JPH08200202A - Windmill wing of wind power generator and its manufacture - Google Patents
Windmill wing of wind power generator and its manufactureInfo
- Publication number
- JPH08200202A JPH08200202A JP7032816A JP3281695A JPH08200202A JP H08200202 A JPH08200202 A JP H08200202A JP 7032816 A JP7032816 A JP 7032816A JP 3281695 A JP3281695 A JP 3281695A JP H08200202 A JPH08200202 A JP H08200202A
- Authority
- JP
- Japan
- Prior art keywords
- wind turbine
- main girder
- main beam
- turbine blade
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Wind Motors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は風力発電装置の風車翼及
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind turbine blade of a wind turbine generator and a method of manufacturing the same.
【0002】[0002]
【従来の技術】図4は現在商用化し、量産されている風
力発電装置の風車翼を示すもので、主たる強度部材であ
る主桁1と翼型を形成する外皮2で構成されている。2. Description of the Related Art FIG. 4 shows a wind turbine blade of a wind power generator which is currently commercialized and mass-produced, and is composed of a main girder 1 which is a main strength member and an outer skin 2 which forms an airfoil.
【0003】主桁1は凸型であるマンドレル上にガラス
繊維強化プラスチック(以下FRPと云う)を積層し、
樹脂の硬化後にマンドレルを引き抜いて製作される。The main girder 1 is formed by laminating a glass fiber reinforced plastic (hereinafter referred to as FRP) on a convex mandrel.
It is manufactured by pulling out the mandrel after curing the resin.
【0004】この製法では、型に接する主桁の内面3は
平滑で寸法精度が高くなるが、外面4は平滑ではなく寸
法精度が低くなる欠点があった。そのため、主桁と外皮
を接着する際には、両者の隙間を十分に取って接着層5
を厚くし、ここで主桁の寸法誤差を吸収する必要があっ
た。このような主桁外形の低い寸法精度が風力発電装置
の翼を高強度化する上で障害となっていた。In this manufacturing method, the inner surface 3 of the main girder in contact with the mold is smooth and the dimensional accuracy is high, but the outer surface 4 is not smooth and the dimensional accuracy is low. Therefore, when adhering the main girder and the outer skin, the gap between the main girder and the outer skin should be sufficiently removed.
Had to be thickened to absorb the dimensional error of the main girder. Such low dimensional accuracy of the outer shape of the main girder has been an obstacle to increasing the strength of the blade of the wind turbine generator.
【0005】[0005]
【発明が解決しようとする課題】翼の寸法を変えずに強
度を高めるためには、翼内部の主桁の外径をできるだけ
大きくすればよい。そのためには、主桁外径の寸法精度
を高めてできる限り接着層の厚さを少なくする必要があ
る。In order to increase the strength without changing the size of the blade, the outer diameter of the main girder inside the blade should be made as large as possible. For that purpose, it is necessary to improve the dimensional accuracy of the outer diameter of the main girder and reduce the thickness of the adhesive layer as much as possible.
【0006】したがって、主桁を製作する際に、凸型で
あるマンドレルを使用する代わりに凹型を用いれば、外
径の寸法精度が向上し、強度を高めることができる。Therefore, when the main girder is manufactured, if the concave mandrel is used instead of the convex mandrel, the dimensional accuracy of the outer diameter is improved and the strength can be increased.
【0007】しかしながら、楕円型断面を持つ凹型の内
面全周にFRPを積層し、一体として成形した主桁を得
るのは不可能であったため、従来凹型を用いることがき
なかった。However, since it was impossible to obtain a main girder by integrally forming FRP on the entire inner circumference of a concave mold having an elliptical cross section, the conventional concave mold could not be used.
【0008】本発明はこのような問題点を解消するた
め、主桁を翼の翼弦に垂直な方向に2分割にして別個に
製作すると共に、それぞれの分割主桁は凹型を用いて製
作するため、外形の寸法精度は凹型の寸法精度にのみ依
存する。したがって、従来の構造よりもはるかに精度よ
い主桁を製作できる新たな風車翼製造方法を提供するこ
とを目的としている。In order to solve such a problem, the present invention divides the main girder into two parts in a direction perpendicular to the chord of the blade and separately manufactures them, and each divided main girder is manufactured by using a concave type. Therefore, the dimensional accuracy of the outer shape depends only on the dimensional accuracy of the concave type. Therefore, it is an object of the present invention to provide a new wind turbine blade manufacturing method capable of manufacturing a main girder that is far more accurate than the conventional structure.
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
本発明の風力発電装置における風車翼は、風車翼の翼弦
に垂直な方向に2分割し、別個に製作された2個の主桁
A,Bをあらかじめ接着して一体の主桁として、これを
翼型を形成する外皮の内面に接着して風車翼を構成した
ことを特徴としている。In order to achieve the above object, the wind turbine blade in the wind turbine generator of the present invention is divided into two in a direction perpendicular to the chord of the wind turbine blade, and two main girders manufactured separately. It is characterized in that A and B are bonded in advance to form an integral main girder, and this is bonded to the inner surface of the outer skin forming the airfoil to form a wind turbine blade.
【0010】また、風車翼の翼弦に垂直な方向に2分割
し、別個に製作された2個の主桁A,Bを、翼型を形成
する外皮の内面との接着過程で、前記分割した主桁A,
Bの接着と、主桁及び外皮の接着とを同時に行なうよう
にして製作してもよい。Further, the two main girders A and B, which are divided into two in the direction perpendicular to the chord of the wind turbine blade, and which are separately produced, are bonded in the process of adhering to the inner surface of the outer skin forming the airfoil. The main girder A,
It may be manufactured by simultaneously adhering B and the main girder and outer skin.
【0011】また、風車翼主桁を製造する方法として
は、風車翼の翼弦に垂直な方向に2分割された主桁製作
用凹型の型枠にガラス繊維強化プラスチック(FRP)
を積層し、これにより、2分割された主桁のそれぞれを
製作することが効果的である。Further, as a method for manufacturing a wind turbine blade main girder, glass fiber reinforced plastic (FRP) is used in a concave formwork for manufacturing a main girder which is divided into two parts in a direction perpendicular to the chord of the wind turbine blade.
It is effective to laminate each of the two, and thereby to manufacture each of the two main girders.
【0012】[0012]
【作用】本発明の作用を図3によって説明すると、図3
に示すように風力発電装置の風車翼に作用する外力は、
翼弦に平行な方向の力(F1.エッジ方向力)と翼弦に
垂直な方向の力(F2.フラット方向力)に分けること
ができる。The operation of the present invention will be described with reference to FIG.
The external force acting on the wind turbine blade of the wind power generator as shown in
The force can be divided into a force parallel to the chord (F1. Edge direction force) and a force perpendicular to the chord (F2. Flat direction force).
【0013】主桁と外皮によって構成される翼では構造
上、F1.エッジ方向力はこの方向の断面係数の大きい
外皮によって主に支持され、F2.フラット方向力はこ
の方向の断面係数の大きい主桁によって支持される。The structure of the wing composed of the main girder and the outer skin is F1. The edge direction force is mainly supported by the outer skin having a large section modulus in this direction, and F2. The flat force is supported by the main girder with a large section modulus in this direction.
【0014】すなわち主桁に作用する主な力はF2.フ
ラット方向力であるので、図1のように主桁を主桁Aと
主桁Bのように2つに分割しても、F3.主な力の流れ
と平行であり、これを妨げることがないので、主桁を2
分割することによる強度低下は最小限に抑えることがで
きる。That is, the main force acting on the main girder is F2. Since it is a flat directional force, even if the main girder is divided into two parts like the main girder A and the main girder B as shown in FIG. 1, F3. Since it is parallel to the main flow of force and does not hinder this, the main girder should be 2
The reduction in strength due to the division can be minimized.
【0015】[0015]
【実施例】以下図面に基づき本発明の1実施例について
説明する。図1は本発明に係る風力発電装置の風車翼の
主桁の分割方法を示す説明図、図2は同装置の風車翼の
翼主桁製作用凹型の概念図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a method of dividing a main girder of a wind turbine blade of a wind turbine generator according to the present invention, and FIG. 2 is a conceptual view of a concave type for manufacturing a blade main girder of the wind turbine blade of the apparatus.
【0016】図1において10は主桁A、20は主桁B
で、両主桁A,Bは翼の翼弦に垂直な方向に2分割され
別個に製作されている。In FIG. 1, 10 is a main girder A and 20 is a main girder B.
Both main girders A and B are divided into two parts in the direction perpendicular to the chord of the wing, and are separately manufactured.
【0017】2は翼型を形成する翼の外皮で、主桁A,
Bは外皮2の内面に接着され風車翼を構成する。Reference numeral 2 denotes an outer skin of a wing which forms an airfoil, and has a main girder A,
B is adhered to the inner surface of the outer skin 2 to form a wind turbine blade.
【0018】分割した主桁A,Bは、あらかじめ接着し
て一体の主桁とした後、翼型を形成する外皮の内面に接
着してもよく、また翼型を形成する外皮の内面との接着
過程で分割された各主桁A,Bの接着と、外皮の接着と
を同時に行なってもよい。The divided main girders A and B may be bonded in advance to form an integral main girder, and then bonded to the inner surface of the outer skin forming the airfoil, or with the inner surface of the outer skin forming the airfoil. The main girders A, B divided in the bonding process and the outer skin may be bonded at the same time.
【0019】何れの方法の場合も、主桁の寸法精度が高
いため接着層30の厚さを最小限にして作業工程を短縮
すると共に、接着に用いる資材量を削減できる。また、
接着部の厚さが減るため、接着強度も向上する。In any of the methods, since the dimensional accuracy of the main girder is high, the thickness of the adhesive layer 30 can be minimized to shorten the working process and reduce the amount of materials used for bonding. Also,
Since the thickness of the adhesive portion is reduced, the adhesive strength is also improved.
【0020】図2は本発明翼主桁製作用凹型の説明図を
示し、従来高強度FRPとして使用されているプリプレ
グを用いて主桁を製作する場合、プリプレグシートを型
枠に積層した後に真空バッグも用いて脱気するが、凸型
を用いた場合にはこの際の圧縮作用によってプリプレグ
シートのわずかなゆるみが皺になってしまう。この皺は
積層を繰り返してFRPが厚くなるにつれて拡大し、積
層が困難な程になってしまう不具合があった。FIG. 2 is an explanatory view of a concave type for manufacturing a wing main girder of the present invention. When a main girder is manufactured using a prepreg which has been conventionally used as a high strength FRP, a prepreg sheet is laminated on a mold and then vacuumed. Although the bag is also used for deaeration, when the convex type is used, a slight loosening of the prepreg sheet becomes wrinkles due to the compression action at this time. This wrinkle expands as the FRP becomes thicker by repeating stacking, which makes it difficult to stack.
【0021】しかし、本発明は図2に示すように、積層
するかわりに主桁凹型40を用いて分割された翼主桁1
0,20を製作するもので、真空バッグによる圧縮作用
はプリプレグシートの皺を伸ばす方向に作用するため、
高強度高精度の成型品を得ることができる。However, according to the present invention, as shown in FIG. 2, the blade main girder 1 is divided by using the main girder concave die 40 instead of stacking.
0, 20 are manufactured. Since the compression action by the vacuum bag acts in the direction of extending the wrinkles of the prepreg sheet,
It is possible to obtain a molded product with high strength and high precision.
【0022】[0022]
【発明の効果】以上述べたように本発明によれば次に示
す効果が得られる。As described above, according to the present invention, the following effects can be obtained.
【0023】(1)主桁の寸法精度が飛躍的に向上する
ため、凸型を用いた従来工法で必要な寸法精度を得るた
めに行なっていた積層・硬化後のサンディング作業等が
省略でき、必要な作業工数が低減できる。(1) Since the dimensional accuracy of the main girder is dramatically improved, it is possible to omit the sanding work after lamination / curing, which is performed to obtain the dimensional accuracy required in the conventional method using the convex mold. The required man-hours can be reduced.
【0024】(2)主桁と外皮の接着層を薄くすること
ができるため、必要な材料及び工数を低減することがで
き、同時に接着強度も向上する。(2) Since the adhesive layer between the main girder and the outer skin can be thinned, the required materials and man-hours can be reduced, and at the same time, the adhesive strength is improved.
【0025】(3)プリプレグを用いることができるた
め、さらに軽量高強度の翼を製作することができる。(3) Since the prepreg can be used, it is possible to manufacture a blade having a lighter weight and higher strength.
【図1】本発明に係る風力発電装置の風車翼の主桁の分
割方法を示す説明図である。FIG. 1 is an explanatory diagram showing a method of dividing a main girder of a wind turbine blade of a wind turbine generator according to the present invention.
【図2】同装置の風車翼の翼主桁製作用凹型の概念図で
ある。FIG. 2 is a conceptual diagram of a concave type for manufacturing a blade main girder of a wind turbine blade of the same device.
【図3】風力発電装置の風車翼に作用する力を示す説明
図である。FIG. 3 is an explanatory diagram showing a force acting on a wind turbine blade of a wind turbine generator.
【図4】従来の風力発電装置の風車翼の断面図である。FIG. 4 is a cross-sectional view of a wind turbine blade of a conventional wind turbine generator.
2 翼の外皮 10 主桁A 20 主桁B 30 接着層 40 主桁凹型 F1 エッジ方向力 F2 フラット方向力 F3 主な力の流れ 2 Wing skin 10 Main girder A 20 Main girder B 30 Adhesive layer 40 Main girder concave type F1 Edge direction force F2 Flat direction force F3 Main force flow
Claims (3)
別個に製作された2個の主桁A,Bをあらかじめ接着し
て一体の主桁として、これを翼型を形成する外皮の内面
に接着して風車翼を構成したことを特徴とする風力発電
装置における風車翼。1. A wind turbine blade is divided into two parts in a direction perpendicular to a chord,
A wind turbine generator characterized in that two separately manufactured main girders A and B are bonded in advance to form an integral main girder, and the main girder is bonded to the inner surface of the outer skin forming the blade shape to form a wind turbine blade. Windmill blades in the device.
別個に製作された2個の主桁A,Bを、翼型を形成する
外皮の内面との接着過程で、前記分割した主桁A,Bの
接着と、主桁及び外皮の接着とを同時に行なうことを特
徴とする風力発電装置における風車翼及びその製造方
法。2. The wind turbine blade is divided into two in a direction perpendicular to the chord,
The two main girders A and B, which are produced separately, are simultaneously bonded to the divided main girders A and B and the main girder and the outer shell in the process of bonding the inner girder-forming outer surface to the inner surface. A wind turbine blade in a wind turbine generator and a method for manufacturing the same.
た主桁製作用凹型の型枠にガラス繊維強化プラスチック
(FRP)を積層し、これにより、2分割された主桁の
それぞれを製作したことを特徴とする風車翼主桁の製造
方法。3. A glass fiber reinforced plastic (FRP) is laminated on a concave formwork for producing a main girder that is divided into two parts in a direction perpendicular to the chord of a wind turbine blade, whereby each of the two main girders is divided. A method for manufacturing a wind turbine blade main girder, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032816A JPH08200202A (en) | 1995-01-31 | 1995-01-31 | Windmill wing of wind power generator and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032816A JPH08200202A (en) | 1995-01-31 | 1995-01-31 | Windmill wing of wind power generator and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08200202A true JPH08200202A (en) | 1996-08-06 |
Family
ID=12369366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7032816A Withdrawn JPH08200202A (en) | 1995-01-31 | 1995-01-31 | Windmill wing of wind power generator and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08200202A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100397030B1 (en) * | 2001-04-03 | 2003-09-03 | (주)코에지 | A rotor blade of a wind power generator, and the forming method thereof |
CN100392240C (en) * | 2004-12-20 | 2008-06-04 | 李锋 | Wing panels of blower fan of using wind energy to generate power |
WO2009147740A1 (en) * | 2008-06-05 | 2009-12-10 | 三菱重工業株式会社 | Windmill vane and wind power generator utilizing the same |
-
1995
- 1995-01-31 JP JP7032816A patent/JPH08200202A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100397030B1 (en) * | 2001-04-03 | 2003-09-03 | (주)코에지 | A rotor blade of a wind power generator, and the forming method thereof |
CN100392240C (en) * | 2004-12-20 | 2008-06-04 | 李锋 | Wing panels of blower fan of using wind energy to generate power |
WO2009147740A1 (en) * | 2008-06-05 | 2009-12-10 | 三菱重工業株式会社 | Windmill vane and wind power generator utilizing the same |
AU2008357369B2 (en) * | 2008-06-05 | 2012-12-20 | Mitsubishi Heavy Industries, Ltd. | Wind turbine blade and wind power generator using the same |
JP5138774B2 (en) * | 2008-06-05 | 2013-02-06 | 三菱重工業株式会社 | Wind turbine blade and wind power generator using the same |
US8622709B2 (en) | 2008-06-05 | 2014-01-07 | Mitsubishi Heavy Industries, Ltd. | Wind turbine blade and wind power generator using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3839476B2 (en) | Wing structure manufacturing method and manufacturing apparatus | |
CN101673880B (en) | Method for manufacturing antenna reflecting surface with aluminum skin honeycomb sandwich structure | |
US5059377A (en) | Method for forming a composite structure | |
JP2003312590A (en) | Reinforcement body for aircraft skin panel and manufacturing method for skin panel provided with reinforcement body | |
US7097731B2 (en) | Method of manufacturing a hollow section, grid stiffened panel | |
CN104029397B (en) | The preparation facilities of a kind of technique for aircraft composite fuselage wallboard and preparation method | |
EP3727807B1 (en) | Modular wind turbine blade and associated method of manufacture | |
DK2731772T3 (en) | PROCEDURE FOR MANUFACTURING A WING TO A WINDMILL | |
EP3475068A1 (en) | Manufacture of a wind turbine blade | |
CN101351327B (en) | Technology for manufacturing compound structure with embedded precuring mold | |
KR20160055764A (en) | Multi-box spar and skin | |
EP3774308B1 (en) | Methods for manufacturing flatback airfoils for wind turbine rotor blades | |
CN106184744B (en) | A kind of manufacturing method of the bionical Insect wings of light-high-strength | |
JPH08200202A (en) | Windmill wing of wind power generator and its manufacture | |
WO2017171703A1 (en) | Rotor blade tip mold assembly including solid core and method for forming rotor blade tip | |
CN115596748A (en) | One-time glue joint curing molding method for mosaic structure and shell assembly | |
JP5738033B2 (en) | Method for forming composite material structure | |
CN105346106B (en) | A kind of outer reinforcement of wind electricity blade and the integrally formed method of housing and mould | |
JPH04316845A (en) | Method for molding composite material blade shape | |
CN111188727B (en) | Wind turbine blade root structure and production method thereof | |
CN110815899B (en) | Helicopter blade embedded box-shaped device and forming method thereof | |
CN106837710A (en) | A kind of wind wheel blade web turnup structure and its manufacture craft | |
CN102275304A (en) | Integrated filling and forming process for single shearing rib of fan blade | |
CN111688216A (en) | Secondary bonding and positioning method for wind power blade web | |
WO2019059260A1 (en) | Method for molding composite material blade, composite material blade, and molding die for composite material blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020402 |