JPH0820031B2 - Decompression insulation board - Google Patents

Decompression insulation board

Info

Publication number
JPH0820031B2
JPH0820031B2 JP60032137A JP3213785A JPH0820031B2 JP H0820031 B2 JPH0820031 B2 JP H0820031B2 JP 60032137 A JP60032137 A JP 60032137A JP 3213785 A JP3213785 A JP 3213785A JP H0820031 B2 JPH0820031 B2 JP H0820031B2
Authority
JP
Japan
Prior art keywords
powder
particle size
inner bag
less
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60032137A
Other languages
Japanese (ja)
Other versions
JPS61192993A (en
Inventor
博志 辻田
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP60032137A priority Critical patent/JPH0820031B2/en
Publication of JPS61192993A publication Critical patent/JPS61192993A/en
Publication of JPH0820031B2 publication Critical patent/JPH0820031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫,冷凍庫,冷凍ショーケース等の断
熱箱体断熱壁に用いる減圧断熱板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure reducing heat insulating plate used for a heat insulating box heat insulating wall of a refrigerator, a freezer, a freezer showcase and the like.

従来の技術 第3図は従来の減圧断熱板を示しており、以下にこの
従来例の構成について説明する。
2. Description of the Related Art FIG. 3 shows a conventional pressure-reducing heat insulating plate. The structure of this conventional example will be described below.

図において、1は減圧断熱板であり、2は紙等から成
る通気性を有する内袋、3は合成シリカ微粉末等の粉末
である。4はプラスチックス等のラミネートフィルムか
ら成る外袋で、この外袋4内に粉末3を充填した内袋2
を挿入して内部を0.1Torr以下に減圧した後、外袋4の
開口部を熱融着により封止して形成している。
In the figure, 1 is a reduced pressure heat insulating plate, 2 is an air-permeable inner bag made of paper or the like, and 3 is powder such as synthetic silica fine powder. 4 is an outer bag made of a laminated film of plastics or the like, and an inner bag 2 in which powder 3 is filled in the outer bag 2
Is inserted and the inside pressure is reduced to 0.1 Torr or less, and then the opening of the outer bag 4 is sealed by heat fusion.

以上のように構成された減圧断熱板1の熱伝導率は、
0.0050〜0.0070kcal/mh℃であり、冷蔵庫等の断熱材と
して一般的な硬質発泡ポリウレタンの2倍以上の断熱性
能を有している。また減圧断熱板1における空気による
熱伝導率は以下の式で示される。
The thermal conductivity of the reduced pressure heat insulating plate 1 configured as described above is
It is 0.0050 to 0.0070 kcal / mh ° C, and has a heat insulation performance that is more than twice as high as that of hard polyurethane foam that is generally used as a heat insulation material for refrigerators and the like. Further, the thermal conductivity of air in the depressurized heat insulating plate 1 is expressed by the following equation.

λg′:減圧断熱板中の空気の熱伝導率(kcal/mh℃) λg(1atm):1気圧での静止した空気の熱伝導率(kcal
/mh℃) d:粉末粒子間の距離(m) L:減圧断熱板中の圧力下における空気の平均自由行程
(m) 従って、減圧断熱板1に用いる粉末3の粒径はできる
だけ小さいほうが、空気による熱伝達を小さくすること
ができる。そのため、0.1Torr程度の圧力で空気による
熱伝導がほぼ無視できるぐらいに小さくなるように、粉
末3の平均粒径は10μm以下のものが用いられていた。
λg ': Thermal conductivity of air in a vacuum insulation plate (kcal / mh ℃) λg (1atm): Thermal conductivity of static air at 1 atm (kcal)
/ mh ° C) d: Distance between powder particles (m) L: Average free path of air under pressure in the reduced pressure insulating plate (m) Therefore, the smaller the particle size of the powder 3 used for the reduced pressure insulating plate 1 is, Heat transfer by air can be reduced. Therefore, the powder 3 having an average particle size of 10 μm or less is used so that the heat conduction by air becomes almost negligible at a pressure of about 0.1 Torr.

発明が解決しようとする問題点 しかしながら、上記のような構成では、粉末3の粒径
が小さいので、粉末3の粒子間の空隙が狭く、外袋4内
部を減圧する際に非常に大きな排気抵抗となる。そのた
め、外袋4内部を減圧するのに長時間を要するという問
題があった。また、減圧時において粉末3を充填した内
袋2の内部は排気抵抗が大きく圧力低下が内袋2の外側
に比べ著しく遅いため、内袋2の内外の圧力差が大きく
なり、しばしば内袋2が破袋するという事故も生じた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the above-mentioned configuration, since the particle size of the powder 3 is small, the voids between the particles of the powder 3 are narrow, and a very large exhaust resistance when decompressing the inside of the outer bag 4. Becomes Therefore, there is a problem that it takes a long time to depressurize the inside of the outer bag 4. Further, when the pressure is reduced, the inside of the inner bag 2 filled with the powder 3 has a large exhaust resistance and the pressure drop is much slower than that of the outside of the inner bag 2. Therefore, the pressure difference between the inside and the outside of the inner bag 2 becomes large, and often the inner bag 2 There was also an accident that the bag was broken.

そこで本発明は、粉末充填層内の排気抵抗を小さくし
て、減圧時間の短縮と内袋の破袋の防止ができるように
するものである。
Therefore, the present invention reduces the exhaust resistance in the powder-packed layer to shorten the decompression time and prevent the inner bag from breaking.

問題点を解決するための手段 上記問題点を解決するために本発明の減圧断熱板は粉
末材料として、粒の最小の単位である1次粒子径が500
Å以下で、かつ集合体である2次凝縮粒子径が20〜80μ
mの合成シリカ粉末を用いるものである。
Means for Solving the Problems In order to solve the above problems, the pressure-reducing heat insulating plate of the present invention is used as a powder material and has a primary particle size of 500, which is the minimum unit of particles.
Å or less, and the secondary condensed particle diameter of the aggregate is 20-80μ
m synthetic silica powder is used.

作用 上記の技術的手段による作用は次のようになる。Action The action of the above technical means is as follows.

すなわち、本発明では合成シリカ粉末の2次凝集粒子
径が20〜80μmと比較的大きいため、粉末の粒子間の空
隙が大きく、減圧の際の排気抵抗が小さく減圧時間を短
縮できる。また、粉末充填層の排気抵抗が小さいので、
減圧の際に内袋の内部の圧力低下は十分に速く、内袋内
外の圧力差は大きくならず、内袋の破袋は生じないので
ある。
That is, in the present invention, since the secondary agglomerated particle diameter of the synthetic silica powder is relatively large, 20 to 80 μm, the voids between the particles of the powder are large, the exhaust resistance at the time of depressurization is small, and the depressurization time can be shortened. Also, since the exhaust resistance of the powder packed bed is small,
At the time of depressurization, the pressure drop inside the inner bag is sufficiently fast, the pressure difference inside and outside the inner bag does not become large, and the inner bag does not break.

また、減圧終了し外袋の開口部を封止したあとは、粉
末は密に圧縮されるので、粉末の粒子間の空隙は小さく
なる。従って、減圧断熱板における気体の熱伝導率に関
係する粒子間距離は1次粒子の間の距離となる。1次粒
子径は500Å以下であるので、その粒子間距離も数100Å
であり、1式で示される空気による熱伝導率は極めて小
さく、非常に優れた断熱性能が得られるのである。
Further, after the pressure reduction is completed and the opening of the outer bag is sealed, the powder is densely compressed, so that the voids between the particles of the powder are reduced. Therefore, the interparticle distance related to the thermal conductivity of gas in the reduced pressure heat insulating plate is the distance between the primary particles. Since the primary particle size is less than 500Å, the distance between particles is also several 100Å
Therefore, the thermal conductivity of air represented by Formula 1 is extremely small, and a very excellent heat insulating performance can be obtained.

実 施 例 以下本発明の一実施例の減圧断熱板について、図面を
参照しながら説明する。
Example A depressurized heat insulating plate according to an example of the present invention will be described below with reference to the drawings.

第1図において、5は減圧断熱板であり、6は紙等か
らなる通気性を有する内袋、7は粒の最小の単位である
1次粒子径が500Å以下で、かつ集合体である2次凝縮
粒子径が20〜80μmの顆粒状の合成シリカの粉末であ
る。8はプラスチックスラミネートフィルムから成る非
通気性の外袋で、この外袋8内に粉末7を充填した内袋
6を挿入して内部を0.1Torr以下に減圧した後、外袋8
の開口部を熱融着により封止して形成している。
In FIG. 1, 5 is a depressurized heat insulating plate, 6 is an air-permeable inner bag made of paper or the like, 7 is an aggregate having a primary particle size of 500 Å or less, which is the smallest unit of particles, 2 It is a granular synthetic silica powder having a secondary condensed particle diameter of 20 to 80 μm. 8 is an air-impermeable outer bag made of a plastic slaminate film. The inner bag 6 filled with the powder 7 is inserted into the outer bag 8 to reduce the pressure to 0.1 Torr or less, and then the outer bag 8
The opening is formed by sealing by heat fusion.

以上のように構成された減圧断熱板5の作用につい
て、以下第2図を用いて説明する。
The operation of the reduced pressure heat insulating plate 5 configured as described above will be described below with reference to FIG.

第2図は種々の2次粒子径の合成シリカ(いずれも1
次粒子径は500Å以下)を粉末7として用いた減圧断熱
板5の熱伝導率と、大気圧から0.1Torrまで減圧するの
に要する時間とを示している。
Fig. 2 shows synthetic silica with various secondary particle sizes (1 for each).
The secondary particle size is 500 Å or less) and the thermal conductivity of the reduced pressure heat insulating plate 5 using the powder 7 and the time required to reduce the pressure from atmospheric pressure to 0.1 Torr are shown.

図に示すように平均粒径20μm以上で減圧時間は2分
以内であり、内袋の破袋は生じなかった。熱伝導率につ
いては平均粒径80μm以下で0.0060kcal/mh℃以下が得
られる。
As shown in the figure, the average particle size was 20 μm or more, the depressurization time was within 2 minutes, and the inner bag did not break. Regarding the thermal conductivity, 0.0060 kcal / mh ° C or less can be obtained when the average particle size is 80 μm or less.

すなわち、粉末7として平均粒径20μm以上の合成シ
リカを用いた場合は粉末7の粒子間の空隙が大きく、排
気抵抗が小さいので減圧時間は短縮される。また、平均
粒径80μm以下の合成シリカを用いた場合は減圧終了し
外袋8の開口部を封止したあとは、粉末7が密に圧縮さ
れることにより粉末7の粒子間の空隙は非常に小さいも
のとなる。そのため、減圧断熱板5における気体の熱伝
導率に関係する粒子間距離は1次粒子の間の距離とな
る。1次粒子径は500Å以下であるので、その粒子間距
離も数100Åであり、1式で示される空気による熱伝導
率は極めて小さく、減圧断熱板の熱伝導率は0.0060kcal
/mh℃以下となる。
That is, when synthetic silica having an average particle size of 20 μm or more is used as the powder 7, the decompression time is shortened because the voids between the particles of the powder 7 are large and the exhaust resistance is small. Further, when synthetic silica having an average particle size of 80 μm or less is used, after the pressure reduction is completed and the opening of the outer bag 8 is sealed, the powder 7 is densely compressed, so that the voids between the particles of the powder 7 are very small. It will be small. Therefore, the interparticle distance related to the thermal conductivity of gas in the reduced pressure heat insulating plate 5 is the distance between the primary particles. Since the primary particle size is less than 500Å, the distance between particles is also several 100Å, the thermal conductivity due to air shown in equation 1 is extremely small, and the thermal conductivity of the decompression insulation plate is 0.0060 kcal.
/ mh ℃ or less.

以上述べたように1次粒径が500Å以下、2次凝集粒
子径が20〜80μmの合成シリカを粉末7として用いるこ
とにより、熱伝導率を低く抑えながら減圧時間を短縮す
ることができ、内袋の破袋も防止することができる。
As described above, by using the synthetic silica having the primary particle diameter of 500 Å or less and the secondary agglomerated particle diameter of 20 to 80 μm as the powder 7, the decompression time can be shortened while suppressing the thermal conductivity to be low. It is possible to prevent the bag from breaking.

また、従来の平均粒10μm以下の粉末に比べて発塵は
非常に少なく抑えられるので、減圧操作以外の作業性及
び、作業環境が改善できる。
In addition, dust generation can be suppressed to be much smaller than that of the conventional powder having an average particle size of 10 μm or less, so that workability other than depressurization and work environment can be improved.

なお、本実施例においては粉末7は顆粒状の合成シリ
カを用いたが、1次粒径が500Å以下、2次凝集粒子径
が20〜80μmであれば、より大きな粒径の顆粒状合成シ
リカを粗粉砕した合成シリカを粉末7として用いても同
様な効果が得られる。
In this example, the powder 7 was made of granular synthetic silica, but if the primary particle size is 500Å or less and the secondary agglomerated particle size is 20 to 80 μm, the granular synthetic silica having a larger particle size is used. The same effect can be obtained by using, as the powder 7, synthetic silica obtained by roughly pulverizing the.

発明の効果 以上のように本発明は、粉末として1次粒子径が500
Å以下で、かつ2次凝集粒子径が20〜80μmの合成シリ
カを用いたものであるので以下のような効果が得られ
る。
EFFECTS OF THE INVENTION As described above, the present invention has a primary particle size of 500 as powder.
Since the synthetic silica having a secondary agglomerated particle diameter of 20 to 80 μm is used, the following effects can be obtained.

(a) 1次粒子径が500Å以下の粉末なので、1次粒
子の間の空隙が狭く、気体による熱伝導をほぼ無くする
ことができるので、非常に優れた断熱性能が得られる。
(A) Since the powder has a primary particle size of 500 Å or less, the voids between the primary particles are narrow, and heat conduction by gas can be almost eliminated, so that a very excellent heat insulating performance can be obtained.

(b) 2次凝集粒子径が20〜80μmと大きいので、減
圧操作時の排気抵抗が小さく、減圧時間が短縮でき、工
数の低減,生産性の向上ができる。
(B) Since the secondary agglomerated particle diameter is as large as 20 to 80 μm, the exhaust resistance at the time of depressurizing operation is small, the depressurizing time can be shortened, the man-hours can be reduced, and the productivity can be improved.

(c) 上記のように排気抵抗が小さいので、減圧操作
時に粉末を充填した通気性のある内袋の内外の圧力差が
大きくならず、内袋の破袋は起こらない。
(C) Since the exhaust resistance is small as described above, the pressure difference between the inside and the outside of the breathable inner bag filled with powder does not become large during the depressurization operation, and the inner bag does not break.

(d) 粉末の2次凝集粒子径が20〜80μmと大きいの
で発塵が少なく、減圧操作以外の作業性及び、作業環境
が改善できる。
(D) Since the secondary agglomerated particle size of the powder is as large as 20 to 80 μm, less dust is generated, and workability other than depressurization operation and work environment can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における減圧断熱板の断面
図、第2図は第1図の減圧断熱板において種々の2次凝
集粒子径の粉末を用いたときの熱伝導率と減圧時間を示
すグラフ、第3図は従来の減圧断熱材の断面図である。 5……減圧断熱板、6……内袋、7……粉末、8……外
袋。
FIG. 1 is a cross-sectional view of a reduced pressure heat insulating plate in one embodiment of the present invention, and FIG. 2 is a thermal conductivity and a reduced pressure time when powders having various secondary agglomerated particle sizes are used in the reduced pressure heat insulating plate of FIG. FIG. 3 is a cross-sectional view of a conventional vacuum insulation material. 5 ... decompression insulation board, 6 ... inner bag, 7 ... powder, 8 ... outer bag.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】通気性を有する内袋と、前記内袋に充填さ
れた合成シリカの粉末と、前記粉末を充填した内袋を収
容し、かつ減圧するプラスチックスラミネートフィルム
等よりなる非通気性の外袋とで形成され、前記合成シリ
カの粉末を粒の最小の単位である1次粒子径が500Å以
下で、かつ集合体である2次凝縮粒子径が20〜80μmと
したことを特徴とする減圧断熱板。
1. A non-breathable inner bag having air permeability, a powder of synthetic silica filled in the inner bag, and a plastic slaminate film for containing and depressurizing the inner bag filled with the powder. Characterized in that the synthetic silica powder has a primary particle size of 500 Å or less, which is the smallest unit of particles, and a secondary condensed particle size of 20 to 80 μm, which is an aggregate. Reduced pressure insulation board.
JP60032137A 1985-02-20 1985-02-20 Decompression insulation board Expired - Lifetime JPH0820031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032137A JPH0820031B2 (en) 1985-02-20 1985-02-20 Decompression insulation board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032137A JPH0820031B2 (en) 1985-02-20 1985-02-20 Decompression insulation board

Publications (2)

Publication Number Publication Date
JPS61192993A JPS61192993A (en) 1986-08-27
JPH0820031B2 true JPH0820031B2 (en) 1996-03-04

Family

ID=12350504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032137A Expired - Lifetime JPH0820031B2 (en) 1985-02-20 1985-02-20 Decompression insulation board

Country Status (1)

Country Link
JP (1) JPH0820031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316816A (en) * 1989-05-10 1994-05-31 Degussa Aktiengesellschaft Form body for heat insulation and vacuum insulation panel with asymmetric design
JP2892484B2 (en) * 1990-10-24 1999-05-17 シャープ株式会社 Outer shell integrated vacuum heat insulating material and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127289U (en) * 1982-02-23 1983-08-29 松下冷機株式会社 vacuum insulation

Also Published As

Publication number Publication date
JPS61192993A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
US4159359A (en) Insulating material with low thermal conductivity, formed of a compacted granular structure
US4636415A (en) Precipitated silica insulation
JP3212309B2 (en) High insulation panel
US4594279A (en) Heat insulator
JPS61119895A (en) Vacuum heat-insulating unit and manufacture thereof
JPH0820031B2 (en) Decompression insulation board
US5399397A (en) Calcium silicate insulation structure
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JP2008215492A (en) Vacuum heat insulation material
JPS59137777A (en) Heat-insulator pack
JP3590758B2 (en) Notebook computer
JPS6136595A (en) Vacuum heat-insulating material
JPH06281089A (en) Vacuum heat-insulating material
JPH0678654A (en) Cold insulation box
JP2989447B2 (en) Insulated container and its manufacturing method
JPS608399B2 (en) insulation board
JPS63279083A (en) Vacuum heat-insulating material
JPH0233917B2 (en) DANNETSUBAN
JPH07158792A (en) Manufacture of vacuum heat insulated structure
JPS63135694A (en) Heat insulator
JPS6262089A (en) Heat-insulating plate
JPS6196287A (en) Heat-insulating plate
JPH11325386A (en) Heat insulating material and manufacture thereof
JPS60126568A (en) Heat insulator pack
JPS5917095A (en) Heat-insulating structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term