JPH08201224A - Ultraviolet light source failure detection system - Google Patents

Ultraviolet light source failure detection system

Info

Publication number
JPH08201224A
JPH08201224A JP1234595A JP1234595A JPH08201224A JP H08201224 A JPH08201224 A JP H08201224A JP 1234595 A JP1234595 A JP 1234595A JP 1234595 A JP1234595 A JP 1234595A JP H08201224 A JPH08201224 A JP H08201224A
Authority
JP
Japan
Prior art keywords
light
failure detection
ultraviolet light
light source
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1234595A
Other languages
Japanese (ja)
Inventor
Masato Ishioka
昌人 石岡
Tomotsugu Sakai
智嗣 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1234595A priority Critical patent/JPH08201224A/en
Publication of JPH08201224A publication Critical patent/JPH08201224A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE: To specify/detect failures of a plurality of points, by setting a waveguide layer using a material of a higher refractive index than that of a substrate, an optical waveguide mounting the waveguide layer, means for inputting a pulse probe light to the waveguide, means for outputting/transmitting a failure detection signal light, and a photodetector. CONSTITUTION: An ultraviolet light failure detection apparatus is capable of generating photochromism by ultraviolet rays and recovering the photochromism by a visible light or near infrared light. The apparatus is constituted of a waveguide layer using a material of a higher refractive index than that of a substrate and an optical waveguide of the substrate loading the waveguide layer. A row of short light pulses not larger than a pulse width is taken out as a probe light 11 from a pulse light source 10 which generates visible-near infrared lights. The probe light is transmitted to ultraviolet light source failure detection devices 14, 16 by an optical fiber 12. A reflection is brought about at an input end face and the other end face of the waveguide layer of a detecting part of the failure detection device 16. Whether or not an ultraviolet light is cast from outside can be judged by detecting the presence/absence of reflecting pulses 18, 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光センシングにおいて、
光(可視光)の強度変化が光(紫外光)の照射の有無で
変化することを利用した紫外光光源故障検知システムに
関し、紫外光照射を検出する必要のある産業機器全般に
適用されるものである。
BACKGROUND OF THE INVENTION The present invention relates to optical sensing,
An ultraviolet light source failure detection system that utilizes the change in the intensity of light (visible light) depending on the presence or absence of light (ultraviolet light) irradiation, and is applied to all industrial equipment that needs to detect ultraviolet light irradiation. Is.

【0002】[0002]

【従来の技術】従来、紫外光のみならず他の波長領域に
おける光を検出するためには、光を電気に変換(光電効
果)させるフォトダイオード等の光電変換素子を必要と
し、特定の波長だけを検出するためにフォトダイオード
の前に波長フィルターを必要とした。図4に、これらを
用いた従来の紫外光検出器の一例を説明する。
2. Description of the Related Art Conventionally, in order to detect not only ultraviolet light but also light in other wavelength regions, a photoelectric conversion element such as a photodiode for converting light into electricity (photoelectric effect) is required, and only a specific wavelength is required. A wavelength filter was required in front of the photodiode to detect the. FIG. 4 illustrates an example of a conventional ultraviolet light detector using these.

【0003】この紫外光検出器の動作原理を説明する。
同図に示すように、ある紫外光光源1から照射された紫
外光2は空間を伝搬し、波長フィルター3に入力され
る。このとき、紫外光2以外の背景光の波長成分はカッ
トされる。そして、純粋な紫外光2の成分だけがフォト
ダイオード4に入射する。該フォトダイオード4の入射
面(光電面)に紫外光2があたると、光電面材料の価電
子帯の電子が紫外光2の強度に応じて伝導帯に励起され
る。この時、光電面においてドリフト電流が流れ、フォ
トダイオード4のアノード6、カソード7間に電位差が
生じる。これを導線5を経由して電圧出力の形で紫外光
を監視する。
The operating principle of this ultraviolet light detector will be described.
As shown in the figure, the ultraviolet light 2 emitted from a certain ultraviolet light source 1 propagates in space and is input to the wavelength filter 3. At this time, the wavelength components of the background light other than the ultraviolet light 2 are cut. Then, only the pure ultraviolet light 2 component is incident on the photodiode 4. When the ultraviolet light 2 strikes the incident surface (photoelectric surface) of the photodiode 4, the electrons in the valence band of the photocathode material are excited to the conduction band according to the intensity of the ultraviolet light 2. At this time, a drift current flows on the photocathode, and a potential difference occurs between the anode 6 and the cathode 7 of the photodiode 4. This is monitored via line 5 for UV light in the form of a voltage output.

【0004】以上、説明したように不必要な背景光をカ
ットするために紫外光透過波長フィルター3を用い、そ
れを透過してきた紫外光2をフォトダイオード4で電気
に変換して、電圧出力の形で紫外光2の光出力を監視す
るようにしている。
As described above, the ultraviolet light transmitting wavelength filter 3 is used to cut unnecessary background light, and the ultraviolet light 2 transmitted therethrough is converted into electricity by the photodiode 4 to generate a voltage output. The light output of the ultraviolet light 2 is monitored by the shape.

【0005】[0005]

【発明が解決しようとする課題】前述した従来技術に係
る紫外光検出においては、光−電気変換が必要なことか
ら以下のような課題がある。 フォトダイオードの特性から、例えば電磁波ノイズ
がひどい所、例えば高電圧環境下等での使用が不可能で
ある。 電気信号を用いるため、例えば防爆環境、及び導電
性液体中等での使用が困難であり、防爆用保護手段もし
くは絶縁保護手段が必要である。 電気信号による紫外光検出装置を複数箇所に配置す
ると、検出装置の数だけ検知部から受信末端までの配線
の敷設が必要であり、点検・保守にコストと時間がかか
る、という問題がある。
The ultraviolet light detection according to the prior art described above has the following problems because photoelectric conversion is required. Due to the characteristics of the photodiode, it cannot be used in a place where electromagnetic noise is severe, for example, in a high voltage environment. Since an electric signal is used, it is difficult to use it in, for example, an explosion-proof environment or in a conductive liquid, and an explosion-proof protection means or an insulation protection means is required. When the ultraviolet light detectors based on electric signals are arranged at a plurality of locations, it is necessary to lay wires from the detector to the receiving end as many as the detectors, and there is a problem that inspection and maintenance require cost and time.

【0006】[0006]

【課題を解決するための手段】前記課題を解決する本発
明に係る紫外光光源故障検知システムの構成は、紫外線
によりフォトクロミズムを発生し、可視光もしくは近赤
外光の照射によりフォトクロミズムを回復させることが
でき、基板より屈折率の高い材料を用いた導波層と、該
導波層を装荷するための基板とで構成される光導波路
と、複数の該導波路にパルスプローブ光を入力する手段
と複数箇所の故障検知信号光を出力、伝送させるための
手段と、パルスプローブ光を発生させるための可視光源
と故障検知信号を検出するための受光器と、からなり、
紫外光照射により可視光の強度を変化させるフォトクロ
ミズムを利用して、紫外光光源の故障の有無を判断し、
複数箇所の故障を特定・検知することを特徴とする。
The constitution of the ultraviolet light source failure detection system according to the present invention for solving the above-mentioned problems is to generate photochromism by ultraviolet rays and recover the photochromism by irradiation of visible light or near infrared light. And an optical waveguide comprising a waveguide layer made of a material having a higher refractive index than the substrate, and a substrate for loading the waveguide layer, and means for inputting pulse probe light to the plurality of waveguides. And a means for outputting and transmitting failure detection signal light at a plurality of locations, a visible light source for generating a pulse probe light, and a light receiver for detecting a failure detection signal,
By utilizing the photochromism that changes the intensity of visible light by irradiating ultraviolet light, it is possible to judge whether or not there is a failure in the ultraviolet light source,
It is characterized by identifying and detecting failures at multiple locations.

【0007】すなわち、従来技術の課題,を解決す
るため、本発明では紫外線によりフォトクロミズムを発
生し、可視光もしくは近赤外光(400nm近傍〜25
00nm近傍)の照射によりフォトクロミズムを回復さ
せることができ、基板より屈折率の高い材料を導波路と
し、紫外光検知部として用いるようにしている。
That is, in order to solve the problems of the prior art, in the present invention, photochromism is generated by ultraviolet rays and visible light or near infrared light (near 400 nm to 25 nm) is generated.
A material having a higher refractive index than the substrate can be used as a waveguide and used as an ultraviolet light detecting section.

【0008】また、従来技術の課題を解決するため、
OTDR(Optical Time Domain Reflectometory)方式
を用いた時分割多重な光信号検出を用いるようにしてい
る。その際に、OTDR光源は、可視域もしくは近赤外
域半導体レーザのピコ秒オーダのパルスプローブ光を用
いている。
In order to solve the problems of the prior art,
Time division multiplexing optical signal detection using the OTDR (Optical Time Domain Reflectometory) method is used. At that time, as the OTDR light source, a picosecond-order pulse probe light of a visible or near infrared semiconductor laser is used.

【0009】[0009]

【作用】上記構成において、紫外線照射によってフォト
クロミズムを発生し、基板より屈折率の高い材料を用い
た薄膜導波路に紫外光が当たると、そのフォトクロミズ
ムによって可視域〜近赤外光の吸収が生じ、紫外光が当
たらなくなるとある遅延時間(数分)を待って、可視域
〜近赤外光の吸収が終わり、紫外光照射以前の状態まで
に回復する。言わば、光−光のスイッチング動作を測定
することで紫外光の状態を把握することができる。この
現象を光ファイバを経由して遠隔地で検出すれば、紫外
光検知部に電気信号を介在させる必要はなくなる。
In the above structure, when photochromism is generated by irradiation of ultraviolet rays and ultraviolet light strikes a thin film waveguide using a material having a higher refractive index than the substrate, the photochromism causes absorption of visible to near infrared light, When ultraviolet light does not hit, it waits for a certain delay time (several minutes), absorption of visible to near-infrared light ends, and it recovers to the state before irradiation with ultraviolet light. In other words, the state of ultraviolet light can be grasped by measuring the light-light switching operation. If this phenomenon is detected at a remote place via an optical fiber, it is not necessary to interpose an electric signal in the ultraviolet light detection section.

【0010】ここで、プローブ光には可視域〜近赤外光
が用いられる。それを連続光から時間的なパルス光を用
いると時間軸上で個々のパルス信号を識別することがで
きる。それをOTDR方式で検出し、その検出パルス信
号の強度変化を測定すれば個々の紫外光光源を監視する
ことができる。そのためのパルスプローブ光は、可視域
で導波路長の2倍に相当する光路時間以下のパルス幅
(300ps)でなければならない。このようなパルス
光を発生させるためには、例えば利得スイッチング法、
モード同期法等を用いることで十分に実現可能である
が、これらに限定されるものではない。
Here, visible light to near infrared light is used as the probe light. If continuous light is used and temporal pulsed light is used, individual pulse signals can be identified on the time axis. Each ultraviolet light source can be monitored by detecting it by the OTDR method and measuring the intensity change of the detected pulse signal. The pulse probe light for that purpose must have a pulse width (300 ps) equal to or less than the optical path time corresponding to twice the waveguide length in the visible region. In order to generate such pulsed light, for example, a gain switching method,
It can be sufficiently realized by using a mode-locking method or the like, but is not limited to these.

【0011】[0011]

【実施例】以下、本発明に係る紫外光光源故障検知シス
テムの好適な一実施例を詳細に説明するが、本発明はこ
れに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the ultraviolet light source failure detection system according to the present invention will be described in detail below, but the present invention is not limited to this.

【0012】(実施例1)紫外光光源の多重故障検知シ
ステム及び紫外光光源故障検知装置の実施例1を図1と
図2をもって説明する。図1は、本実施例に係る紫外光
光源故障検知システムを示す構成図である。また、図2
は、本実施例に係る紫外光光源故障検知装置を示す構成
図である。図1のシステムは、パルスプローブ光11を
発生させるための可視域〜近赤外光のパルス光源10と
そのパルス光を伝送させるための光ファイバ12、そし
て、紫外光光源故障検知装置14,16と検出パルス信
号18,19,20を受光器24に導く光分配器21と
光ファイバ22から構成される。図2には、上記紫外光
光源故障検知装置の概略を示す。該紫外光光源故障検知
装置は、紫外線2によりフォトクロミズムを発生し、可
視光もしくは近赤外光の照射によりフォトクロミズムを
回復させることができ、基板より屈折率の高い材料を用
いた導波層30と、該導波層30を装荷するための基板
32とで構成される光導波路とから構成されている。
(Embodiment 1) Embodiment 1 of a multiple failure detection system for an ultraviolet light source and an ultraviolet light source failure detection apparatus will be described with reference to FIGS. 1 and 2. FIG. 1 is a configuration diagram showing an ultraviolet light source failure detection system according to the present embodiment. Also, FIG.
FIG. 3 is a configuration diagram showing an ultraviolet light source failure detection device according to the present embodiment. The system of FIG. 1 comprises a pulse light source 10 for generating a pulse probe light 11 in the visible region to near infrared light, an optical fiber 12 for transmitting the pulse light, and ultraviolet light source failure detection devices 14, 16. An optical distributor 21 for guiding the detection pulse signals 18, 19 and 20 to the light receiver 24 and an optical fiber 22. FIG. 2 shows an outline of the ultraviolet light source failure detection device. The ultraviolet light source failure detection device generates a photochromism by ultraviolet rays 2 and can recover the photochromism by irradiation with visible light or near infrared light, and a waveguide layer 30 using a material having a higher refractive index than the substrate. , An optical waveguide comprising a substrate 32 for loading the waveguide layer 30.

【0013】図1および図2の動作について説明する。
これらの図面に示すように、可視域〜近赤外光(400
nm近傍〜2500nm近傍)のパルス光源10(例え
ば半導体レーザの利得スイッチング法)から、パルス幅
300ps(紫外検知長20mmの場合)以下の短光パ
ルス列をプローブ光11として取りだし、光ファイバ1
2でそれぞれの各紫外光光源故障検知装置14,16に
伝送する。すると図2に示すように、紫外光光源故障検
知装置16において、紫外光光源故障装置検知部分の導
波層30の入力端面33ともう一方の端面31とで反射
が生ずる。この二つの端面33,31からの反射パルス
18,19の有無を検知することで、外部からの紫外光
照射2の有無を判断することができる。
The operation of FIGS. 1 and 2 will be described.
As shown in these figures, visible to near infrared light (400
A short light pulse train having a pulse width of 300 ps (in the case of an ultraviolet detection length of 20 mm) or less is taken out as a probe light 11 from a pulse light source 10 (for example, a semiconductor laser gain switching method) in the range of about nm to about 2500 nm, and the optical fiber 1 is used.
2 transmits to the respective ultraviolet light source failure detection devices 14 and 16. Then, as shown in FIG. 2, in the ultraviolet light source failure detection device 16, reflection occurs at the input end face 33 and the other end face 31 of the waveguide layer 30 in the ultraviolet light source failure device detection portion. By detecting the presence / absence of the reflected pulses 18, 19 from the two end faces 33, 31, it is possible to determine the presence / absence of the ultraviolet light irradiation 2 from the outside.

【0014】上記検知部の導波層30は、本実施例で
は、TiO2 とSiO2 の混合膜よりなる導波路(特願
平6−65834号「光スイッチ」参照)で構成されて
おり、図2に示すように、その導波層30の表面に紫外
光2が当たると、TiO2 によるフォトクロミズムによ
り可視域のプローブ光15の吸収が生じ、導波路入力端
面33のみの反射によるパルス19(紫外光光源故障検
知装置の識別信号の役割を果たす)だけが再び光ファイ
バ12を通り光分配器21、光ファイバ22を経て受光
器24によって検出される。
In the present embodiment, the waveguiding layer 30 of the detecting portion is composed of a wave guide made of a mixed film of TiO 2 and SiO 2 (see Japanese Patent Application No. 6-65834, “Optical Switch”). As shown in FIG. 2, when the surface 2 of the waveguide layer 30 is irradiated with the ultraviolet light 2, photo-chromism due to TiO 2 causes absorption of the probe light 15 in the visible region, and a pulse 19 ( (Which serves as an identification signal of the ultraviolet light source failure detection device) is again detected by the light receiver 24 through the optical fiber 12, the optical distributor 21 and the optical fiber 22.

【0015】そして、紫外光光源17の故障等によって
導波層30への紫外光2の照射が止まると、ある遅延時
間で回復しプローブ光15の吸収がおさまる。
When the irradiation of the ultraviolet light 2 to the waveguide layer 30 is stopped due to a failure of the ultraviolet light source 17, the probe light 15 is absorbed by the recovery after a certain delay time.

【0016】すると、入力端面33からの他に、もう一
方の端面31からの反射が増大し、導波路の両端面3
3,31の往復光路時間間隔Δtだけ離れた二つの反射
パルス18,19が再び光ファイバ12,22および光
分配器21を通り受光器24によって検出される。
Then, in addition to the input end face 33, the reflection from the other end face 31 is increased, and both end faces 3 of the waveguide are increased.
Two reflected pulses 18, 19 separated by a round trip optical path time interval Δt of 3, 31 are again detected by the photodetector 24 through the optical fibers 12, 22 and the optical distributor 21.

【0017】これらの現象が複数箇所にわたり一度に発
生しても、これら全ての故障検知信号は反射パルス光と
して時分割された状態で検出されるため、特定箇所を識
別することができる。
Even if these phenomena occur at a plurality of locations at once, all of these failure detection signals are detected as reflected pulse light in a time-divided state, so that a specific location can be identified.

【0018】また、各故障検知装置の識別信号が検出さ
れなかったり、それ以外のところで反射パルスが検出さ
れた場合は光ファイバの破断、欠陥が生じたと考えるこ
とができる。このことから、紫外光光源の故障検知と同
時にこのシステム全体の保守、点検を行なえるという利
点がある。
Further, when the identification signal of each failure detection device is not detected or the reflected pulse is detected at any other position, it can be considered that the optical fiber is broken or defective. From this, there is an advantage that the entire system can be maintained and inspected at the same time as the failure of the ultraviolet light source is detected.

【0019】(実施例2)図3を用いて本発明の第2の
実施例を説明する。本実施例では、紫外線の照射により
フォトクロミズムが発生する材料の一例であるTiO2
とそのフォトクロミズムの感度と屈折率をコントロール
するためのSiO2 を、TiO2 :SiO2 =85:1
5の組成比で混合したターゲットを用いて(特願平6−
303383号参照)、TiO2 とSiO2 の混合膜を
作製した。ここで、TiO2 とSiO2 の組成比は基本
的には任意であるが、TiO2 濃度が高い程紫外線照射
に対する信号光減衰の感度が高いこと、TiO2 濃度が
高い程紫外線未照射時の伝播損失が大きくなるので、1
dB/cm程度の実用的吸収レベルに抑えること、組成
比の調節により混合物の屈折率がSiO2 の屈折率n=
1.5からTiO2 の屈折率n=2.5までの範囲で任
意に選択できるので基板32よりも高い屈折率に調整
し、また光入出力用光ファイバ等との屈折率の整合をと
ることから、本実施例ではTiO2 :SiO2 =85:
15という組成比を採用している。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. In this embodiment, TiO 2 which is an example of a material that causes photochromism by irradiation with ultraviolet rays
And SiO 2 for controlling the sensitivity of photochromism and the refractive index, TiO 2 : SiO 2 = 85: 1
Using a target mixed in a composition ratio of 5 (Japanese Patent Application No. 6-
No. 303383), a mixed film of TiO 2 and SiO 2 was prepared. Here, the composition ratio of TiO 2 and SiO 2 is basically arbitrary, but the higher the TiO 2 concentration, the higher the sensitivity of signal light attenuation to UV irradiation, and the higher the TiO 2 concentration is when the UV irradiation is not performed. Propagation loss increases, so 1
The refractive index of the mixture is controlled to be a practical absorption level of about dB / cm and the refractive index of SiO 2 is n =
Since it can be arbitrarily selected within the range of 1.5 to the refractive index n = 2.5 of TiO 2, the refractive index is adjusted to be higher than that of the substrate 32, and the refractive index is matched with the optical fiber for optical input / output. Therefore, in this embodiment, TiO 2 : SiO 2 = 85:
A composition ratio of 15 is adopted.

【0020】上記混合膜による導波層42はチャネル型
導波路のコアに相当し、基板の深さ方向にも、水平方向
にも導波光を閉じ込めている。
The waveguide layer 42 formed of the mixed film corresponds to the core of the channel type waveguide and confine guided light both in the depth direction of the substrate and in the horizontal direction.

【0021】導波層42は基板全面に形成した後で、フ
ォトリソグラフィー技術を用いて、導波路パターンを形
成したマスクを作製し、エッチングすることで作製でき
る。
The waveguide layer 42 can be produced by forming a mask having a waveguide pattern formed thereon by using a photolithography technique after forming the waveguide layer 42 on the entire surface of the substrate and etching the mask.

【0022】上記導波層42の周囲に形成するクラッド
層31は、空気かあるいは誘電体材料、例えば、SiO
2 で構成するが、誘電体材料の場合は、屈折率が導波層
42よりも低くて、かつ、紫外光を吸収しないことが条
件である。
The cladding layer 31 formed around the waveguide layer 42 is made of air or a dielectric material such as SiO 2.
In the case of the dielectric material, the refractive index is lower than that of the waveguiding layer 42 and the ultraviolet light is not absorbed.

【0023】また、プローブ光15が端面41によって
効率良く反射が生じるためには、端面41を鏡面研磨
(反射率数%)だけよりも、更にその上から金属膜(A
l,Cr等)による反射コーティングを施して、金属膜
の反射端面とし、反射率90%以上を実現することがで
き、端面41から外部への透過損失を押さえることがで
きる。
In order for the probe light 15 to be efficiently reflected by the end face 41, the end face 41 may be further polished from above the metal film (A
It is possible to realize a reflectance of 90% or more by applying a reflection coating of (1, Cr, etc.) to the reflection end face of the metal film, and suppress transmission loss from the end face 41 to the outside.

【0024】以上、説明した構成とすれば、光ファイバ
34との光の入出力において、結合効率の向上が図れ、
また、上記端面41からの反射光を検知信号18として
用いることで導波層長の2倍の距離をプローブ光15が
導波することになり紫外光2に対する感度を向上するこ
とができる。
With the configuration described above, the coupling efficiency can be improved in the input / output of light to / from the optical fiber 34.
Further, by using the reflected light from the end face 41 as the detection signal 18, the probe light 15 is guided by a distance twice the length of the waveguide layer, so that the sensitivity to the ultraviolet light 2 can be improved.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、紫
外光光源近辺には電気信号を介在する必要がなくなっ
た。このため、以下の効果が期待できる。 電磁波ノイズ、高電圧環境下でも正確に動作可能と
なる。 電気信号を用いないため、防爆性に優れ、導電性液
体中での使用が可能である。
As described above, according to the present invention, it is not necessary to interpose an electric signal near the ultraviolet light source. Therefore, the following effects can be expected. It can operate correctly even under electromagnetic noise and high voltage environment. Since it does not use an electric signal, it has excellent explosion-proof properties and can be used in conductive liquids.

【0026】さらに、故障検知信号を、可視域〜近赤外
光パルスプローブ光を用い、時分割で検出する結果、複
数の紫外光光源の状態を監視することができる。このた
め以下の効果が期待できる。 複数の紫外光光源故障検知装置と接続することでネ
ットワーク化が可能である。 時分割多重による光信号の伝送、検出によって配線
の簡素化が可能となり、保守、点検が容易となる。
Furthermore, as a result of detecting the failure detection signal in a time division manner by using the visible to near-infrared pulsed probe light, the states of a plurality of ultraviolet light sources can be monitored. Therefore, the following effects can be expected. Networking is possible by connecting multiple ultraviolet light source failure detection devices. Wiring can be simplified by transmitting and detecting optical signals by time division multiplexing, which facilitates maintenance and inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る紫外光光源故障検
知システムを示す構成図である。
FIG. 1 is a configuration diagram showing an ultraviolet light source failure detection system according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る紫外光光源故障検
知装置を示す構成図である。
FIG. 2 is a configuration diagram showing an ultraviolet light source failure detection device according to a first embodiment of the present invention.

【図3】本発明の第2の実施例に係る紫外光光源故障検
知装置を示す構成図である。
FIG. 3 is a configuration diagram showing an ultraviolet light source failure detection device according to a second embodiment of the present invention.

【図4】従来の紫外光検出装置の構成図である。FIG. 4 is a configuration diagram of a conventional ultraviolet light detection device.

【符号の説明】[Explanation of symbols]

2 紫外光 10 可視域〜近赤外光パルス光源 11 パルスプローブ光 12 光ファイバ 13 入力パルスプローブ光 14 紫外光光源故障検知装置 15 正常点灯の紫外光光源 16 紫外光光源故障検知装置 17 故障時の紫外光光源 18 故障検知時の反射パルス 19 検知装置識別の反射パルス 20 検知装置識別の反射パルス 21 光分配器 22 光ファイバ 23 時分割故障検知信号 24 受光器 30 導波層 31 反射端面 32 基板 33 反射端面 34 光ファイバ 2 UV light 10 Visible to near-infrared light pulse light source 11 Pulse probe light 12 Optical fiber 13 Input pulse probe light 14 UV light source failure detection device 15 UV light source with normal lighting 16 UV light source failure detection device 17 In case of failure Ultraviolet light source 18 Reflected pulse at failure detection 19 Reflected pulse for detecting device 20 Reflected pulse for detecting device 21 Optical distributor 22 Optical fiber 23 Time division failure detection signal 24 Photoreceptor 30 Waveguide layer 31 Reflective end face 32 Substrate 33 Reflective end face 34 Optical fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 紫外線によりフォトクロミズムを発生
し、可視光もしくは近赤外光の照射によりフォトクロミ
ズムを回復させることができ、基板より屈折率の高い材
料を用いた導波層と、該導波層を装荷するための基板と
で構成される光導波路と、 複数の該導波路にパルスプローブ光を入力する手段と複
数箇所の故障検知信号光を出力、伝送させるための手段
と、 パルスプローブ光を発生させるための可視光源と故障検
知信号を検出するための受光器とからなり、 紫外光照射により可視光の強度を変化させるフォトクロ
ミズムを利用して、紫外光光源の故障の有無を判断し、
複数箇所の故障を特定・検知することを特徴とする紫外
光光源故障検知システム。
1. A waveguide layer using a material that generates photochromism by ultraviolet rays and can recover the photochromism by irradiation with visible light or near-infrared light, and uses a material having a higher refractive index than a substrate. An optical waveguide composed of a substrate for loading, a means for inputting pulse probe light into the plurality of waveguides, a means for outputting and transmitting failure detection signal light at a plurality of locations, and a pulse probe light It consists of a visible light source for detecting the failure detection signal and a photodetector for detecting a failure detection signal.Using photochromism that changes the intensity of visible light by irradiation with ultraviolet light, the presence or absence of failure of the ultraviolet light source is determined,
An ultraviolet light source failure detection system characterized by identifying and detecting failures at multiple locations.
JP1234595A 1995-01-30 1995-01-30 Ultraviolet light source failure detection system Withdrawn JPH08201224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234595A JPH08201224A (en) 1995-01-30 1995-01-30 Ultraviolet light source failure detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234595A JPH08201224A (en) 1995-01-30 1995-01-30 Ultraviolet light source failure detection system

Publications (1)

Publication Number Publication Date
JPH08201224A true JPH08201224A (en) 1996-08-09

Family

ID=11802699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234595A Withdrawn JPH08201224A (en) 1995-01-30 1995-01-30 Ultraviolet light source failure detection system

Country Status (1)

Country Link
JP (1) JPH08201224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245800B1 (en) * 2004-09-08 2007-07-17 Lockheed Martin Corporation Fiber optic interconnect with visible laser indicator and fault detector
JP2009014689A (en) * 2007-07-09 2009-01-22 Saitama Univ Device for measuring intensity of ultraviolet ray with the use of photochromic compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245800B1 (en) * 2004-09-08 2007-07-17 Lockheed Martin Corporation Fiber optic interconnect with visible laser indicator and fault detector
JP2009014689A (en) * 2007-07-09 2009-01-22 Saitama Univ Device for measuring intensity of ultraviolet ray with the use of photochromic compound

Similar Documents

Publication Publication Date Title
EP2383855B1 (en) Arc flash detection system and method
US3981592A (en) System for locating breaks in fiber optic filaments
US7668412B2 (en) Systems and methods for detecting electric discharge
CN102844942A (en) Light intensity monitoring circuit and fiber laser system
US6124956A (en) Optical transmitter output monitoring tap
JPH09145927A (en) Waveguide type optical filter
CN110398671A (en) partial discharge detection device
JPH08201224A (en) Ultraviolet light source failure detection system
CN107631796B (en) A kind of fibre optic rediation monitoring device and monitoring method
EP2144207A1 (en) Optical fiber anti-intrusion system
US7050665B2 (en) Bidirectional, co-located laser and detector
Feced et al. Zero dead-zone OTDR with high-spatial resolution for short haul applications
US20180113050A1 (en) Otdr using an electro-absorption modulator for both pulse forming and pulse detection
JP6294858B2 (en) Optical fiber core inspection apparatus and method
JP3322471B2 (en) Explosion-proof area abnormality monitoring device
CN115765866B (en) Pulse light and direct current light fused railway optical cable monitoring system and method
CN116155373B (en) Single-fiber bidirectional fusion positioning type railway optical cable monitoring system and method
Garside et al. A Photon Counting Optical Time-Domain Reflectometer For Distributed Sensing Applications
Garside Ultrahigh Resolution Optical Time-Domain Reflectometry
JP3211224B2 (en) Optical line inspection method and optical line inspection system
JPS586431A (en) Temperature measuring method using optical fiber
JPH0793054B2 (en) Humidity detection method for power cable lines
JPH0990140A (en) Two input fiber and two input fiber-type light-receiving device
CN117848483A (en) Optical fiber vibration sensing system, optical fiber vibration sensing method and optical cable line inspection analyzer
JP2008209265A (en) Bidirectional optical module and optical pulse tester

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402