation of macro cracks ・ Failure after growth.

【0009】上記発明(1)は、この点に着目して種々
実験を重ねた結果、使用中の構造部材の表面の二乗平均
粗さと疲労損傷度との間には、相関関係があることを見
出したことによるものである。
In the above-mentioned invention (1), as a result of repeating various experiments focusing on this point, it is found that there is a correlation between the root mean square roughness of the surface of the structural member in use and the degree of fatigue damage. This is due to the findings.

【0010】そのため、予め試験片について表面の二乗
平均粗さと疲労損傷度の関係を求めておき、使用中の構
造部材について表面の形状を計測し、これより表面の二
乗平均粗さを求め、更に、初期状態からの変化量を求め
て上記関係に当てはめることにより、使用を開始した初
期の段階から構造部材の疲労損傷度を得ることができる
ものとし、余寿命の予測を可能とする。
Therefore, the relationship between the root mean square roughness of the test piece and the degree of fatigue damage is obtained in advance, the surface shape of the structural member in use is measured, and the root mean square roughness of the surface is obtained from this. By calculating the amount of change from the initial state and applying it to the above relationship, the degree of fatigue damage of the structural member can be obtained from the initial stage of use, and the remaining life can be predicted.

【0011】上記発明(2)は、種々実験を重ねた結
果、使用中の構造部材の表面の中心線平均粗さと疲労損
傷度との間には、相関関係があることを見出したことに
よるものであり、上記発明(1)と同様の手順で本発明
の測定方法を実施することにより、構造部材の表面の中
心線平均粗さと疲労損傷度の関係から、上記発明(1)
と同様に使用を開始した初期の段階からの構造部材の疲
労損傷度を得ることができるものとし、余寿命の予測を
可能としている。
The above invention (2) is based on the finding that there is a correlation between the center line average roughness of the surface of the structural member in use and the degree of fatigue damage as a result of repeated experiments. By carrying out the measuring method of the present invention in the same procedure as the above-mentioned invention (1), from the relationship between the center line average roughness of the surface of the structural member and the degree of fatigue damage, the above-mentioned invention (1) is obtained.
Similarly to the above, it is possible to obtain the fatigue damage degree of the structural member from the initial stage of use, and it is possible to predict the remaining life.

【0012】上記発明(3)は、種々実験を重ねた結
果、使用中の構造部材の表面の十点平均粗さと疲労損傷
度との間には、相関関係があることを見出したことによ
るものであり、上記発明(1)と同様の手順で本発明の
測定方法を実施することにより、構造部材の表面の十点
平均粗さと疲労損傷度の関係から、上記発明(1)と同
様に使用を開始した初期の段階からの構造部材の疲労損
傷度を得ることができるものとし、余寿命の予測を可能
としている。
The invention (3) is based on the finding that, as a result of various experiments, there is a correlation between the ten-point average roughness of the surface of the structural member in use and the degree of fatigue damage. By performing the measuring method of the present invention in the same procedure as in the above-mentioned invention (1), it is used in the same manner as in the above-mentioned invention (1) from the relationship between the ten-point average roughness of the surface of the structural member and the degree of fatigue damage. It is assumed that the fatigue damage degree of the structural member can be obtained from the initial stage of starting the, and the remaining life can be predicted.

【0013】[0013]

【実施例】本発明の第1実施例に係る構造部材の疲労損
傷度測定方法の手順について、以下に説明する。
The procedure of the method for measuring the degree of fatigue damage of a structural member according to the first embodiment of the present invention will be described below.

【0014】まず、繰返疲労負荷をうける構造部材につ
いて、計測対象部位の表面をダイヤモンド砥石1μmに
よるバブ研磨により鏡面に仕上げた後、計測対象部位の
表面形状を最大負荷荷重方向に直線状に計測する。な
お、この際、計測には触針式等の接触式もしくはレーザ
ーによる計測等の非接触式の計測法を使用する。
First, for a structural member that is subjected to repeated fatigue loading, the surface of the measurement target site is mirror-finished by bubbling with a diamond grindstone of 1 μm, and then the surface shape of the measurement target site is linearly measured in the maximum load direction. To do. At this time, a contact-type measuring method such as a stylus method or a non-contact measuring method such as laser measurement is used for the measurement.

【0015】次に、この計測により得られた構造部材の
計測対象部位の表面形状について、二乗平均粗さRrms
を算出する。最後に、上記予め実験室で作成した試験片
についての二乗平均粗さRrms と疲労損傷度との関係線
図に、上記算出結果を当てはめて疲労損傷度を求め、余
寿命を予測する。
Next, with respect to the surface shape of the measurement target portion of the structural member obtained by this measurement, the root mean square roughness Rrms
To calculate. Finally, the fatigue damage degree is obtained by applying the above calculation result to the relational diagram of the root mean square roughness Rrms and the fatigue damage degree of the test piece prepared in advance in the laboratory to predict the remaining life.

【0016】本実施例については、種々実験を重ねた結
果、繰返疲労負荷を受ける使用中の構造部材の表面の二
乗平均粗さRrms と疲労損傷度の間には、相関関係があ
ることを見出したことによるものである。なお、上記二
乗平均粗さRrms は、次式により示されるものである。
In this example, as a result of various experiments, it was found that there is a correlation between the root mean square roughness Rrms of the surface of the structural member in use which is subjected to repeated fatigue loading and the degree of fatigue damage. This is due to the findings. The root mean square roughness Rrms is represented by the following equation.

【0017】[0017]

【数1】 [Equation 1]

【0018】上記実験により得られた結果の一部を図1
及び図2により説明する。図1は、材料としてオーテナ
イト系ステンレス鋼であるSUSF316Hを用いた丸
棒単軸試験片に繰返疲労負荷を与え、このときの試験片
の軸方向の表面形状の変化の計測結果(歪範囲Δε=1
%時)を示したものである。
FIG. 1 shows part of the results obtained by the above experiment.
2 and FIG. FIG. 1 shows the results of measurement of the change in the surface shape in the axial direction of the test piece at this time (strain range Δε) by applying repeated fatigue load to a round rod uniaxial test piece using SUSF316H which is austenitic stainless steel as a material. = 1
% Hour).

【0019】上記計測結果より二乗平均粗さRrms を求
め、この増大分と疲労損傷度の関係を図示したものが図
2であり、図2より試験片の表面の二乗平均粗さと疲労
損傷度の間には、相関関係があることが判った。
The root mean square roughness Rrms is obtained from the above measurement results, and the relationship between this increase and the fatigue damage degree is shown in FIG. 2. From FIG. 2, the root mean square roughness and the fatigue damage degree of the surface of the test piece are shown. It turns out that there is a correlation between them.

【0020】上記表面形状の変化は、図1から判るよう
に疲労損傷の初期段階から表われるものであるため、本
実施例の方法は、構造部材の疲労損傷の初期段階におけ
る疲労損傷度の判定及び余寿命の予測に極めて有効なも
のである。
As shown in FIG. 1, the above-mentioned change in surface shape appears from the initial stage of fatigue damage. Therefore, the method of this embodiment determines the degree of fatigue damage in the initial stage of fatigue damage of structural members. It is also extremely effective in predicting the remaining life.

【0021】次に、本発明の第2実施例に係る測定方法
について説明する。本実施例の方法においては、第1実
施例における二乗平均粗さRrms に代えて中心線平均粗
さRaを用いており、測定方法実施の手順は第1実施例
と同様である。
Next, a measuring method according to the second embodiment of the present invention will be described. In the method of the present embodiment, the center line average roughness Ra is used instead of the root mean square roughness Rrms in the first embodiment, and the procedure for carrying out the measuring method is the same as in the first embodiment.

【0022】本実施例についても、第1実施例と同様、
図1に示された測定結果より中心線平均粗さRaを求
め、図3に示すようにこの増大分と疲労損傷度の間に相
関関係があることを見出したことによる。なお、上記中
心線平均粗さRaは、次式により示される。
Also in this embodiment, as in the first embodiment,
This is because the centerline average roughness Ra was obtained from the measurement results shown in FIG. 1 and it was found that there is a correlation between the increased amount and the fatigue damage degree as shown in FIG. The center line average roughness Ra is expressed by the following equation.

【0023】Ra=A/L こゝで、Aは図1に示すように振幅を繰返す表面粗さの
中心線に対する面積の絶対値の和であり、Lは振幅が計
測される軸方向の長さである。
Ra = A / L Here, A is the sum of the absolute values of the area with respect to the center line of the surface roughness where the amplitude repeats as shown in FIG. 1, and L is the axial length in which the amplitude is measured. That's it.

【0024】次に、本発明の第3実施例に係る測定方法
について説明する。本実施例の方法においては、第1実
施例における二乗平均粗さRrms に代えて十点平均粗さ
Rzを用いており、測定方法実施の手順は第1実施例と
同様である。
Next, a measuring method according to the third embodiment of the present invention will be described. In the method of this embodiment, the ten-point average roughness Rz is used in place of the root mean square roughness Rrms in the first embodiment, and the procedure for carrying out the measuring method is the same as in the first embodiment.

【0025】本実施例についても、第1実施例と同様、
図1に示された測定結果より十点平均粗さRzを求め、
図4に示すようにこの増大分と疲労損傷度の間に相関関
係があることを見出したことによる。
Also in this embodiment, as in the first embodiment,
The ten-point average roughness Rz is obtained from the measurement results shown in FIG.
This is due to the fact that there is a correlation between this increase and the degree of fatigue damage, as shown in FIG.

【0026】なお、十点平均粗さRzは、図1に示すよ
うに振幅を繰返す表面粗さの最も高い山から順に5番目
の山までの山頂の標高の平均値と、最も低い谷から順に
5番目の谷までの谷底の標高の平均値との差より求める
ものである。
The ten-point average roughness Rz is, as shown in FIG. 1, the average value of the heights of the peaks from the highest peak of the surface roughness where the amplitude repeats to the fifth highest peak, and the lowest valley in order. It is obtained from the difference from the average value of the altitude of the valley bottom up to the fifth valley.

【0027】上記第1,第2,第3実施例の測定方法に
はそれぞれ特徴があり、以下にそれぞれの特徴について
比較説明する。第1実施例の場合は、計算が容易であ
り、全データの平均的特徴をつかむことができる。第2
実施例の場合は、計算は容易であるが、現状では他の2
つの方法に比べて精度が劣る。
The measuring methods of the first, second, and third embodiments have their respective characteristics, and the respective characteristics will be compared and explained below. In the case of the first embodiment, the calculation is easy and the average feature of all data can be grasped. Second
In the case of the embodiment, the calculation is easy, but at present, other 2
Less accurate than the two methods.

【0028】第3実施例の場合は、10点だけのデータ
にもとづくため、その点が損傷状況を代表するものでな
い場合には精度が低下する。なお、雑音や異物による凹
凸が表面粗さと計測される場合があるため、チェックを
要する。
In the case of the third embodiment, since it is based on the data of only 10 points, if the points do not represent the damage situation, the accuracy is lowered. It should be noted that since irregularities due to noise or foreign matter may be measured as surface roughness, a check is required.

【0029】[0029]

【発明の効果】本発明の疲労損傷度測定方法において
は、予め、試験片に繰返疲労負荷を与えて表面の二乗平
均粗さ、中心線平均粗さ、又は十点平均粗さと疲労損傷
度の関係を求めておき、使用中の構造部材について表面
形状を計測し、その計測結果から表面の二乗平均粗さ、
中心線平均粗さ、又は十点平均粗さの変化を求め、これ
を上記予め試験片により求めた関係に当てはめて疲労損
傷度を求めるものとすることによって、表面形状計測と
いう簡便な方法で、使用中の構造部材の、特に初期段階
における疲労損傷および余寿命の定量的な把握を可能と
する。
In the method for measuring the degree of fatigue damage of the present invention, the test piece is subjected to repeated fatigue loading in advance, and the root-mean-square roughness, the centerline average roughness, or the ten-point average roughness and the fatigue damage degree are given. , The surface shape of the structural member in use is measured, and the root-mean-square roughness of the surface from the measurement result,
The center line average roughness, or the change of the ten-point average roughness, by applying this to the relationship previously obtained by the test piece to determine the degree of fatigue damage, by a simple method of surface shape measurement, It enables quantitative understanding of fatigue damage and remaining life of structural members in use, especially in the initial stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るそれぞれの疲労損傷度
における表面形状計測結果の説明図である。
FIG. 1 is an explanatory diagram of a surface shape measurement result at each fatigue damage degree according to an embodiment of the present invention.

【図2】上記一実施例に係る二乗平均粗さと疲労損傷度
の関係図である。
FIG. 2 is a relationship diagram between root mean square roughness and fatigue damage degree according to the above-mentioned embodiment.

【図3】本発明の第2実施例に係る中心線平均粗さと疲
労損傷度の関係図である。
FIG. 3 is a relationship diagram of center line average roughness and fatigue damage degree according to the second embodiment of the present invention.

【図4】本発明の第3実施例に係る十点平均粗さと疲労
損傷度の関係図である。
FIG. 4 is a relationship diagram between ten-point average roughness and fatigue damage degree according to the third embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 予め繰返疲労負荷を受ける構造部材の試
験片について表面の二乗平均粗さと疲労損傷度の関係を
求めておき、使用中の構造部材について計測対象部位表
面を鏡面に仕上げた後、最大負荷荷重方向に直線状に表
面の形状を計測し、この計測結果から二乗平均粗さを計
算し、更に、この二乗平均粗さについて初期状態からの
変化量を求めた後、上記予め求めた二乗平均粗さと疲労
損傷度の関係から上記構造部材の疲労損傷度を求めるこ
とを特徴とする疲労損傷度測定方法。
1. The relationship between the root-mean-square roughness and the degree of fatigue damage of a test piece of a structural member subjected to repeated fatigue loading is obtained in advance, and the surface of the measurement target site of the structural member in use is mirror-finished. , The surface shape is linearly measured in the direction of the maximum load, the root mean square roughness is calculated from this measurement result, and the change amount from the initial state is further calculated for the root mean square roughness, and then the above-mentioned pre-determination is performed. A method for measuring the degree of fatigue damage, characterized in that the degree of fatigue damage of the structural member is obtained from the relationship between the root mean square roughness and the degree of fatigue damage.
【請求項2】 請求項1に記載の疲労損傷度測定方法に
おいて、二乗平均粗さに代えて中心線平均粗さを用いる
ことを特徴とする疲労損傷度測定方法。
2. The fatigue damage level measuring method according to claim 1, wherein a center line average roughness is used in place of the root mean square roughness.
【請求項3】 請求項1に記載の疲労損傷度測定方法に
おいて、二乗平均粗さに代えて十点平均粗さを用いるこ
とを特徴とする疲労損傷度測定方法。
3. The fatigue damage level measuring method according to claim 1, wherein a ten-point average roughness is used instead of the root mean square roughness.
JP00882195A 1995-01-24 1995-01-24 Fatigue damage measurement method Expired - Fee Related JP3305145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00882195A JP3305145B2 (en) 1995-01-24 1995-01-24 Fatigue damage measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00882195A JP3305145B2 (en) 1995-01-24 1995-01-24 Fatigue damage measurement method

Publications (2)

Publication Number Publication Date
JPH08201257A true JPH08201257A (en) 1996-08-09
JP3305145B2 JP3305145B2 (en) 2002-07-22

Family

ID=11703476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00882195A Expired - Fee Related JP3305145B2 (en) 1995-01-24 1995-01-24 Fatigue damage measurement method

Country Status (1)

Country Link
JP (1) JP3305145B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135349A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Deterioration diagnosing method for power transmission facility
JP2011058849A (en) * 2009-09-07 2011-03-24 Ihi Corp Method and device for estimating low cycle fatigue characteristics
JP2012215397A (en) * 2011-03-31 2012-11-08 Ihi Corp Method and device for estimating fatigue characteristics based on finish
CN111678821A (en) * 2020-06-23 2020-09-18 山东大学 Low-cycle fatigue life prediction method based on high-temperature alloy processing surface integrity
CN114812484A (en) * 2022-03-30 2022-07-29 有研工程技术研究院有限公司 Efficient inspection method for effective life of wedge welding chopper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135349A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Deterioration diagnosing method for power transmission facility
JP2011058849A (en) * 2009-09-07 2011-03-24 Ihi Corp Method and device for estimating low cycle fatigue characteristics
JP2012215397A (en) * 2011-03-31 2012-11-08 Ihi Corp Method and device for estimating fatigue characteristics based on finish
CN111678821A (en) * 2020-06-23 2020-09-18 山东大学 Low-cycle fatigue life prediction method based on high-temperature alloy processing surface integrity
CN114812484A (en) * 2022-03-30 2022-07-29 有研工程技术研究院有限公司 Efficient inspection method for effective life of wedge welding chopper
CN114812484B (en) * 2022-03-30 2024-02-13 中国有研科技集团有限公司 Efficient checking method for effective life of wedge welding chopper

Also Published As

Publication number Publication date
JP3305145B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
Campbell et al. Experimental and computational issues for automated extraction of plasticity parameters from spherical indentation
Jia et al. A rigorous assessment of the benefits of miniaturization in the Kolsky bar system
US9372075B2 (en) System and method for fatigue forecasting and strain measurement using integral strain gauge (ISG)
Hay et al. Small correction required when applying the Hertzian contact model to instrumented indentation data
Gothivarekar et al. Advanced FE model validation of cold-forming process using DIC: Air bending of high strength steel
Mori et al. Study of the size effects and friction conditions in microextrusion—part II: size effect in dynamic friction for brass-steel pairs
Ding et al. Finite element simulation of fretting wear-fatigue interaction in spline couplings
JPH08201257A (en) Method for measuring degree of fatigue damage
Ardi et al. Surface topography and the impact on fatigue performance
CN110705131A (en) Mechanical component service life prediction method based on high cycle fatigue of machined surface layer
JP6630046B2 (en) Fatigue limit evaluation method and fatigue limit evaluation device
Huang et al. Measurement of r-values of high strength steels using digital image correlation
CN110008896A (en) A kind of steel strand wires tension recognition methods using ARX System identification model
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
CN114923798A (en) Pressure head spacing evaluation method for mechanical test through micro-indentation method
SHINKO et al. Quantitative characterization of the changes in surface topography of austenitic stainless steel under low cycle fatigue loading
Beerli et al. Axisymmetric V-bending: A single experiment to determine the fracture strain and weakest sheet material direction for plane strain tension
RU2670217C1 (en) Method of measuring stress-strain state of metal constructions without static unloading
Pawlus et al. Experimental investigation of a hemisphere contact with a hard flat
Chung et al. Evaluation of surface deflection in automobile exterior panel by curvature based method
RU2315971C1 (en) Damage degree of object detecting method
Baltazar et al. Ultrasonic determination of real contact area of randomly rough surfaces in elastoplastic contact
US10281343B2 (en) Method and apparatus for measuring a peak load
Regodic et al. Development of omega deformeter
Roman et al. Software development for the computational analysis of crack propagation and durability of structures

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

LAPS Cancellation because of no payment of annual fees