JPH08200982A - Water cooler - Google Patents

Water cooler

Info

Publication number
JPH08200982A
JPH08200982A JP695195A JP695195A JPH08200982A JP H08200982 A JPH08200982 A JP H08200982A JP 695195 A JP695195 A JP 695195A JP 695195 A JP695195 A JP 695195A JP H08200982 A JPH08200982 A JP H08200982A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
tube
transfer tube
water cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP695195A
Other languages
Japanese (ja)
Inventor
Tetsuo Shimoide
哲雄 下出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP695195A priority Critical patent/JPH08200982A/en
Publication of JPH08200982A publication Critical patent/JPH08200982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To improve the refrigerant side heat transfer efficiency by reducing the diameter of a heat transfer tube straight part near a refrigerant inlet side and accelerating the flowing speed of the refrigerant passed at the tube. CONSTITUTION: A U-shaped heat transfer tube is formed of a heat transfer straight part 2 near a refrigerant inlet side and a heat transfer tube straight part 3 having a small outer diameter at the U-shaped part 3 and near a refrigerant outlet side in such a manner that the part 2 is disposed at the position separate from the tube 3 near the outlet side with respect to a shell centerline 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置に関する。FIELD OF THE INVENTION The present invention relates to a refrigeration system.

【0002】[0002]

【従来の技術】特願昭63−19647 号明細書に記載の水冷
却器において、冷媒入口側と冷媒出口側に配列された伝
熱管はシェル中心線に対して線対象であり、両者の冷媒
側伝熱管断面積の総和は同じであり、冷媒入口側に近い
部分の伝熱管内を流れる冷媒は乾き度が小さく、液冷媒
の混合比が多くて比体積が小さくなり、この部分では冷
媒流速が遅くなり、冷媒側熱伝達率が低下する。
2. Description of the Related Art In the water cooler described in Japanese Patent Application No. 63-19647, the heat transfer tubes arranged on the refrigerant inlet side and the refrigerant outlet side are line-symmetrical to the shell center line. The total cross-sectional area of the side heat transfer tubes is the same, the dryness of the refrigerant flowing in the heat transfer tubes near the refrigerant inlet side is low, the mixing ratio of the liquid refrigerant is large, and the specific volume is small. Becomes slower, and the heat transfer coefficient on the refrigerant side decreases.

【0003】[0003]

【発明が解決しようとする課題】従来の片管板固定方式
のU字形伝熱管では冷媒入口側に近い部分の直管部と冷
媒出口側に近い部分の直管部の冷媒側伝熱管内総面積が
同じになり、冷媒入口側に近い部分の直管部内では冷媒
は乾き度が小さく、液冷媒の混合比も多く、冷媒側熱伝
達率が最も良い領域であるにもかかわらず、通路断面積
が冷媒出口側と直じであるため、出口側と比較すると冷
媒流速が必要以上に低下して、冷媒側熱伝達率の向上が
図れない問題点があった。本発明は冷媒入口側に近い部
分の直管部での冷媒側断面積の総和を減少させて、冷媒
流速を速くして、冷媒側熱伝達率の向上を図る。また冷
媒側断面積の減少は水側断面積の増大につながるので、
水側断面積の増大も防止する必要が出てくる。このため
伝熱管群の配列の中心線をシェルの中心線から遍心させ
て水側断面積の増大を防止し、水側熱伝達率を維持する
ことで水冷却器の熱通過率を向上させることが可能とな
る。
In the conventional U-shaped heat transfer tube of the single tube plate fixing system, the straight pipe portion near the refrigerant inlet side and the straight pipe portion near the refrigerant outlet side are in the refrigerant side heat transfer tube. Even though the area is the same, the dryness of the refrigerant is small in the straight pipe part near the refrigerant inlet side, the mixing ratio of liquid refrigerant is large, and even though the heat transfer coefficient on the refrigerant side is the best region, Since the area is directly on the refrigerant outlet side, the refrigerant flow velocity is unnecessarily reduced as compared with the outlet side, and there is a problem that the heat transfer coefficient on the refrigerant side cannot be improved. According to the present invention, the sum of the refrigerant side cross-sectional areas in the straight pipe portion near the refrigerant inlet side is reduced, the refrigerant flow velocity is increased, and the refrigerant side heat transfer coefficient is improved. In addition, the decrease in the cross-sectional area on the refrigerant side leads to an increase in the cross-sectional area on the water side.
It will be necessary to prevent an increase in the cross-sectional area on the water side. Therefore, the centerline of the array of heat transfer tubes is eccentric from the centerline of the shell to prevent an increase in the water-side cross-sectional area and maintain the water-side heat transfer coefficient, thereby improving the heat transfer coefficient of the water cooler. It becomes possible.

【0004】[0004]

【課題を解決するための手段】片管板固定方式のU字形
伝熱管において、冷媒入口側に近い部分の伝熱管の管断
面積を減少させるために、冷媒出口側に近い部分の伝熱
管の断面積と比較して小さくなるように、伝熱管直管部
及びU字部のみの伝熱管の管直径を縮小させてる。また
伝熱管外径を減少させると水側断面積が増大し、冷水流
速が低下するので、水側熱伝達率の低下をまねく。そこ
で冷水流速低下防止のために、冷媒入口側に近い部分の
伝熱管の直管部群がなす配列の中心線と冷媒出口側に近
い部分の伝熱管の直管部群がなす配列の中心線とではシ
ェルがなす中心線に対して、冷媒入口側に近い部分の伝
熱管の直管部群がなす配列の中心線をより離した位置に
配列する。これにより水側断面積を減少させて、冷水流
速を維持し、水側熱伝達率を維持する。これで冷媒側熱
伝達率の向上分が水冷却器の熱通過率の向上につなが
る。
In a U-shaped heat transfer tube of a single tube plate fixing type, in order to reduce the tube cross-sectional area of the heat transfer tube near the refrigerant inlet side, the heat transfer tube near the refrigerant outlet side is reduced. The tube diameter of the heat transfer tube having only the straight tube portion and the U-shaped portion is reduced so as to be smaller than the cross-sectional area. Further, when the outer diameter of the heat transfer tube is reduced, the water-side cross-sectional area is increased and the cold water flow velocity is reduced, so that the water-side heat transfer coefficient is reduced. Therefore, in order to prevent a decrease in the flow rate of cold water, the center line of the array of straight pipe sections of the heat transfer tubes near the refrigerant inlet side and the center line of the array of straight tube sections of the heat transfer tube near the refrigerant outlet side And, the center line of the straight tube portion group of the heat transfer tubes near the refrigerant inlet side is arranged farther from the center line formed by the shell. This reduces the water side cross-sectional area, maintains the cold water flow rate, and maintains the water side heat transfer coefficient. As a result, the increase in the heat transfer coefficient on the refrigerant side leads to an improvement in the heat transfer coefficient of the water cooler.

【0005】[0005]

【作用】U字形伝熱管において、冷媒入口側に近い部分
の伝熱管の直管部及びU字部が、冷媒出口側に近い部分
の直管部より伝熱管外径が小さくなった分だけ、冷媒側
断面積が減少し冷媒流速が速くなり、乾き度が小さく、
液冷媒の混合比が大きく、最も冷媒側熱伝達率が良い領
域において、冷媒流速を速くすることで、冷媒側熱伝達
率の向上が図れる。単に冷媒側断面積を減小させると逆
に水側断面積の増大となり、効果が打消されることにな
る。そこで、U字形伝熱管群がなす中心線をシェルがな
す中心線に対して、冷媒入口側に近い部分の伝熱管の直
管部群がなす中心線をより離れた位置に配置してシェル
の内側と伝熱管外径群とのすき間を伝熱管外径が全域に
わたって同じ、かつ、シェル中心線に対して線対象に伝
熱管を配置した場合と同一すき間として冷水流速の低下
を防止して、水側熱伝達率の低下も防止出来る。これに
より冷媒側熱伝達率の上昇分だけが、水冷却器の熱通過
率の向上となる。
In the U-shaped heat transfer tube, the straight tube portion and the U-shaped portion of the heat transfer tube near the refrigerant inlet side have a smaller outer diameter of the heat transfer tube than the straight tube portion near the refrigerant outlet side. The cross-sectional area on the refrigerant side is reduced, the flow velocity of the refrigerant is increased, the dryness is small,
In the region where the mixing ratio of the liquid refrigerant is large and the heat transfer coefficient on the refrigerant side is the best, the refrigerant flow speed can be increased to improve the heat transfer coefficient on the refrigerant side. If the cross-sectional area on the refrigerant side is simply reduced, on the contrary, the cross-sectional area on the water side increases, and the effect is canceled out. Therefore, the center line formed by the group of U-shaped heat transfer tubes is arranged farther from the center line formed by the shell by arranging the center line formed by the group of straight tube portions of the heat transfer tube near the refrigerant inlet side. The gap between the inside and the outer diameter group of the heat transfer tube is the same over the entire area of the heat transfer tube, and the same clearance as when the heat transfer tube is arranged in line symmetry with respect to the shell center line to prevent a decrease in the flow rate of cold water, It is also possible to prevent a decrease in heat transfer coefficient on the water side. As a result, only the increase in the heat transfer coefficient on the refrigerant side improves the heat transfer coefficient of the water cooler.

【0006】[0006]

【実施例】以下、本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.

【0007】図1は、本発明を実施する水冷却器の説明
図である。
FIG. 1 is an illustration of a water cooler embodying the present invention.

【0008】図2は、本発明のU字形伝熱管の側面図で
ある。
FIG. 2 is a side view of the U-shaped heat transfer tube of the present invention.

【0009】図3は、本発明を実施する水冷却器の断面
図である。
FIG. 3 is a sectional view of a water cooler embodying the present invention.

【0010】冷媒入口部1に流込した低温・低圧の蒸発
液冷媒はU字形伝熱管の入口側の伝熱管外径が小さくな
った伝熱管2の内部を通過する。この部分は伝熱管群全
てが小外径となっているので、乾き度が小さく、液冷媒
の混合比が多く、冷媒の比体積が小さくても冷媒流速が
上昇しているので、伝熱管領域で最も冷媒熱伝達率の良
い部分での熱交換量が増加している。この部分での熱交
換した冷媒は乾き度を増し比体積が大きくなり、U字部
3を通過後、出口側の伝熱管の外径が大きくなった伝熱
管4の内部を通過する。このとき冷水側は、U字形伝熱
管が図3に示すように、シェル中心線5から冷媒入口側
の伝熱管外径が小さくなった伝熱管2の管群がなす中心
線6の距離aはシェル中心線5から冷媒出口側の伝熱管
4の管群がなす中心線7の距離bより大きく、管群がな
す中心線のシェル寸法Cとその管群外径の総和寸法を除
いたすき間断面積dとシェル中心から距離bに配置され
た管群がなす中心線のシェル寸法eとその管群外径の総
和寸法を除いたすき間断面積fを同じになるように配置
しているので、冷水流速は上記すき間断面積dとf部で
同一流速となり水側熱伝熱率の低下はない。これにより
冷媒側熱伝達gを向上させ、水側熱伝達率hを低下させ
ることなく、これらの逆数の和を逆分数化した熱通過率
i(1/i=1/g+1/h)を向上させることが可能
となる。なお距離a≒距離b+25mmがおおむね最適寸
法となる。
The low-temperature, low-pressure evaporative liquid refrigerant that has flowed into the refrigerant inlet portion 1 passes through the inside of the heat transfer tube 2 on the inlet side of the U-shaped heat transfer tube whose outer diameter is reduced. Since the entire outer diameter of the heat transfer tube group is small in this part, the dryness is low, the mixing ratio of the liquid refrigerant is large, and the refrigerant flow velocity increases even if the specific volume of the refrigerant is small. The amount of heat exchange in the part with the highest refrigerant heat transfer rate is increasing. The heat-exchanged refrigerant in this portion has a higher degree of dryness and a larger specific volume, and after passing through the U-shaped portion 3, passes through the inside of the heat transfer tube 4 in which the outer diameter of the heat transfer tube on the outlet side is increased. At this time, on the chilled water side, as shown in FIG. 3, the U-shaped heat transfer tube has a distance a of the center line 6 formed by the tube group of the heat transfer tubes 2 whose outer diameter on the refrigerant inlet side is reduced from the shell center line 5 The gap is larger than the distance b from the shell center line 5 to the center line 7 formed by the tube group of the heat transfer tubes 4 on the refrigerant outlet side, and the shell dimension C of the center line formed by the tube groups and the total dimension of the outer diameters of the tube groups are excluded. Since the shell dimension e of the center line formed by the tube group arranged at the distance b from the shell center and the area d and the clearance cross-sectional area f excluding the total dimension of the tube group outer diameter are the same, The chilled water flow velocity is the same in the gap cross-sectional areas d and f, and the water-side heat transfer coefficient does not decrease. As a result, the heat transfer rate g on the refrigerant side is improved, and the heat transfer rate i (1 / i = 1 / g + 1 / h) obtained by reciprocating the sum of these reciprocals is improved without lowering the water side heat transfer rate h. It becomes possible. The distance a≈distance b + 25 mm is generally the optimum size.

【0011】[0011]

【発明の効果】本発明によれば、水冷却器の冷媒入口側
に近くの伝熱管の直管部は全領域中最も熱交換の良い所
であり、この部分で水側熱伝達率を低下させることな
く、冷媒側熱伝達率を向上させて、水冷却器の熱通過率
を向上させる。
According to the present invention, the straight pipe portion of the heat transfer pipe near the refrigerant inlet side of the water cooler has the best heat exchange in the whole area, and the water side heat transfer coefficient is lowered in this portion. Without doing so, the heat transfer coefficient on the refrigerant side is improved and the heat transfer coefficient of the water cooler is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する水冷却器の断面図。FIG. 1 is a sectional view of a water cooler embodying the present invention.

【図2】本発明のU字形伝熱管の側面図。FIG. 2 is a side view of the U-shaped heat transfer tube of the present invention.

【図3】本発明を実施する水冷却器の断面図。FIG. 3 is a sectional view of a water cooler embodying the present invention.

【符号の説明】[Explanation of symbols]

1…冷媒入口部、2,4…伝熱管部、3…U字部、5…
シェル中心線、6,7…中心線、8…冷却出口部。
1 ... Refrigerant inlet part, 2, 4 ... Heat transfer tube part, 3 ... U-shaped part, 5 ...
Shell center line, 6, 7 ... Center line, 8 ... Cooling outlet part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,凝縮器,膨張弁,水冷却器を含む
冷凍装置の水冷却器において、片管板固定方式のU字形
伝熱管は、冷媒入口側から流入する乾き度の小さい液冷
媒の混合比が多くて、比体積が小さいために、冷媒流速
が小さくなる冷媒流路の部分の伝熱管直管部及びU字部
のみを液冷媒が冷水と熱交換してガス化することで比体
積が大きく冷媒流速が速くなる冷媒出口側に近い冷媒流
路となる伝熱管直管部と断面積比較で小さくした形状と
したことを特徴とする水冷却器。
1. In a water cooler of a refrigeration system including a compressor, a condenser, an expansion valve and a water cooler, a U-shaped heat transfer tube of a single tube plate fixing type is a liquid having a low degree of dryness which flows in from a refrigerant inlet side. Since the mixture ratio of the refrigerant is large and the specific volume is small, the liquid refrigerant heat-exchanges with the cold water to gasify only the heat transfer tube straight pipe part and the U-shaped part in the part of the refrigerant flow path where the refrigerant flow velocity becomes small. A water cooler characterized by a smaller cross-sectional area compared to a straight tube portion of a heat transfer tube which is a refrigerant passage near the refrigerant outlet side where the specific volume is large and the refrigerant flow velocity is fast.
JP695195A 1995-01-20 1995-01-20 Water cooler Pending JPH08200982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP695195A JPH08200982A (en) 1995-01-20 1995-01-20 Water cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP695195A JPH08200982A (en) 1995-01-20 1995-01-20 Water cooler

Publications (1)

Publication Number Publication Date
JPH08200982A true JPH08200982A (en) 1996-08-09

Family

ID=11652544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP695195A Pending JPH08200982A (en) 1995-01-20 1995-01-20 Water cooler

Country Status (1)

Country Link
JP (1) JPH08200982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735077A (en) * 2012-07-24 2012-10-17 天津商业大学 Efficient shell and tube heat exchanger with changeable inner diameter of heat exchange pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735077A (en) * 2012-07-24 2012-10-17 天津商业大学 Efficient shell and tube heat exchanger with changeable inner diameter of heat exchange pipe

Similar Documents

Publication Publication Date Title
JPH11337293A (en) Evaporator
JPS58217195A (en) Heat exchanger
US20220243989A1 (en) Heat exchanger and air conditioning unit with multiple refrigeration systems
JPH1113551A (en) Egr cooler
JPH08200982A (en) Water cooler
JPS6214751B2 (en)
JPH0988730A (en) Egr gas cooling system
JPH11193992A (en) Multitubular egr gas cooling device
KR20040075717A (en) Heat exchanger
JPH1113549A (en) Egr cooler
US5353866A (en) Heat transfer fins and heat exchanger
JPH027415Y2 (en)
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JPH0642885Y2 (en) Refrigerator Evaporator
JP2875373B2 (en) Water cooler
JP2001304720A (en) Heat exchanger
JPH0410530Y2 (en)
JPH0684876B2 (en) Heat exchanger with fins
US20190234276A1 (en) Exhaust heat recovery device
JPH06147532A (en) Air conditioner
KR20070064940A (en) Heat exchanger for intercooler of automobile
KR19990074845A (en) Parallel flow heat exchanger
JPH1089872A (en) Finned tube heat exchanger
JP3603174B2 (en) Freezer refrigerator
JP3372170B2 (en) refrigerator