JPH08201189A - Method for compensating electronic measuring instrument - Google Patents

Method for compensating electronic measuring instrument

Info

Publication number
JPH08201189A
JPH08201189A JP7008678A JP867895A JPH08201189A JP H08201189 A JPH08201189 A JP H08201189A JP 7008678 A JP7008678 A JP 7008678A JP 867895 A JP867895 A JP 867895A JP H08201189 A JPH08201189 A JP H08201189A
Authority
JP
Japan
Prior art keywords
sensor
compensation data
measurement
digital
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7008678A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yamada
勝利 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7008678A priority Critical patent/JPH08201189A/en
Publication of JPH08201189A publication Critical patent/JPH08201189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE: To constantly obtain a correct differential pressure value regardless of the change in measurement environment by storing compensation data indicating characteristics inherent to a device by constituting an N-dimensional array with a digital signal corresponding to the electrical signal of a sensor as an address. CONSTITUTION: For the title compensation method constitution is made with sensors 3-5, a sensor for obtaining data for compensating the sensors, and an A/D-conversion means 6, a memory means 1 and a digital operation means 2, and further an output interface 7. Further, it is provided with an address where compensation data indicating inherent characteristics which are measured in advance are at equal interval for a digital signal and the interval constitutes an N-dimensional array (N>0) given by the power of 2. The compensation data are subjected to a high-speed operation by an external production computer. To a measurement point, n addresses successively close to the measurement point are referred (n>N) to calculate a true measurement value proportionally. Even if a measurement system is affected by a plurality of environmental variables, an accurate compensation can be made in a small amount of operation time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数ある物理量のうちの
一つを選択的に測定することを目的とした電子式測定装
置およびその補償方法に係り、特に、測定環境の温度お
よび静圧の変化に関係なく常に正しい差圧値が得られる
ようにした電子式差圧伝送器の温度および静圧影響補償
方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic measuring device and its compensating method for selectively measuring one of a plurality of physical quantities, and more particularly, to a measuring environment for measuring temperature and static pressure. The present invention relates to a temperature and static pressure effect compensating method and apparatus for an electronic differential pressure transmitter that always obtains a correct differential pressure value regardless of changes.

【0002】[0002]

【従来の技術】従来の差圧センサの温度影響補償方法と
して次の方法が開示されている。
2. Description of the Related Art The following method has been disclosed as a conventional temperature effect compensation method for a differential pressure sensor.

【0003】 回帰関数演算法 センサの特性は、あらかじめ想定された温度のパラメー
タに関する回帰モデルに従う近似関数として導出する。
メモリ手段には得られた近似関数の係数を記憶させ、測
定の際には各々のパラメータに対応する出力電圧や温度
の値から近似式に基づいて演算することにより差圧値を
算出する。
Regression Function Calculation Method The characteristics of the sensor are derived as an approximate function in accordance with a regression model relating to a temperature parameter that is assumed in advance.
The coefficient of the obtained approximate function is stored in the memory means, and at the time of measurement, the differential pressure value is calculated by calculating from the value of the output voltage or the temperature corresponding to each parameter based on the approximate expression.

【0004】 回帰テーブル保管法 の場合と同様に、センサ特性の近似関数を導出した
後、各々のパラメータ、すなわち、温度の値に対応する
出力電圧−差圧特性を温度に係る2次元の配列として記
憶させておき、測定の際には前記の2次元の配列から出
力電圧に対応する差圧値もしくは補正量を読み出し、両
者の値を合成した上で修正された差圧値を出力する。
Similar to the case of the regression table storage method, after deriving an approximate function of the sensor characteristic, each parameter, that is, the output voltage-differential pressure characteristic corresponding to the temperature value is converted into a two-dimensional array related to temperature. The differential pressure value or the correction amount corresponding to the output voltage is read out from the two-dimensional array and stored, and the corrected differential pressure value is output after combining the two values.

【0005】しかし、従来の二方法ではいずれも出力電
圧−差圧特性が温度によって影響を受ける系、あるいは
出力電圧−差圧特性が温度以外のパラメータによって影
響を受ける系すなわち差圧値ΔP,センサ出力電圧E,
パラメータTとすると次式ΔP=f(E,T)によって
整理される測定系においては有効であるが、出力電圧−
差圧特性が複数のパラメータ(環境変数)によって同時
に影響を受ける測定系においては十分に正しい差圧値を
得ることができない。
However, in both of the two conventional methods, the system in which the output voltage-differential pressure characteristic is influenced by temperature, or the system in which the output voltage-differential pressure characteristic is influenced by parameters other than temperature, that is, the differential pressure value ΔP, the sensor Output voltage E,
The parameter T is effective in the measurement system arranged by the following equation ΔP = f (E, T), but the output voltage −
In a measurement system in which the differential pressure characteristic is affected by a plurality of parameters (environmental variables) at the same time, it is impossible to obtain a sufficiently correct differential pressure value.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の技術
の回帰テーブル保管法の発展に供し、目的とする測定
値yがセンサの出力信号xのみの関数ではなく複数の環境
変数a1,a2,…によって影響を受ける複雑な測定系
すなわち次式y=f(x,a1,a2,…)によって整
理される測定系でも、あらかじめ測定され装置の固有の
特性を示す補償データを格納することができる配列空間
を有する電子式測定装置の補償方法を提供するものであ
る。
The present invention is applied to the development of the conventional regression table storing method, and the target measured value y is not a function of only the output signal x of the sensor but a plurality of environmental variables a1 and a2. Even in a complex measurement system affected by the following equation, that is, a measurement system arranged by the following equation y = f (x, a1, a2, ...), it is possible to store the compensation data which is measured in advance and which shows the unique characteristic of the device. A method of compensating an electronic measuring device having a possible array space is provided.

【0007】さらに、本発明は、あらかじめ測定され装
置の固有の特性を示す補償データをデジタル演算手段以
外の外部プロダクションコンピュータで作成することに
より、高度な回帰関数近似を行う場合でも製造に要する
時間を短縮することができる電子式測定装置の補償方法
を提供するものである。
Further, according to the present invention, by producing compensation data which is preliminarily measured and which shows the characteristic characteristic of the apparatus, by an external production computer other than the digital arithmetic means, the time required for manufacturing can be reduced even in the case of performing an advanced regression function approximation. A method of compensating an electronic measuring device that can be shortened.

【0008】さらに、本発明は、従来の技術の回帰テ
ーブル保管法の発展に供し、メモリ手段より読み出され
た補償データから測定値を算出する際の除算に係る演算
量が少なくて済みひいては演算が短時間で済む電子式測
定装置の補償方法を提供するものである。
Further, the present invention is applied to the development of the regression table storage method of the prior art, and the amount of calculation involved in the division when calculating the measured value from the compensation data read from the memory means can be small, and thus the calculation can be performed. The present invention provides a method of compensating an electronic measuring device that requires only a short time.

【0009】さらに、本発明は、従来の技術の回帰テ
ーブル保管法の発展に供し、測定点に対して近接した補
償データをメモリ手段より参照することにより、精度の
高い測定値を求めることができる電子式測定装置の補償
方法を提供するものである。さらに、本発明は、従来の
技術の回帰テーブル保管法の発展に供し、目的とする
測定値yがセンサの出力信号xのみの関数ではなく複数
の環境変数a1,a2,…によって影響を受ける複雑な
測定系すなわち次式y=f(x,a1,a2,…)によ
って整理される測定系でも、メモリ手段より読み出され
た補償データから少ない演算量で精度の均一な測定値を
求めることができる電子式測定装置の補償方法を提供す
るものである。
Further, the present invention is applied to the development of the conventional regression table storage method, and by referring to the compensation data close to the measurement point from the memory means, it is possible to obtain a highly accurate measurement value. A method of compensating an electronic measuring device is provided. Further, the present invention is applied to the development of the conventional regression table storage method, and the target measurement value y is not a function of only the output signal x of the sensor but is influenced by a plurality of environment variables a1, a2 ,. Even in such a measurement system, that is, a measurement system organized by the following equation y = f (x, a1, a2, ...), it is possible to obtain a measurement value with uniform accuracy from the compensation data read from the memory means with a small amount of calculation. The present invention provides a method of compensating an electronic measuring device that can be used.

【0010】本発明の目的は、測定環境に係る温度およ
び静圧の変化に関係なく常に正しい差圧値が得られるよ
うにした電子式差圧伝送器の温度および静圧影響補償方
法を提供することにある。
An object of the present invention is to provide a temperature and static pressure influence compensation method for an electronic differential pressure transmitter that always obtains a correct differential pressure value irrespective of changes in temperature and static pressure related to a measurement environment. Especially.

【0011】[0011]

【課題を解決するための手段】本発明による電子式測定
装置の補償方法は、複数ある物理量のうちの一つを選択
的に感受し、電気信号に変換することを目的とするセン
サと、前記センサが目的とする物理量以外の一つ以上の
物理量を感受し前記センサを補償するデータを得ること
を目的とする一つ以上のセンサと、A/D変換手段と、
あらかじめ測定され装置の固有の特性を示す補償データ
および演算手順を記憶するメモリ手段と、前記各々のセ
ンサの電気信号に対応する補償データを演算手順に従っ
て前記メモリ手段より参照して演算するデジタル演算手
段と、前記デジタル演算手段の出力を表示あるいは伝送
するインタフェースとを具備し、目的とする物理量の測
定値を表示あるいは該測定値に比例した電気量に変換し
て表示あるいは伝送を行う電子式測定装置で、前記メモ
リ手段に記憶される、あらかじめ測定され装置の固有の
特性を示す補償データが、前記各々のセンサの電気信号
に対応するデジタル信号をアドレスとするN(N>0)
次元の配列を構成して格納されることを特徴とする手段
により構成される。
A method of compensating an electronic measuring device according to the present invention comprises a sensor for selectively sensing one of a plurality of physical quantities and converting it into an electric signal. One or more sensors for the purpose of receiving data for compensating the sensor by sensing one or more physical quantities other than the intended physical quantity of the sensor, and A / D conversion means,
Memory means for storing compensation data which has been measured in advance and shows a characteristic peculiar to the device and a calculation procedure, and digital calculation means for calculating the compensation data corresponding to the electric signal of each sensor by referring to the memory means according to the calculation procedure. And an interface for displaying or transmitting the output of the digital operation means, and displaying or transmitting the measured value of the target physical quantity by displaying or converting the measured value into an electric quantity proportional to the measured value. Then, the compensation data stored in the memory means, which is measured in advance and shows the characteristic characteristic of the device, is addressed to a digital signal corresponding to the electric signal of each sensor N (N> 0).
It is configured by means for constructing and storing a dimensional array.

【0012】さらに、本発明による電子式測定装置の補
償方法は、あらかじめ測定した各々のセンサの出力信号
に対応するデジタル信号をデジタル演算手段以外の外部
プロダクションコンピュータに読み込み、高度な演算を
行うことを特徴とする手段により構成される。
Further, according to the method of compensating the electronic measuring apparatus of the present invention, the digital signal corresponding to the output signal of each sensor measured in advance is read into an external production computer other than the digital calculating means to perform high-level calculation. It is composed of a characteristic means.

【0013】さらに、本発明による電子式測定装置の補
償方法は、あらかじめ測定され装置の固有の特性を示す
補償データが、各々全てもしくはそのうちの一部のセン
サの出力信号に対応するデジタル信号に関して等間隔と
なるアドレスを有し、その間隔が2の累乗で与えられる
配列を構成していることを特徴とする手段により構成さ
れる。
Furthermore, the method of compensating an electronic measuring device according to the present invention relates to a digital signal in which compensation data which is measured in advance and which shows an inherent characteristic of the device corresponds to the output signals of all or some of the sensors. It is configured by means having an address having an interval and forming an array in which the interval is given by a power of 2.

【0014】さらに、本発明による電子式測定装置の補
償方法は、メモリ手段より参照される補償データが、測
定点に対して順次近接したアドレスをn(n>N)個で
あることを特徴とする手段によって構成される。
Further, the compensation method for the electronic measuring apparatus according to the present invention is characterized in that the compensation data referred to by the memory means have n (n> N) addresses which are successively closer to the measurement point. It is configured by means for

【0015】さらに、本発明による電子式測定装置の補
償方法は、測定時に得られる各々のセンサの出力信号に
対応するデジタル信号a1,a2,…,ak,…,aN
が配列の各々のアドレス区間(a1i,a1i+1),(a
j,a2j+1),…,(akm,akm+1),…,(aNz
aNz+1)の中間に与えられるとき、目的とする真の測
定値f(a1,a2,…,ak,…,aN)を比例計算
することを特徴とする手段によって構成される。
Further, in the compensating method for the electronic measuring apparatus according to the present invention, the digital signals a1, a2, ..., Ak, ..., AN corresponding to the output signals of the respective sensors obtained at the time of measurement are provided.
Is each address section (a1 i , a1 i + 1 ) of the array, (a
2 j , a2 j + 1 ), ..., (ak m , ak m + 1 ), ..., (aN z ,
aN z + 1 ) when given in the middle, it is constituted by means for proportionally calculating the target true measured value f (a1, a2, ..., Ak, ..., AN).

【0016】[0016]

【作用】本発明では、あらかじめ測定され装置の固有の
特性を示す補償データが、各々のセンサの電気信号に対
応するデジタル信号をアドレスとするN(N>0)次元
の配列を構成して格納されることにより、測定時に得ら
れる各々のセンサの電気信号に対応したアドレスを検索
し、メモリ手段より補償データを参照することができる
ので、精度の高い測定を実現することができる。
According to the present invention, the compensation data which is measured in advance and shows the characteristic characteristic of the device is stored in the form of an N (N> 0) -dimensional array whose address is the digital signal corresponding to the electric signal of each sensor. By doing so, the address corresponding to the electric signal of each sensor obtained at the time of measurement can be searched and the compensation data can be referred to from the memory means, so that highly accurate measurement can be realized.

【0017】あらかじめ測定した各々のセンサの出力信
号に対応するデジタル信号はデジタル演算手段以外の外
部プロダクションコンピュータに読み込み、演算を行う
ため、製造に要する時間が短縮される。
Since the digital signals corresponding to the output signals of the respective sensors measured in advance are read into an external production computer other than the digital arithmetic means and the arithmetic operations are performed, the time required for manufacturing is shortened.

【0018】あらかじめ測定され装置の固有の特性を示
す補償データが、各々全てもしくはそのうちの一部のセ
ンサの出力信号に対応するデジタル信号に関して等間隔
となるアドレスを有し、その間隔が2の累乗で与えられ
るため、測定値の算出の際の除算はビットシフトで済
み、演算量が少なくて済む。測定点に対して検索する補
償データの数nは、測定精度と演算量とのかねあいから
n>Nを満たす範囲で選ぶことができる。
The compensation data, which is measured in advance and shows the characteristic characteristic of the device, has addresses at equal intervals with respect to digital signals corresponding to the output signals of all or some of the sensors, and the intervals are powers of two. Therefore, the division in calculating the measurement value can be done by bit shifting, and the amount of calculation can be small. The number n of compensation data to be searched for the measurement point can be selected within a range satisfying n> N in consideration of the balance between the measurement accuracy and the calculation amount.

【0019】[0019]

【実施例】本発明の一実施例を図面とともに説明する。
図1は、半導体ストレインゲージを含む測定系の入出力
特性を表し、温度および静圧影響を概観する模式図であ
る。半導体ストレインゲージを差圧検出手段として用い
る電子式差圧伝送器が図2に示されるように構成されて
いるものとする。図で物理量である差圧,温度,静圧は
それぞれ差圧センサ3,温度センサ5,静圧センサ4に
よって感受され、強度に対応した電気信号を出力する。
マルチプレクサ8は、単位時間ごとに各センサの電気信
号を切り替えて入力することにより、一組のPGA9お
よびA/Dコンバータ6で、増幅およびA/D変換を行
うことを可能とする。また、PGA9は、可変抵抗器や
可変コンデンサなど調整を必要とする要素品を含まない
が、マイクロプロセッサ2の信号により増幅度を固定化
することが可能である。A/Dコンバータによってデジ
タル化した差圧信号,温度信号,静圧信号は、マイクロ
プロセッサを主要部とする演算処理装置に入力される。
演算処理装置はマイクロプロセッサ2のほか、揮発メモ
リ1,不揮発メモリ1′から成り、演算の出力信号は、
出力インタフェース7によって結果が表示されるか、も
しくは電気信号に変換されて外部に伝送される。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the input / output characteristics of a measurement system including a semiconductor strain gauge and outlining the influence of temperature and static pressure. It is assumed that an electronic differential pressure transmitter that uses a semiconductor strain gauge as a differential pressure detecting means is configured as shown in FIG. In the figure, the differential pressure, temperature, and static pressure, which are physical quantities, are sensed by the differential pressure sensor 3, the temperature sensor 5, and the static pressure sensor 4, respectively, and an electric signal corresponding to the strength is output.
The multiplexer 8 switches and inputs the electric signal of each sensor for each unit time, thereby enabling the pair of PGA 9 and the A / D converter 6 to perform amplification and A / D conversion. Further, the PGA 9 does not include elements such as a variable resistor and a variable capacitor that require adjustment, but the amplification degree can be fixed by the signal of the microprocessor 2. The differential pressure signal, the temperature signal, and the static pressure signal digitized by the A / D converter are input to an arithmetic processing unit whose main part is a microprocessor.
The arithmetic processing unit comprises a volatile memory 1 and a non-volatile memory 1'in addition to the microprocessor 2, and the output signal of the arithmetic is
The result is displayed by the output interface 7 or converted into an electric signal and transmitted to the outside.

【0020】このような構成で、半導体ストレインゲー
ジを含む測定系それぞれに固有の入出力特性が例えば図
1の模式図に表される場合、各々の測定点(E,T,
P)に対応した測定データは△印に示す如く収集される
ものとする。図で、差圧信号はE軸、温度信号はT軸、
静圧信号はP軸にとられ、E,T,Pを定義域、ΔPを
値域とする関数系すなわち次式ΔP=f(E,T,P)
に整理される特性を表している。通常、実際に測定を行
う測定点の数はさほど多くはないので、隣接した各測定
点間の測定データはm次多項式,正弦関数,指数関数,
対数関数などを回帰関数とする最少二乗法あるいはスプ
ライン関数近似法によって関数近似を行うが、この演算
には多大な演算量を必要とするため、測定データを測定
系外に取り出し、図2で示した演算処理装置以外のプロ
ダクションコンピュータを用いて演算を行う。得られた
回帰関数を用いて等間隔の測定点に対応する測定データ
を再構成し、図3もしくは図4に示す配列の形に整理す
る。さて、このようにして作成された装置の固有の特性
を示す補償データの配列は、演算処理装置の不揮発メモ
リ1′に記憶させ、測定時に読み込まれるデジタル化さ
れた差圧信号E,温度信号T,静圧信号Pに近接する測
定点(Ei,Tj,Pk)に対応する補償データf(Ei
j,Pk)を読み出せるように構成する。
With such a configuration, when the input / output characteristics peculiar to each of the measurement systems including the semiconductor strain gauge are shown in the schematic diagram of FIG. 1, for example, at each measurement point (E, T,
The measurement data corresponding to P) shall be collected as indicated by triangles. In the figure, the differential pressure signal is the E axis, the temperature signal is the T axis,
The static pressure signal is taken on the P axis, and the functional system with E, T, P as the domain and ΔP as the range, that is, the following equation ΔP = f (E, T, P)
Represents the characteristics organized into. Usually, the number of actual measurement points is not so large, so the measurement data between adjacent measurement points are m-order polynomial, sine function, exponential function,
Function approximation is performed by the least squares method or the spline function approximation method that uses a logarithmic function as a regression function. However, since this calculation requires a large amount of calculation, the measurement data is taken out of the measurement system and shown in FIG. The calculation is performed using a production computer other than the calculation processing device. Using the obtained regression function, the measurement data corresponding to the equidistant measurement points are reconstructed and arranged in the form of the array shown in FIG. 3 or 4. Now, the array of compensation data showing the unique characteristics of the device thus created is stored in the non-volatile memory 1'of the arithmetic processing device, and the digitized differential pressure signal E and temperature signal T read at the time of measurement. , The compensation data f (E i , E i , T j , P k ) corresponding to the measurement points (E i , T j , P k ) close to the static pressure signal P
T j , P k ) can be read.

【0021】しかし、記憶された補償データの数は有限
かつ離散的であるため、任意の測定点に対応する測定デ
ータは、演算処理装置で直線近似を行い、補間しなけれ
ばならない。以下に補間方法の一例を図3とともにnが
6の場合について説明する。あらかじめ不揮発メモリに
記憶させる補償データの配列は、測定データを近似する
回帰関数を用いて構成する際に、測定点(E,T,P)
に関して三つの環境変数のうちの一つを等間隔で累進さ
せる間に他の二つの環境変数について1/2間隔ずつ平
行移動した測定点(E,T,P)に対する測定データを
計算し、図3の模式図に示すような補償データの配列を
作成する。ただし、図3は次式によるものである。
However, since the number of stored compensation data is finite and discrete, the measurement data corresponding to an arbitrary measurement point must be linearly approximated by an arithmetic processing unit and interpolated. An example of the interpolation method will be described below with reference to FIG. The array of compensation data to be stored in advance in the non-volatile memory is the measurement point (E, T, P) when the regression function that approximates the measurement data is used.
Regarding one of the three environment variables, the measurement data for the measurement points (E, T, P) that were translated by 1/2 interval for the other two environment variables were calculated, and the figure was calculated. An array of compensation data is created as shown in the schematic diagram of FIG. However, FIG. 3 is based on the following equation.

【0022】[0022]

【数2】 [Equation 2]

【0023】測定時に差圧信号E′,温度信号T′,静
圧信号P′を得た場合、次式すなわち
When the differential pressure signal E ', the temperature signal T', and the static pressure signal P'are obtained at the time of measurement,

【0024】[0024]

【数3】 Ei<E′<Ei+1/2ΔE Tj<T′<Tj+1/2ΔT Pk<P′<Pk+1=Pk+ΔP …(数3) を満たすEi,Tj,Pkを検索し、近接する六つの補償
データdP1=f(Ei,Tj,Pk), dP2=f(Ei+1,Tj,Pk), dP3=f(Ei,Tj+1,Pk), dP4=f(Ei+1/2ΔE,Tj+1/2ΔT,
k+1), dP5=f(Ei−1/2ΔE,Tj+1/2ΔT,
k+1), dP6=f(Ei+1/2ΔE,Tj−1/2ΔT,
k+1) を不揮発メモリより参照し演算処理装置に読み出す。演
算処理装置で次式による演算を行い、修正された測定デ
ータf(E′,T′,P′)を得る。
[Number 3] E i <E '<E i + 1 / 2ΔE T j <T'<T j + 1 / 2ΔT P k <P '<P k + 1 = P k + ΔP ... meet the (number 3) E i, By searching T j and P k , six adjacent compensation data dP1 = f (E i , T j , P k ), dP2 = f (E i + 1 , T j , P k ), dP3 = f (E i , T j + 1 , P k ), dP4 = f (E i + 1 / 2ΔE, T j + 1 / 2ΔT,
P k + 1 ), dP5 = f (E i −1 / 2ΔE, T j + 1 / 2ΔT,
P k + 1 ), dP6 = f (E i + 1 / 2ΔE, T j −1 / 2ΔT,
P k + 1 ) is referenced from the non-volatile memory and read out to the arithmetic processing unit. The arithmetic processing unit performs arithmetic operation according to the following equation to obtain corrected measurement data f (E ', T', P ').

【0025】[0025]

【数4】 a=dP1+(dP2−dP1)(E′−Ei)/ΔE+(dP3−dP1) (T′−Tj)/ΔT b=dP4+(dP5−dP4)(E′−Ei−1/2ΔE)/ΔE +(dP6−dP4)(T′−Tj−1/2ΔT)/ΔT f(E′,T′,P′)=a+(b−a)(P′−Pk)/ΔP …(数4) かくして得られた真の差圧値dP=f(E′,T′,
P′)は、出力インタフェースにより表示あるいはある
電気信号に変換されて測定系外に伝送される。
Equation 4] a = dP1 + (dP2-dP1 ) (E'-E i) / ΔE + (dP3-dP1) (T'-T j) / ΔT b = dP4 + (dP5-dP4) (E'-E i - 1 / 2ΔE) / ΔE + ( dP6-dP4) (T'-T j -1 / 2ΔT) / ΔT f (E ', T', P ') = a + (b-a) (P'-P k) / ΔP (Equation 4) The true differential pressure value dP = f (E ′, T ′,
P ') is displayed by the output interface or converted into a certain electric signal and transmitted outside the measurement system.

【0026】以上、N=3,n=6とする場合の実施例
について説明したが、補間方法の異なる例を図4ととも
にnが4の場合について説明する。
Although the embodiment in which N = 3 and n = 6 has been described above, an example in which the interpolation method is different will be described with reference to FIG.

【0027】あらかじめ不揮発メモリに記憶させる補償
データの配列は、測定データを近似する回帰関数を用い
て構成する際に、測定点(E,T,P)に対する測定デ
ータを各々の環境変数に関して等間隔に計算し、図4の
模式図に示すような補償データの配列を作成する。ただ
し、図4は次式によるものである。
The array of compensation data stored in advance in the non-volatile memory is such that the measurement data for the measurement points (E, T, P) are equidistant with respect to each environmental variable when the measurement data is constructed using a regression function that approximates the measurement data. To calculate an array of compensation data as shown in the schematic diagram of FIG. However, FIG. 4 is based on the following equation.

【0028】[0028]

【数5】 (Equation 5)

【0029】測定時に差圧信号E′,温度信号T′,静
圧信号P′を得た場合、次式すなわち
When the differential pressure signal E ', the temperature signal T', and the static pressure signal P'are obtained at the time of measurement,

【0030】[0030]

【数6】 Ei<E′<Ei+1=Ei+ΔE Tj<T′<Tj+1=Tj+ΔT Pk<P′<Pk+1=Pk+ΔP …(数6) を満たすEi,Tj,Pkを検索し、近接する四つの補償
データ dP1=f(Ei,Tj,Pk),dP2=f(Ei+1
j,Pk),dP3=f(Ei,Tj+1,Pk),dP4=
f(Ei,Tj,Pk+1) を不揮発メモリより参照し演算処理装置に読み出す。演
算処理装置で次式による演算を行い、修正された測定デ
ータf(E′,T′,P′)を得る。
E i <E ′ <E i + 1 = E i + ΔE T j <T ′ <T j + 1 = T j + ΔT P k <P ′ <P k + 1 = P k + ΔP (Equation 6 ), E i , T j , P k that satisfy the above condition are searched, and four adjacent compensation data dP1 = f (E i , T j , P k ), dP2 = f (E i + 1 ,
T j , P k ), dP3 = f (E i , T j + 1 , P k ), dP4 =
f (E i , T j , P k + 1 ) is referenced from the non-volatile memory and read out to the arithmetic processing unit. The arithmetic processing unit performs arithmetic operation according to the following equation to obtain corrected measurement data f (E ', T', P ').

【0031】[0031]

【数7】 f(E′,T′,P′)=dP1+(dP2−dP1)(E′−Ei)/ΔE +(dP3−dP1)(T′-Tj)/ΔT +(dP4−dP1)(P′−Pk)/ΔP …(数7) かくして得られた真の差圧値dP=f(E′,T′,
P′)は、出力インタフェースにより表示あるいはある
電気信号に変換されて測定系外に伝送される。
Equation 7] f (E ', T', P ') = dP1 + (dP2-dP1) (E'-E i) / ΔE + (dP3-dP1) (T'-T j) / ΔT + (dP4- dP1) (P′−P k ) / ΔP (Equation 7) The true differential pressure value dP = f (E ′, T ′,
P ') is displayed by the output interface or converted into a certain electric signal and transmitted outside the measurement system.

【0032】以上、それぞれの実施例について説明した
がこの発明はこれだけに限定されるものではなく、その
要旨を逸脱しない範囲で様々に変形して実施し得るもの
である。
Although the respective embodiments have been described above, the present invention is not limited thereto and can be variously modified and carried out without departing from the scope of the invention.

【0033】[0033]

【発明の効果】本発明による電子式測定装置の補償方法
は、あらかじめ測定を行うことによって得られた補償デ
ータが多次元の配列を構成して格納することができるの
で、測定時に得られる各々のセンサの電気信号に対応し
た補償データをメモリ手段より参照することができ、精
度の高い測定を実現することができる。あらかじめ測定
した各々のセンサの入出力データは、外部プロダクショ
ンコンピュータに読み込み、演算を行うため、製造に要
する時間を短縮することができる。また、補償データは
外部プロダクションコンピュータで高度の演算を行って
構成することができるため、測定時の精度および演算量
が最適となる条件を選ぶことにより、測定値の算出の際
の演算時間は短いながら精度の高い測定値を得ることが
できる。測定点に対して検索するアドレスの数nは、n
>Nを満たす範囲で選ぶことができるため、測定時の精
度および演算量とのかねあいから最適となる条件を選ぶ
ことができる。
In the compensation method for the electronic measuring device according to the present invention, since the compensation data obtained by performing the measurement in advance can form and store a multidimensional array, each compensation data obtained at the time of measurement can be obtained. The compensation data corresponding to the electric signal of the sensor can be referred from the memory means, and highly accurate measurement can be realized. The input / output data of each sensor measured in advance is read into the external production computer and the calculation is performed, so that the time required for manufacturing can be shortened. In addition, since the compensation data can be configured by performing an advanced calculation with an external production computer, the calculation time for calculating the measurement value is short by selecting the conditions that optimize the accuracy and the amount of calculation during measurement. However, highly accurate measurement values can be obtained. The number n of addresses searched for the measurement point is n
Since it can be selected within the range that satisfies> N, the optimum condition can be selected in consideration of the accuracy at the time of measurement and the amount of calculation.

【0034】したがって、ある物理量を選択的に測定す
る系で、該測定系が複数の環境変数によって影響を受け
る場合でも、少ない演算時間で高精度の補正が可能な電
子式測定装置を実現することができる。
Therefore, in a system for selectively measuring a certain physical quantity, it is possible to realize an electronic measuring device capable of highly accurate correction in a short calculation time even when the measurement system is affected by a plurality of environmental variables. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体ストレインゲージの出力電圧−差圧特性
の説明図。
FIG. 1 is an explanatory diagram of an output voltage-differential pressure characteristic of a semiconductor strain gauge.

【図2】半導体ストレインゲージの温度および静圧影響
を補償する処理を示すブロック図。
FIG. 2 is a block diagram showing a process of compensating for temperature and static pressure effects of a semiconductor strain gauge.

【図3】補償データから差圧値を算出する手順の一例を
示す説明図。
FIG. 3 is an explanatory diagram showing an example of a procedure for calculating a differential pressure value from compensation data.

【図4】補償データから差圧値を算出する手順の一例を
示す説明図。
FIG. 4 is an explanatory diagram showing an example of a procedure for calculating a differential pressure value from compensation data.

【符号の説明】[Explanation of symbols]

1,1′…メモリ手段、2…デジタル演算手段、3…差
圧センサ、4…静圧センサ、5…温度センサ、6…A/
Dコンバータ、7…出力インタフェース、8…マルチプ
レクサ、9…PGA。
1, 1 '... memory means, 2 ... digital arithmetic means, 3 ... differential pressure sensor, 4 ... static pressure sensor, 5 ... temperature sensor, 6 ... A /
D converter, 7 ... Output interface, 8 ... Multiplexer, 9 ... PGA.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数ある物理量のうちの一つを選択的に感
受し、電気信号に変換することを目的とするセンサと、
前記センサが目的とする物理量以外の一つ以上の物理量
を感受し前記センサを補償するデータを得ることを目的
とする一つ以上のセンサと、A/D変換手段と、あらか
じめ測定され装置の固有の特性を示す補償データおよび
演算手順を記憶するメモリ手段と、前記各々のセンサの
電気信号に対応する補償データを演算手順に従って前記
メモリ手段より参照して演算するデジタル演算手段と、
前記デジタル演算手段の出力を表示あるいは伝送するイ
ンタフェースとを具備する電子式測定装置の補償方法に
おいて、前記メモリ手段に記憶される、あらかじめ測定
され装置の固有の特性を示す補償データは、前記各々の
センサの電気信号に対応するデジタル信号をアドレスと
するN(N>0)次元の配列を構成して格納されているこ
とを特徴とする電子式測定装置の補償方法。
1. A sensor intended to selectively sense one of a plurality of physical quantities and convert it into an electric signal.
One or more sensors for the purpose of obtaining data for compensating the sensor by receiving one or more physical quantities other than the intended physical quantity of the sensor, A / D conversion means, and a characteristic of the device that is measured in advance. Memory means for storing compensation data indicating the characteristics of and a calculation procedure, and digital calculation means for calculating the compensation data corresponding to the electric signal of each sensor by referring to the memory means according to the calculation procedure.
In a method of compensating an electronic measuring device, comprising: an interface for displaying or transmitting the output of the digital operation means, the compensation data stored in the memory means and indicating the characteristic peculiar to the device, is A compensating method for an electronic measuring apparatus, characterized in that an N (N> 0) -dimensional array having a digital signal corresponding to an electric signal of a sensor as an address is configured and stored.
【請求項2】請求項1において、あらかじめ測定され装
置の固有の特性を示す補償データは、あらかじめ測定し
た各々のセンサの出力信号に対応するデジタル信号をデ
ジタル演算手段以外の外部プロダクションコンピュータ
に読み込み、適当な演算を行うことによって作成する電
子式測定装置の補償方法。
2. The compensation data according to claim 1, which is preliminarily measured and shows the characteristic peculiar to the device, reads a digital signal corresponding to an output signal of each sensor, which is preliminarily measured, into an external production computer other than the digital arithmetic means, A method for compensating an electronic measuring device, which is created by performing an appropriate calculation.
【請求項3】請求項1または2において、あらかじめ測
定され装置の固有の特性を示す補償データは、各々全て
もしくはそのうちの一部のセンサの出力信号に対応する
デジタル信号に関して等間隔となるアドレスを有し、そ
の間隔が2の累乗で与えられる配列を構成している電子
式測定装置の補償方法。
3. The compensation data according to claim 1 or 2, which is preliminarily measured and which shows the characteristic characteristic of the device, has an address which is equidistant with respect to the digital signals corresponding to the output signals of all or some of the sensors. A method of compensating for an electronic measuring device having an array, the spacing of which is given as a power of 2.
【請求項4】請求項1,2または3において、測定時に
得られる各々のセンサの電気信号に対応してメモリ手段
より読み込まれる補償データは、測定点に対して順次近
接したアドレスをn(n>N)個検索してメモリ手段より
デジタル演算手段に読み出す電子式測定装置の補償方
法。
4. The compensation data read according to the electric signal of each sensor obtained at the time of measurement from the memory means according to claim 1, 2 or 3, and n (n) > N) A method for compensating an electronic measuring device which retrieves and reads from the memory means to the digital operation means.
【請求項5】請求項1,2,3または4において、前記
デジタル演算手段は、測定時に得られる各々のセンサの
出力信号に対応するデジタル信号a1,a2,…,a
k,…,aNが配列の各々のアドレス区間(a1i,a
i+1),(a2j,a2j+1),…,(akm,a
m+1),…,(aNz,aNz+1)の中間に与えられる
とき、目的とする真の測定値f(a1,a2,…,a
k,…,aN)を次式 【数1】 に従って演算する電子式測定装置の補償方法。
5. The digital calculation means according to claim 1, 2, 3 or 4, wherein the digital signals a1, a2, ..., A corresponding to the output signal of each sensor obtained at the time of measurement.
k, ..., aN are address sections (a1 i , a
1 i + 1 ), (a2 j , a2 j + 1 ), ..., (ak m , a
k m + 1 ), ..., (aN z , aN z + 1 ) when given in the middle, the true measured value f (a1, a2, ..., a) of interest
k, ..., aN) can be expressed by the following equation: Compensation method for an electronic measuring device that calculates according to.
JP7008678A 1995-01-24 1995-01-24 Method for compensating electronic measuring instrument Pending JPH08201189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7008678A JPH08201189A (en) 1995-01-24 1995-01-24 Method for compensating electronic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008678A JPH08201189A (en) 1995-01-24 1995-01-24 Method for compensating electronic measuring instrument

Publications (1)

Publication Number Publication Date
JPH08201189A true JPH08201189A (en) 1996-08-09

Family

ID=11699596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008678A Pending JPH08201189A (en) 1995-01-24 1995-01-24 Method for compensating electronic measuring instrument

Country Status (1)

Country Link
JP (1) JPH08201189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510711A (en) * 1999-09-24 2003-03-18 ローズマウント インコーポレイテッド Process transmitter using orthogonal polynomial fit
JP2009288244A (en) * 2008-05-30 2009-12-10 General Electric Co <Ge> Sensor processing method
JP2017003505A (en) * 2015-06-15 2017-01-05 日置電機株式会社 Measurement device and interpolation processing program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510711A (en) * 1999-09-24 2003-03-18 ローズマウント インコーポレイテッド Process transmitter using orthogonal polynomial fit
JP4989831B2 (en) * 1999-09-24 2012-08-01 ローズマウント インコーポレイテッド Process transmitter using orthogonal polynomial fitting.
JP2009288244A (en) * 2008-05-30 2009-12-10 General Electric Co <Ge> Sensor processing method
JP2017003505A (en) * 2015-06-15 2017-01-05 日置電機株式会社 Measurement device and interpolation processing program

Similar Documents

Publication Publication Date Title
JP5821972B2 (en) Output value correction method for physical quantity sensor device, output value correction method for physical quantity sensor, physical quantity sensor device, and output value correction device for physical quantity sensor
US4418392A (en) Measuring device
US4873655A (en) Sensor conditioning method and apparatus
US5857777A (en) Smart temperature sensing device
WO1998013677B1 (en) Smart temperature sensing device
CN102099662B (en) Arrangement for linearizing non-linear sensor
CN103162901A (en) Nonlinear calibrating method for multiple temperature points of pressure sensor
US6188971B1 (en) Fast technique for converting temperature readings into values expressed in an engineering unit format
JPH11507136A (en) Calibration method of radiation thermometer
JPH0515212B2 (en)
CN113951859B (en) Intracranial pressure sensor signal conditioning method
WO1996017236A1 (en) A temperature compensation method in pressure sensors
JP2579143B2 (en) Method of digital correction of process variable sensor and process variable transmitter therefor
GB2192992A (en) Force measuring device
RU2384824C1 (en) Pressure measuring device and method for preparation thereof for operation
JPH08201189A (en) Method for compensating electronic measuring instrument
US4507962A (en) Digital barometric altimeter
JP2008014774A (en) Temperature measuring device
JPH08304104A (en) Method for compensating electronic measuring device
US5477471A (en) Method of compensating for power supply variation in a sensor output
US6668236B1 (en) Process for calibrating a sensor for measuring an angle of inclination of a motor vehicle wheel
JP2588391B2 (en) Initial calibration method of gain in digital indicator
JP2013024808A (en) Measuring apparatus and measuring method
Engin et al. Sensors and digital signal conditioning in mechatronic systems
Lyahou et al. A non-iterative, polynomial, 2-dimensional calibration method implemented in a microcontroller