JPH08200094A - Turbine bearing oil temperature control device - Google Patents

Turbine bearing oil temperature control device

Info

Publication number
JPH08200094A
JPH08200094A JP690895A JP690895A JPH08200094A JP H08200094 A JPH08200094 A JP H08200094A JP 690895 A JP690895 A JP 690895A JP 690895 A JP690895 A JP 690895A JP H08200094 A JPH08200094 A JP H08200094A
Authority
JP
Japan
Prior art keywords
bearing oil
turbine
value
opening
oil temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP690895A
Other languages
Japanese (ja)
Other versions
JP2905415B2 (en
Inventor
Makoto Kawashima
誠 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Original Assignee
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp filed Critical Toshiba Engineering Corp
Priority to JP690895A priority Critical patent/JP2905415B2/en
Publication of JPH08200094A publication Critical patent/JPH08200094A/en
Application granted granted Critical
Publication of JP2905415B2 publication Critical patent/JP2905415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To easily prevent an excessive flow rate of water in a bearing oil area regardless of a preset value of a parameter of PID control by adding a bearing oil cooling water excessive flow rate preventive circuit, and controlling opening of a bearing oil temperature adjusting valve by output of a low value preferential circuit. CONSTITUTION: In a bearing cooling water excessive flow rate preventive circuit 40, in a condition where an optimal temperature preset value of bearing oil is not more than 43 deg.C or rotating speed of a turbine 10 is not more than 3500rpm, opening restriction is outputted from a low value preferential circuit 44 so that opening of a bearing oil temperature adjusting valve 21 does not become 50% or more. As a result, excessive cooling of bearing oil caused by an excessive flow rate of bearing oil cooling water in a transitional change in starting, stopping or the like of the turbine 10 can be reliably prevented. Since the opening restriction of the bearing oil temperature adjusting valve 21 is imposed, an undershooting condition of a bearing oil temperature by excessive cooling of bearing oil can be prevented at the same time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電所・原子力発
電所或いはコンバインドサイクル発電所等に設置される
スティームタービン或いはガスタービン等の軸受に供給
され、この軸受を潤滑すると共に冷却するタービン軸受
油の温度制御装置の改良に関し、特にタービン軸受油温
度制御装置の軸受油冷却水流量が過流量になるのを防止
する軸受油冷却水過流量防止回路を備えたタービン軸受
油温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine bearing which is supplied to a bearing of a steam turbine, a gas turbine or the like installed in a thermal power plant / nuclear power plant or a combined cycle power plant, and lubricates and cools this bearing. The present invention relates to an improvement in an oil temperature control device, and more particularly to a turbine bearing oil temperature control device provided with a bearing oil cooling water overflow prevention circuit for preventing the bearing oil cooling water flow amount of the turbine bearing oil temperature control device from becoming excessive.

【0002】[0002]

【従来の技術】発電用に供されるスティームタービン或
いはガスタービン等(以下タービンと記す)は、その容
量においては最大級の大型機であり、そのため、運転停
止時にもロータの熱変形を防止するために、毎分数回転
の極めて低速度で回転させるターニングを行い、さらに
起動から運転に向けて数時間かけて極めて徐々に昇速
し、運転時においては毎分数千回転の高速度で回転する
横軸回転機である。
2. Description of the Related Art A steam turbine, a gas turbine, or the like (hereinafter referred to as a turbine) used for power generation is one of the largest large-scale machines in its capacity, and therefore prevents thermal deformation of the rotor even when the operation is stopped. In order to achieve this, turning is performed at a very low speed of several revolutions per minute, and the speed is gradually increased from start to operation over several hours, and at the time of operation, it is rotated at a high speed of several thousand revolutions per minute. It is a horizontal axis rotating machine.

【0003】上記理由から、その軸受に供給して軸受を
潤滑すると同時に冷却するタービン軸受油の温度は、温
度により変化する軸受油の粘度が最適値となるように、
タービンの回転速度に応じて定められた適正な値に厳密
に制御する必要がある。
For the above reasons, the temperature of the turbine bearing oil which is supplied to the bearing to lubricate the bearing and to cool the bearing at the same time is adjusted so that the viscosity of the bearing oil, which changes depending on the temperature, has an optimum value.
It is necessary to strictly control to an appropriate value determined according to the rotation speed of the turbine.

【0004】図示はしないが、従来のタービン軸受油温
度制御装置においては、軸受油冷却器に送水される軸受
油冷却水の過流量を防止するための回路は設けられてお
らず温度制御のための制御器としては、単にPID制御
[(P)比例動作+(I)積分動作+(D)微分動作の
3動作制御]のみにより制御ゲインを遅くし、軸受油冷
却水の送水流量を制御する軸受油温度調節弁の開度が過
大にならないようにして、軸受油冷却水の流量が過大に
なるのを防止していた。
Although not shown, in the conventional turbine bearing oil temperature control device, a circuit for preventing an excessive flow rate of the bearing oil cooling water sent to the bearing oil cooler is not provided, and the temperature control is performed. The control gain of the controller is slowed down only by PID control [3 operation control of (P) proportional operation + (I) integral operation + (D) derivative operation] to control the bearing oil cooling water supply flow rate. The opening of the bearing oil temperature control valve was prevented from becoming too large to prevent the bearing oil cooling water flow rate from becoming too large.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、PID
制御だけでは軸受油冷却水の流量が過大になるのを完全
に防止することはできず、タービンの通常運転時にも発
生するが、特に試運転時において、しばしば軸受油冷却
水流量が過大となり、通常2台設置されている常用の軸
受油冷却水ポンプの吸込み圧力が低下することにより、
予備の非常用軸受油冷却水ポンプが起動してしまい、そ
のため軸受油冷却水流量は更に増加して軸受油を過冷却
し軸受油温度が異常に低下してしまうという問題があつ
た。
However, the PID
It is not possible to completely prevent the bearing oil cooling water flow rate from becoming excessive by controlling only, and it also occurs during normal operation of the turbine, but especially during trial operation, the bearing oil cooling water flow rate often becomes too high, As the suction pressure of the regular bearing oil cooling water pumps installed in two units decreases,
The backup emergency bearing oil cooling water pump is activated, which further increases the bearing oil cooling water flow rate, overcools the bearing oil, and causes the bearing oil temperature to drop abnormally.

【0006】上記のように、従来のタービン軸受油温度
制御装置には軸受油冷却水の過流量を防止するための回
路は無く、PID制御の過渡応答時のレスポンスを良く
するためのチューニングによって軸受油冷却水の過流量
が発生していた。
As described above, the conventional turbine bearing oil temperature control device does not have a circuit for preventing an excessive flow rate of the bearing oil cooling water, and the bearing is tuned by tuning for improving the response during transient response of PID control. An overflow of oil cooling water was occurring.

【0007】本発明は上記の事情に鑑みてなされたもの
であり、その目的は、軸受油冷却水の過流量を防止する
回路を付加し、PID制御のパラメータの設定値に関係
なく軸受油冷却水の過流量を防止することのできるター
ビン軸受油温度制御装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to add a circuit for preventing an excessive flow rate of bearing oil cooling water and to cool the bearing oil regardless of the set values of the PID control parameters. An object of the present invention is to provide a turbine bearing oil temperature control device capable of preventing an excessive flow rate of water.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、タービンの軸受に給油されるタービン軸
受油を、軸受油温度調節弁の開度制御によってその流量
が調整される軸受油冷却水により冷却するタービン軸受
油冷却器と、前記タービン軸受油の温度を検出して軸受
油温度を出力する軸受油温度検出器と、前記タービンの
回転速度を検出して回転速度を出力する回転速度検出器
と、前記回転速度を入力され、前記タービンの回転速度
に応ずる前記タービン軸受油の最適温度設定値を出力す
る関数変換器と、前記軸受油温度と前記最適温度設定値
とを入力され、両入力の温度偏差信号を出力する比較器
と、前記温度偏差信号を入力され、この温度偏差信号に
比例、積分、微分等の演算を行い、前記軸受油温度調節
弁の操作信号を出力するPID演算器と、前記軸受油温
度調節弁の予め定められた最大開度制限値が設定される
第1の開度設定器と、前記軸受油温度調節弁の全開開度
値が設定される第2の開度設定器と、前記第1の開度設
定器の最大開度制限値と前記第2の開度設定器の全開開
度値とが入力され、前記関数変換器の出力する最適温度
設定値または前記タービンの回転速度の少なくともいず
れか一方が予め定められた値より小さいときには前期最
大開度制限値を出力し、前記関数変換器の出力する最適
温度設定値または前記タービンの回転速度の少なくとも
いずれか一方が予め定められた値より大となると切換え
られて前期全開開度値を出力する切換器と、前記操作信
号と前記切換器の出力とが入力され、両入力の中の低い
方の値を有する入力を通過させて前記軸受油温度調節弁
へ出力する低値優先回路と、を備えたことを特徴とす
る。
In order to achieve the above object, the present invention provides a bearing in which the flow rate of turbine bearing oil supplied to the bearing of a turbine is adjusted by controlling the opening of a bearing oil temperature control valve. A turbine bearing oil cooler that cools with oil cooling water, a bearing oil temperature detector that detects the temperature of the turbine bearing oil and outputs the bearing oil temperature, and a rotation speed of the turbine that outputs the rotation speed. A rotation speed detector, a function converter for inputting the rotation speed and outputting an optimum temperature set value of the turbine bearing oil according to the rotation speed of the turbine, and inputting the bearing oil temperature and the optimum temperature set value The temperature deviation signal is input to the comparator that outputs the temperature deviation signal of both inputs, and the temperature deviation signal is subjected to calculations such as proportional, integral, and differential, and the operation signal of the bearing oil temperature control valve is output. PID calculator, a first opening setting device for setting a predetermined maximum opening limit value of the bearing oil temperature control valve, and a fully open opening value of the bearing oil temperature control valve are set. The second opening degree setter, the maximum opening degree limit value of the first opening degree setter, and the full opening degree value of the second opening degree setter are input, and the optimum output of the function converter is output. When at least one of the temperature set value and the rotational speed of the turbine is smaller than a predetermined value, the previous maximum opening limit value is output, and the optimum temperature set value output by the function converter or the rotational speed of the turbine is output. Of at least one of the two, which is switched when it becomes larger than a predetermined value, and which outputs the operation value and the output of the switching device, which is switched to output the full-open opening value in the previous period, Pass through the input with one value Characterized by comprising a low value preference circuit that outputs to the bearing oil temperature control valve, the.

【0009】[0009]

【作用】軸受油冷却水の過流量防止回路を付加すること
により、タービンのターニング時およびタービン軸受油
温度の設定温度が例えば40〜45度C,タービンの回
転速度が定格回転速度の略々95%の3500rpm以
下の時に、軸受油温度調節弁の最大開度を例えば50%
に制限し、それ以外の時には、上記の開度制限を解除す
るようにしたから、PID制御のパラメータの設定値に
関係なく軸受油冷却水の過流量を防止することが可能に
なる。
By adding an overflow prevention circuit for the bearing oil cooling water, the set temperature of the turbine bearing oil temperature during turbine turning and the turbine bearing oil temperature is, for example, 40 to 45 ° C., and the rotational speed of the turbine is approximately 95% of the rated rotational speed. % Of 3500 rpm or less, the maximum opening of the bearing oil temperature control valve is, for example, 50%.
Therefore, at other times, the above-mentioned opening degree restriction is canceled. Therefore, it is possible to prevent the overflow of the bearing oil cooling water regardless of the set values of the PID control parameters.

【0010】[0010]

【実施例】以下、添付図面を参照して本発明を詳細に説
明する。図1は、本発明のタービン軸受油温度制御装置
の一実施例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a diagram showing an embodiment of a turbine bearing oil temperature control device of the present invention.

【0011】図1において、10はタービン、10aは
タービン10の軸受、11はタービン10の回転速度を
検出して出力する回転速度検出器である。
In FIG. 1, 10 is a turbine, 10a is a bearing of the turbine 10, and 11 is a rotation speed detector for detecting and outputting the rotation speed of the turbine 10.

【0012】13は、図示しないタービン軸受油槽から
軸受油ポンプ15により汲上げられ、給油配管16を介
してタービン10の軸受10aへ供給される軸受油を冷
却するための軸受油冷却器であり、17は軸受給油の温
度を検出して出力する軸受油温度検出器である。
Reference numeral 13 is a bearing oil cooler for cooling the bearing oil that is pumped from a turbine bearing oil tank (not shown) by the bearing oil pump 15 and is supplied to the bearing 10a of the turbine 10 through the oil supply pipe 16. Reference numeral 17 is a bearing oil temperature detector that detects and outputs the temperature of the bearing oil supply.

【0013】19は、図示しない軸受油冷却水温度制御
装置により制御されて予定の一定温度に調整された軸受
油冷却水を、軸受油冷却水配管20を介して軸受油冷却
器13に送水する軸受油冷却水ポンプであり、21は、
軸受油冷却水配管20に設けられ、後述のタービン軸受
油温度制御装置によりその開度が制御されて、軸受油冷
却水の流量を調整する軸受油温度調節弁である。
A bearing oil cooling water 19, which is controlled by a bearing oil cooling water temperature control device (not shown) and adjusted to a predetermined constant temperature, is sent to the bearing oil cooler 13 via a bearing oil cooling water pipe 20. It is a bearing oil cooling water pump, and 21 is
This is a bearing oil temperature control valve that is provided in the bearing oil cooling water pipe 20 and has its opening controlled by a turbine bearing oil temperature control device described later to adjust the flow rate of the bearing oil cooling water.

【0014】25は第1の関数変換器であり、上記の回
転速度検出器11により検出されたタービン10の回転
速度が入力され、入力されたタービン回転速度に応ずる
軸受油の最適温度信号(最適温度設定値)を出力する。
Reference numeral 25 is a first function converter, to which the rotational speed of the turbine 10 detected by the rotational speed detector 11 is input, and the optimum temperature signal (optimal temperature of the bearing oil corresponding to the input turbine rotational speed (optimal Output temperature setting value).

【0015】26は比較器であり、上記の第1の関数変
換器25の出力である最適温度設定値と上記の軸受油温
度検出器17より得られた軸受油温度とがそれぞれ入力
され両入力温度の温度偏差信号を出力する。
Reference numeral 26 is a comparator, which receives the optimum temperature set value as the output of the first function converter 25 and the bearing oil temperature obtained from the bearing oil temperature detector 17 and both inputs. The temperature deviation signal of the temperature is output.

【0016】27は、入力として上記の比較器26の出
力である温度偏差信号が与えられ、この温度偏差信号に
対して、比例(P)、積分(I)、微分(D)等の演算
を行って、上記の軸受油温度調節弁21の操作信号を出
力するPID演算器である。
A temperature deviation signal, which is the output of the above-mentioned comparator 26, is given as an input to 27, and an operation such as proportional (P), integral (I), derivative (D) is applied to this temperature deviation signal. The PID calculator outputs the operation signal of the bearing oil temperature control valve 21.

【0017】その全体を一点鎖線で囲み符号30を付し
た部分は、本発明に直接は関係のないタービン軸受油の
温度が過上昇するのを防止するための軸受油温度オーバ
ーシュート防止回路である。
A portion surrounded by an alternate long and short dash line and having a reference numeral 30 is a bearing oil temperature overshoot preventing circuit for preventing the temperature of the turbine bearing oil from being excessively increased, which is not directly related to the present invention. .

【0018】このオーバーシュート防止回路30は、第
2の関数変換器31と、固定端子aおよびbとこれらの
固定端子a、b間を切換えて固定端子cとの間を接続す
る切換接触子Tとを有する第1の切換器32と、軸受油
温度調節弁21の最小開度制限値が設定される最小開度
設定器33と、異なる値を有する2つの入力が与えら
れ、2つの入力の中の高い方の値を有する入力を通過さ
せて出力する高値優先回路34とから構成される。
The overshoot prevention circuit 30 switches the second function converter 31, the fixed terminals a and b, and the fixed terminals a and b to connect the fixed contact c to the fixed contact c. And a minimum opening setting device 33 for setting the minimum opening limit value of the bearing oil temperature control valve 21, and two inputs having different values are given. And a high-value priority circuit 34 that passes the input having the higher value among them and outputs it.

【0019】第2の関数変換器31は、軸受油温度検出
器17により検出された軸受油温度が入力され、入力さ
れた軸受油温度に応ずる軸受油温度調節弁21の最適開
度信号を出力する。
The second function converter 31 receives the bearing oil temperature detected by the bearing oil temperature detector 17, and outputs an optimum opening signal of the bearing oil temperature control valve 21 corresponding to the input bearing oil temperature. To do.

【0020】第1の切換器32は、その固定端子aには
軸受油温度調節弁21の例えば0%の最小開度制限値が
設定される最小開度設定器33の設定値出力が入力さ
れ、また固定端子bには第2の関数変換器31の出力が
入力される。軸受油の最適温度設定値が例えば46度C
で、且つ軸受油の温度が例えば43度C以上の時には、
切換接触子Tは図示のように固定端子b−c間を接続
し、上記以外のタービンの通常運転時には、切換接触子
Tは自動的に固定端子a側に切換えられて、固定端子a
−c間を接続する。
The fixed terminal a of the first switch 32 receives the set value output of the minimum opening setter 33 for setting the minimum opening limit value of the bearing oil temperature control valve 21, for example, 0%. The output of the second function converter 31 is input to the fixed terminal b. The optimum temperature setting value of bearing oil is, for example, 46 degrees C.
And when the temperature of the bearing oil is, for example, 43 ° C or higher,
The switching contact T is connected between the fixed terminals b and c as shown in the figure, and during normal operation of the turbine other than the above, the switching contact T is automatically switched to the fixed terminal a side and the fixed terminal a.
-C is connected.

【0021】高値優先回路34には、その一方の入力と
して第1の切換器32の出力と、他方の入力としてPI
D演算器27が出力する操作信号とがそれぞれ入力され
て、高い方の値を有する入力を通過させて出力する。
The high price priority circuit 34 has one input as the output of the first switch 32 and the other input as the PI.
The operation signal output from the D calculator 27 is input, and the input having the higher value is passed and output.

【0022】その全体を一点鎖線で囲み符号40を付し
た部分が、本発明により追加した軸受油を冷却する軸受
油冷却水の過流量防止回路であり、軸受油温度調節弁2
1の最大開度制限値が設定される第1の開度設定器41
と、固定端子aおよびbとこれらの固定端子a、b間を
切換えて固定端子cとの間を接続する切換接触子Tとを
有する第2の切換器42と、軸受油温度調節弁21の全
開開度値が設定される第2の開度設定器43と、異なる
値を有する2つの入力が与えられ、2つの入力の中の低
い方の値を有する入力を通過させて出力する低値優先回
路44とから構成される。
A portion surrounded by an alternate long and short dash line and having a reference numeral 40 is a bearing oil cooling water overflow prevention circuit for cooling the bearing oil added according to the present invention. The bearing oil temperature control valve 2
The first opening degree setter 41 in which the maximum opening degree limit value of 1 is set
Of the bearing oil temperature control valve 21 and a second switching device 42 having a fixed contact a and b and a switching contactor T for switching between the fixed terminals a and b to connect the fixed terminal c. A second opening setter 43 for setting a fully open opening value and a low value that is supplied with two inputs having different values and passes an input having a lower value of the two inputs and outputs the same. And a priority circuit 44.

【0023】第2の切換器42は、その固定端子aには
第2の開度設定器43に設定された全開開度値100%
の設定値出力と、固定端子bには第1の開度設定器41
に設定された最大開度制限値の例えば50%の設定値出
力とがそれぞれ入力され、軸受油の最適温度設定値が例
えば43度C以下、或いはタービンの回転数が例えば3
500rpm以下の時には、切換接触子Tは図示のよう
に固定端子b−c間を接続し、上記以外のタービンの通
常運転時には、切換接触子Tは自動的に固定端子a側に
切換えられて固定端子a−c間を接続する。
The second switching device 42 has a fixed terminal a at which the fully open opening value 100% set by the second opening setting device 43 is set.
Of the set value of the first opening degree setting device 41 to the fixed terminal b.
The set value output of, for example, 50% of the maximum opening limit value set in is input, and the optimum temperature set value of the bearing oil is, for example, 43 ° C. or less, or the rotational speed of the turbine is, for example, 3
At 500 rpm or less, the switching contact T connects between the fixed terminals b and c as shown in the figure, and during normal operation of the turbine other than the above, the switching contact T is automatically switched to the fixed terminal a side and fixed. Connect between terminals a and c.

【0024】低値優先回路44には、その一方の入力と
して上記の高値優先回路34の出力と、他方の入力とし
て上記の第2の切換器42の出力とがそれぞれ与えられ
て、低い方の値を有する入力を通過させて出力する。
The low value priority circuit 44 is supplied with the output of the high value priority circuit 34 as one input and the output of the second switch 42 described above as the other input, and the lower one It passes an input that has a value and outputs it.

【0025】なお既述のように、オーバーシュート防止
回路30は本発明に直接は関係ないので、この回路30
を使用しない場合には、高値優先回路34は除外され、
低値優先回路44には、その一方の入力として上記のP
ID演算器27の出力の操作信号が与えられることは言
うまでもない。
As described above, since the overshoot prevention circuit 30 is not directly related to the present invention, this circuit 30
Is not used, the high price priority circuit 34 is excluded,
The low value priority circuit 44 receives the above-mentioned P as one of its inputs.
It goes without saying that the operation signal output from the ID calculator 27 is given.

【0026】次に、上記構成の本発明の作動を図1〜図
3を参照して詳細に説明するが、本発明においては、下
記の2項が前提条件となっている。
Next, the operation of the present invention having the above-mentioned structure will be described in detail with reference to FIGS. 1 to 3. In the present invention, the following two items are preconditions.

【0027】すなわち、(1) 図示しないタービン軸
受油槽から軸受油ポンプ15により汲上げられ、軸受油
冷却器13により冷却されて給油配管16を介してター
ビン10の軸受10aへ供給されるタービン軸受油の流
量は、予定の一定値に保持されている。
That is, (1) turbine bearing oil which is pumped from a turbine bearing oil tank (not shown) by the bearing oil pump 15, cooled by the bearing oil cooler 13 and supplied to the bearing 10a of the turbine 10 through the oil supply pipe 16. The flow rate of is kept at a predetermined constant value.

【0028】(2) 軸受油冷却水ポンプ19から吐出
され、軸受油温度調節弁21の開度に応じその流量が調
整されて上記の軸受油冷却器13に送水され、軸受油を
冷却する軸受油冷却水の温度は、本発明には関係のない
軸受油冷却水温度制御装置により調整されて、予定の一
定値に保持されている。
(2) A bearing for cooling the bearing oil, which is discharged from the bearing oil cooling water pump 19, whose flow rate is adjusted according to the opening degree of the bearing oil temperature control valve 21 and is sent to the bearing oil cooler 13 described above. The temperature of the oil cooling water is adjusted by a bearing oil cooling water temperature control device not related to the present invention, and is maintained at a predetermined constant value.

【0029】図2および図3は、本発明の作動を説明す
るための曲線図である。
2 and 3 are curve diagrams for explaining the operation of the present invention.

【0030】図2は、横軸に時間を、縦軸に軸受油温度
(度C)をとり、実線で示す曲線aは、軸受油温度曲線
であり、一点鎖線で示す曲線bは、軸受油の最適温度設
定値曲線である。
In FIG. 2, the horizontal axis represents time, and the vertical axis represents bearing oil temperature (degree C). The solid line curve a is the bearing oil temperature curve, and the dashed line curve b is the bearing oil temperature. 2 is an optimum temperature set value curve of.

【0031】また図3は、横軸に時間を、縦軸に軸受油
温度調節弁21の開度(%)をとり曲線cは軸受油冷却
水過流量防止回路40による軸受油温度調節弁21に対
する最大開度制限曲線であり、曲線dは軸受油温度オー
バーシュート防止回路30による軸受油温度調節弁21
に対する最小開度制限曲線である。
In FIG. 3, the horizontal axis represents time, the vertical axis represents the opening (%) of the bearing oil temperature control valve 21, and the curve c is the bearing oil temperature control valve 21 by the bearing oil cooling water overflow prevention circuit 40. Is a maximum opening limit curve for the bearing oil temperature control valve 21 by the bearing oil temperature overshoot prevention circuit 30.
It is a minimum opening degree restriction curve for.

【0032】さて、タービン10の起動前のターニング
中においては、タービン10は毎分数回転の低速で回転
している。この時、軸受油温度調節弁21の最小開度制
限値を設定する最小開度設定器33には、図示のよう
に、例えば最小開度制限値0%が設定され、第1の開度
設定器41には例えば最大開度制限値50%が、第2の
開度設定器43には例えば全開開度値100%がそれぞ
れ設定されている。
During the turning of the turbine 10 before starting, the turbine 10 is rotating at a low speed of several revolutions per minute. At this time, for example, a minimum opening limit value 0% is set in the minimum opening setter 33 that sets the minimum opening limit value of the bearing oil temperature control valve 21 as shown in the figure, and the first opening setting value is set. For example, a maximum opening limit value of 50% is set in the device 41, and a fully open opening value of 100% is set in the second opening setting device 43.

【0033】第1の関数変換器25から出力されるター
ビン軸受油の最適温度設定値は、図示のように、例え
ば、入力されるタービン10の回転数が800rpm未
満においては30度C、800rpm〜タービンの定格
回転数3600rpmにおいては回転数にほぼ比例した
温度、3600rpm以上においては46度Cである。
また、第2の関数変換器31から出力される軸受油温度
調節弁21の最適開度信号は、図示のように、例えば、
入力されるタービン軸受油の温度が43度C未満におい
ては0%、43〜46度Cにおいては温度にほぼ比例し
た開度、46度Cにおいては15%である。
The optimum temperature set value of the turbine bearing oil output from the first function converter 25 is, as shown in the figure, for example, 30 degrees C and 800 rpm when the input rotation speed of the turbine 10 is less than 800 rpm. At a rated turbine rotation speed of 3600 rpm, the temperature is almost proportional to the rotation speed, and at 3600 rpm or higher, the temperature is 46 ° C.
Further, the optimum opening signal of the bearing oil temperature control valve 21 output from the second function converter 31 is, for example,
When the temperature of the input turbine bearing oil is less than 43 ° C, it is 0%, at 43 to 46 ° C, the opening is almost proportional to the temperature, and at 46 ° C, it is 15%.

【0034】したがって、ターニング中におけるタービ
ン10の回転数は毎分数回転であるから、第1の関数変
換器25は30度Cの最適温度設定値を出力し、この最
適温度設定値は比較器26にその一方の入力として加え
られる。また、軸受油温度検出器17により検出された
軸受油の温度は、比較器26にその他方の入力として加
えられるから、比較器26は両入力温度の温度偏差信号
を出力し、この温度偏差信号はPID演算器27に加え
られる。PID演算器27は、入力された温度偏差信号
に比例(P)、積分(I)、(D)等の演算を行って操
作信号を出力し、この操作信号は軸受油温度オーバーシ
ュート防止回路30の高値優先回路34にその一方の入
力として加えられる。
Therefore, since the number of revolutions of the turbine 10 during turning is several revolutions per minute, the first function converter 25 outputs the optimum temperature set value of 30 ° C., and the optimum temperature set value is output by the comparator 26. Is added as one of the inputs. Since the bearing oil temperature detected by the bearing oil temperature detector 17 is applied to the comparator 26 as the other input, the comparator 26 outputs a temperature deviation signal of both input temperatures. Is added to the PID calculator 27. The PID calculator 27 performs an operation such as proportional (P), integral (I), and (D) on the input temperature deviation signal to output an operation signal, and the operation signal is the bearing oil temperature overshoot prevention circuit 30. Of the high-priority circuit 34 of FIG.

【0035】軸受油温度検出器17により検出された軸
受油の温度は、さらに上記の第2の関数変換器31に加
えられるが、この時の軸受油の最適温度設定値は30度
Cであるから、第1の切換器32の切換接触子Tは図示
とは反対の固定接点a側に切換えられa−c間が接続さ
れている。よって、第2の関数変換器31の出力は制御
上関係のない値となり無視されて、最小開度設定器33
に設定された軸受油温度調節弁21の最小開度制限値0
%が高値優先回路34にその他方の入力として加えられ
る。
The temperature of the bearing oil detected by the bearing oil temperature detector 17 is further applied to the above-mentioned second function converter 31, and the optimum temperature set value of the bearing oil at this time is 30 degrees C. Therefore, the switching contact T of the first switching device 32 is switched to the side of the fixed contact a opposite to the one shown in the drawing, and a and c are connected. Therefore, the output of the second function converter 31 becomes an irrelevant value in terms of control and is ignored.
The minimum opening limit value of the bearing oil temperature control valve 21 set to 0
% Is applied to the high price priority circuit 34 as the other input.

【0036】したがって、高値優先回路34は、高値と
なるPID演算器27の出力である操作信号を通過させ
て出力し、この操作信号は軸受油冷却水過流量防止回路
40の低値優先回路44に、その一方の入力として加え
られる。
Therefore, the high price priority circuit 34 passes and outputs the operation signal which is the output of the PID calculator 27 having a high value, and this operation signal is output to the low value priority circuit 44 of the bearing oil cooling water overflow prevention circuit 40. , As one of the inputs.

【0037】軸受油冷却水過流量防止回路40におい
て、第2の切換器42の固定接点bとaとには、それぞ
れ第1の開度設定器41から軸受油温度調節弁21の最
大開度制限値50%と、第2の開度設定器43から軸受
油温度調節弁21の全開開度値100%とが加えられて
いる。そして、この時の軸受油の最適温度設定値は30
度Cでありタービンの回転速度も3500rpm以下で
あるから、切換接触子Tは図示のように固定接点b側に
切換えられb−c間が接続されている。よって、低値優
先回路44には、その他方の入力として50%が加えら
れる。
In the bearing oil cooling water overflow prevention circuit 40, the fixed contacts b and a of the second switch 42 are respectively connected to the maximum opening of the bearing oil temperature control valve 21 from the first opening setter 41. The limit value of 50% and the fully open opening value of the bearing oil temperature control valve 21 from the second opening setting device 43 are added. The optimum temperature setting value of the bearing oil at this time is 30
Since it is C and the rotation speed of the turbine is 3500 rpm or less, the switching contact T is switched to the fixed contact b side as shown in the drawing, and is connected between b and c. Therefore, 50% is applied to the low value priority circuit 44 as the other input.

【0038】このようにして、低値優先回路44には、
その一方の入力としてPID演算器27の出力である操
作信号が加えられ、その他方の入力として第2の開度設
定器41の最大開度制限値50%が加えられる。
In this way, the low value priority circuit 44 is
The operation signal which is the output of the PID calculator 27 is added as one of the inputs, and the maximum opening limit value 50% of the second opening setting device 41 is added as the other input.

【0039】そしてこの場合、上記の操作信号は、最大
開度制限値50%以下であるから、低値として低値優先
回路44を通過して出力され軸受油温度調節弁21に加
えられる。そして、この操作信号により軸受油温度調節
弁21の開度は制御され、軸受油冷却器13には適量の
軸受油冷却水が給水される。この時、タービン10はタ
ーニング中で、その回転速度は800rpm以下である
から、軸受油の温度は、その最適温度設定値でありター
ニングに適温の30度Cに制御される。
In this case, since the operation signal has a maximum opening limit value of 50% or less, it is output as a low value through the low value priority circuit 44 and is output to the bearing oil temperature control valve 21. Then, the opening degree of the bearing oil temperature control valve 21 is controlled by this operation signal, and the bearing oil cooler 13 is supplied with an appropriate amount of bearing oil cooling water. At this time, since the turbine 10 is turning and its rotation speed is 800 rpm or less, the temperature of the bearing oil is controlled to 30 ° C., which is the optimum temperature set value and is suitable for turning.

【0040】次に、タービン10がターニングを離脱
し、点Sにおいて起動し、順次昇速してその回転速度が
800rpmに達し、さらに昇速すると、第1の関数変
換器25が出力する軸受油の最適温度設定値も、30度
Cから回転速度に応じて次第に上昇する。この軸受油の
最適温度設定値の上昇につれて、軸受油の温度はこの最
適温度設定値に時間遅れを伴いつつ追従して昇温制御さ
れ、次第に上昇して行く。さらにタービンの回転速度が
上昇して、その定格速度のほぼ95%の3500rpm
近傍に達すると、第1の関数変換器25は、軸受油の最
適温度設定値として46度Cを出力する。
Next, the turbine 10 departs from turning, starts at the point S, speeds up sequentially, its rotation speed reaches 800 rpm, and when the speed further increases, the bearing oil output from the first function converter 25 is increased. The optimum temperature set value of is also gradually increased from 30 degrees C according to the rotation speed. As the optimum temperature set value of the bearing oil rises, the temperature of the bearing oil is temperature-controlled to follow the optimum temperature set value with a time delay, and the temperature gradually rises. Furthermore, the rotation speed of the turbine is increased to 3500 rpm, which is almost 95% of the rated speed.
When reaching the vicinity, the first function converter 25 outputs 46 degrees C as the optimum temperature setting value of the bearing oil.

【0041】斯くして、タービン10の回転速度が35
00rpmに達するか、或いは軸受油の最適温度設定値
が46度Cに達すると、第2の切換器42の切換接触子
Tは図示とは反対の固定接点a側に切換えられてa−c
間が接続される。そのため、低値優先回路44への開度
設定値入力は、第1の開度設定器41の最大開度制限値
の50%から第2の開度設定器43の全開開度値の10
0%へ切換えられて、この全開開度値100%が入力さ
れるから、軸受油温度調節弁21の開度制限は解除され
る。
Thus, the rotation speed of the turbine 10 is 35
When it reaches 00 rpm or the optimum temperature setting value of the bearing oil reaches 46 degrees C, the switching contactor T of the second switching device 42 is switched to the fixed contact a side opposite to that shown in the drawing, and a-c.
The connection is established. Therefore, the opening set value input to the low value priority circuit 44 is from 50% of the maximum opening limit value of the first opening setter 41 to 10% of the fully opened opening value of the second opening setter 43.
Since it is switched to 0% and this fully open opening value of 100% is input, the opening restriction of the bearing oil temperature control valve 21 is released.

【0042】図2の左側部分は、上記のタービン10の
ターニング中から起動制御の終了近傍に至るまでの軸受
油の温度制御における軸受油の温度(曲線a)およびそ
の最適温度設定値(曲線b)を示し、図3の左側部分
は、上記温度制御における軸受油温度調節弁21の最大
開度制限値(曲線c)および最小開度制限値(曲線d)
を示している。
The left part of FIG. 2 shows the bearing oil temperature (curve a) and its optimum temperature set value (curve b) in the temperature control of the bearing oil from the turning of the turbine 10 to the vicinity of the end of the start control. 3), the left side portion of FIG. 3 shows the maximum opening limit value (curve c) and the minimum opening limit value (curve d) of the bearing oil temperature control valve 21 in the above temperature control.
Is shown.

【0043】このようにして、軸受油の最適温度設定値
が43度C以下、或いはタービン10の回転数が350
0rpm以下においては、軸受油温度調節弁21の開度
は、その最大開度制限値の50%に制限されているか
ら、PID演算器27の出力の操作信号が50%を超え
ても、低値優先回路44の作用によって、軸受油温度調
節弁21の開度が、この最大開度制限値50%を超えて
開制御されることは無く、軸受油冷却水の過流量は防止
される。
In this way, the optimum temperature setting value of the bearing oil is 43 ° C. or less, or the rotational speed of the turbine 10 is 350.
At 0 rpm or less, the opening of the bearing oil temperature control valve 21 is limited to 50% of the maximum opening limit value. Therefore, even if the operation signal of the output of the PID calculator 27 exceeds 50%, it is low. Due to the action of the value priority circuit 44, the opening of the bearing oil temperature control valve 21 is not controlled to be opened beyond the maximum opening limit value of 50%, and the overflow of the bearing oil cooling water is prevented.

【0044】さらにタービン10が3500rpmを超
えて昇速して行くと、軸受油の温度も43度Cを超えて
上昇するから、軸受油温度に応ずる軸受油温度調節弁2
1の最適開度信号を出力する第2の関数変換器31の出
力も、軸受油の温度上昇に応じて0から次第に上昇し、
この出力は第1の切換器32に加えられるが、この時点
では未だ第1の切換器32の切換条件は成立していない
から、この上昇した出力が高値優先回路34に加えられ
ることは無く、温度制御には無関係である。
When the turbine 10 further accelerates beyond 3500 rpm, the temperature of the bearing oil also rises above 43 ° C. Therefore, the bearing oil temperature control valve 2 depending on the bearing oil temperature 2
The output of the second function converter 31 which outputs the optimum opening degree signal of 1 also gradually increases from 0 in accordance with the temperature rise of the bearing oil,
This output is added to the first switch 32, but at this point the switching condition of the first switch 32 is not satisfied yet, so this increased output is not added to the high value priority circuit 34, It has nothing to do with temperature control.

【0045】タービン10の回転速度がその定格速度
(運転速度)である3600rpmに達すると、第1の
関数変換器25は、軸受油の最適温度設定値として46
度Cを出力する。そしてこの時、軸受油の温度も上記の
ように43度Cに達しているから、上記の第1の切換器
32の切換条件(軸受油の設定温度が46度Cで且つ軸
受油の温度が43度C以上)は成立し、その切換接触子
Tは固定接点aから固定接点bに切換えられ、図示のよ
うにb−c間が接続される。
When the rotational speed of the turbine 10 reaches its rated speed (operating speed) of 3600 rpm, the first function converter 25 sets the optimum temperature setting value of the bearing oil to 46.
Degree C is output. At this time, the temperature of the bearing oil also reaches 43 degrees C as described above, so the switching condition of the first switching device 32 (the set temperature of the bearing oil is 46 degrees C and the temperature of the bearing oil is 43 degrees C or more) is established, and the switching contact T is switched from the fixed contact a to the fixed contact b, and as shown in the drawing, bc is connected.

【0046】したがって、高値優先回路34には、第1
の関数変換器31から軸受油の温度上昇に応じて0から
次第に上昇した軸受油温度調節弁21の最適開度信号が
加えられることになる。継続する温度制御により、やが
て軸受油の温度が46度Cに達すると、第2の関数変換
器31は軸受油温度調節弁21の最適開度信号として例
えば15%を出力し、この15%の出力は高値優先回路
34に加えられる。
Therefore, the high price priority circuit 34 has the first
The function converter 31 adds the optimum opening signal of the bearing oil temperature control valve 21, which gradually increases from 0 in accordance with the temperature rise of the bearing oil. When the temperature of the bearing oil reaches 46 degrees C due to the continuous temperature control, the second function converter 31 outputs, for example, 15% as the optimum opening signal of the bearing oil temperature control valve 21. The output is applied to the high value priority circuit 34.

【0047】上記のように、タービン10の回転速度が
その運転速度である3600rpmに達し、第1の関数
変換器25が軸受油の最適温度設定値として46度Cを
出力すると、軸受油の温度は、最適温度設定値の46度
Cに向けて上昇制御される。しかし軸受油の温度は、図
2の軸受油温度曲線aに示すように、この最適温度設定
値の46度Cを超えて上昇するオーバーシュート状態に
なるが、オーバーシュート防止回路30の上記の高値優
先回路34の作用によって、オーバーシュート値は順次
低値に抑制され、やがて軸受油の温度は最適温度設定値
の46度Cに落ち着く。
As described above, when the rotational speed of the turbine 10 reaches its operating speed of 3600 rpm and the first function converter 25 outputs 46 ° C. as the optimum temperature setting value of the bearing oil, the temperature of the bearing oil is increased. Is controlled to rise to the optimum temperature setting value of 46 degrees C. However, as shown in the bearing oil temperature curve a in FIG. 2, the temperature of the bearing oil rises above this optimum temperature setting value of 46 degrees C. However, the above-mentioned high value of the overshoot prevention circuit 30 increases. Due to the action of the priority circuit 34, the overshoot value is sequentially suppressed to a low value, and eventually the temperature of the bearing oil settles at the optimum temperature set value of 46 degrees C.

【0048】以上、タービン10のターニングから起
動、運転に至るまでの軸受油の温度制御について説明し
たが、次にタービン10の停止時の制御について簡単に
説明する。
The temperature control of the bearing oil from turning of the turbine 10 to starting and operation has been described above. Next, the control when the turbine 10 is stopped will be briefly described.

【0049】図2において、点PSにて図示しない制御
盤からタービン10に停止指令が発せられると、タービ
ン10の回転速度は低下に転じ、運転速度の3600r
pmから低下する。このタービン10の回転速度の低下
に伴い軸受油の最適温度設定値が低下して46度C以下
になると、第1の切換器32の切換接触子Tは固定接点
b側からa側に切換えられてa−c間が接続される。そ
のため高値優先回路34への入力は、第2の関数変換器
31の出力の最適開度信号から最小開度設定器33の出
力へ切換えられ最小開度制限値0%が入力されて、軸受
油温度調節弁21の最小開度制限値は、図示のように1
5%から0%に切換えられる。
In FIG. 2, when a stop command is issued to the turbine 10 from a control panel (not shown) at a point PS, the rotational speed of the turbine 10 starts to decrease, and the operating speed of 3600r.
It decreases from pm. When the optimum temperature setting value of the bearing oil decreases to 46 degrees C or less as the rotation speed of the turbine 10 decreases, the switching contact T of the first switching device 32 is switched from the fixed contact b side to the a side. And a-c are connected. Therefore, the input to the high price priority circuit 34 is switched from the optimum opening signal of the output of the second function converter 31 to the output of the minimum opening setter 33, and the minimum opening limit value 0% is input, and the bearing oil is input. The minimum opening limit value of the temperature control valve 21 is 1 as shown in the figure.
It is switched from 5% to 0%.

【0050】また、タービン10の回転速度が低下し
て、点Pにおいて3500rpmに低下すると、第2の
切換器42の切換接触子Tは、図示のように固定接点a
側からb側に切換えられて図示のようにb−c間が接続
される。したがって、低値優先回路44への開度設定値
入力は、第2の開度設定器43の出力から第1の開度設
定器41の出力へと切換えられ、最大開度制限値50%
が入力されて、軸受油温度調節弁21の最大開度制限値
は、図示のように100%から50%に切換えられる。
When the rotational speed of the turbine 10 is reduced to 3500 rpm at the point P, the switching contactor T of the second switching device 42 causes the fixed contact a as shown in FIG.
The side is switched to the side b, and bc is connected as shown in the drawing. Therefore, the opening set value input to the low value priority circuit 44 is switched from the output of the second opening setter 43 to the output of the first opening setter 41, and the maximum opening limit value 50%.
Is input, the maximum opening limit value of the bearing oil temperature control valve 21 is switched from 100% to 50% as shown in the figure.

【0051】そして、タービン10の回転速度の下降に
つれて、軸受油の最適温度設定値は次第に低下し、軸受
油の温度も最適温度設定値に時間遅れを伴いつつ追従し
て降温制御され、最適温度設定値と共に次第に下降して
30度Cになる。
Then, as the rotational speed of the turbine 10 decreases, the optimum temperature setting value of the bearing oil gradually decreases, and the temperature of the bearing oil is also controlled to follow the optimum temperature setting value with a time lag to decrease the temperature. It gradually drops to 30 degrees C with the set value.

【0052】上記のようにして、軸受油冷却水過流量防
止回路40は、軸受油の最適温度設定値が43度C以
下、或いはタービン10の回転速度が3500rpm以
下の状態においては、低値優先回路44から軸受油温度
調節弁21の開度が50%以上にならないように開度制
限出力される。その結果、タービン10の起動・停止等
の過渡変化時における軸受油冷却水の過流量に起因する
軸受油の過冷却を確実に防止することができる。また、
軸受油温度調節弁21の開度制限を設けることにより、
軸受油の過冷却による軸受油温度のアンダーシュートも
併せて防止することができる。
As described above, the bearing oil cooling water overflow prevention circuit 40 gives priority to the low value when the optimum temperature setting value of the bearing oil is 43 ° C. or less or the rotation speed of the turbine 10 is 3500 rpm or less. The circuit 44 outputs an opening limit so that the opening of the bearing oil temperature control valve 21 does not exceed 50%. As a result, it is possible to reliably prevent the overcooling of the bearing oil due to the excessive flow rate of the bearing oil cooling water at the time of a transient change such as the start / stop of the turbine 10. Also,
By setting the opening limit of the bearing oil temperature control valve 21,
It is also possible to prevent undershoot of the bearing oil temperature due to overcooling of the bearing oil.

【0053】[0053]

【発明の効果】以上、本発明について詳細に説明した
が、本発明のタービン軸受油温度制御装置においては、
軸受油温度調節弁の予め定められた最大開度制限値が設
定される第1の開度設定器と、軸受油温度調節弁の全開
開度値が設定される第2の開度設定器と、これらの最大
開度制限値と全開開度値とが入力され、タービン軸受油
の最適温度設定値またはタービンの回転速度のいずれか
一方が予め定められた値より小さいときには前記最大開
度制限値を出力し、タービン軸受油の最適温度設定値ま
たはタービンの回転速度のいずれか一方が予め定められ
た値より大となると切換えられて前記全開開度値を出力
する切換器と、この切換器の出力とPID演算器の操作
信号出力とが入力される低値優先回路とから構成される
軸受油冷却水過流量防止回路を付加し、低値優先回路の
出力により軸受油温度調節弁の開度制御を行うようにし
たから、PID制御のパラメータの設定値に関係なく容
易に軸受油冷却水の過流量を防止することが可能とな
り、特に、タービンの試運転調整において、軸受油冷却
水の過流量の制約を受けることなく、簡単にタービン軸
受油温度制御の自動調整が実施できる。
The present invention has been described in detail above. However, in the turbine bearing oil temperature control device of the present invention,
A first opening degree setter for setting a predetermined maximum opening degree limit value of the bearing oil temperature control valve, and a second opening degree setter for setting a fully open opening degree value of the bearing oil temperature control valve. , The maximum opening limit value and the full-opening opening value are input, and when either the optimum temperature setting value of the turbine bearing oil or the rotational speed of the turbine is smaller than a predetermined value, the maximum opening limit value Of the turbine bearing oil or the rotational speed of the turbine is greater than a predetermined value is switched to output the full-opening opening value, and a switching device of this switching device. A bearing oil cooling water overflow prevention circuit composed of a low value priority circuit to which the output and the operation signal output of the PID calculator are input, and the opening of the bearing oil temperature control valve is controlled by the output of the low value priority circuit. Since it is controlled, PID system It is possible to easily prevent the overflow of the bearing oil cooling water regardless of the setting values of the parameters, and especially in the trial run adjustment of the turbine, without the constraint of the overflow of the bearing oil cooling water, the turbine can be easily The bearing oil temperature control can be automatically adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のタービン軸受油温度制御装置の一実施
例を示す図である。
FIG. 1 is a diagram showing an embodiment of a turbine bearing oil temperature control device of the present invention.

【図2】本発明の作動を説明するための軸受油温度曲線
図である。
FIG. 2 is a bearing oil temperature curve diagram for explaining the operation of the present invention.

【図3】本発明の作動を説明するための軸受油温度調節
弁の制限開度曲線図である。
FIG. 3 is a limit opening curve diagram of the bearing oil temperature control valve for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

10 タービン 10a タービン10の軸受 11 回転速度検出器 13 軸受油冷却器 15 軸受油ポンプ 16 給油配管 17 軸受油温度検出器 19 軸受油冷却水ポンプ 20 軸受油冷却水配管 21 軸受油温度調節弁 25 第1の関数変換器 26 比較器 27 PID演算器 30 軸受油温度オーバーシュート防止回路 31 第2の関数変換器 32 第1の切換器 33 最小開度設定器 34 高値優先回路 40 軸受油冷却水過流量防止回路 41 第1の開度設定器 42 第2の切換器 43 第2の開度設定器 44 低値優先回路 10 Turbine 10a Bearing 10 of Turbine 10 Rotational Speed Detector 13 Bearing Oil Cooler 15 Bearing Oil Pump 16 Oil Supply Pipe 17 Bearing Oil Temperature Detector 19 Bearing Oil Cooling Water Pump 20 Bearing Oil Cooling Water Pipe 21 Bearing Oil Temperature Control Valve 25th 1 function converter 26 comparator 27 PID calculator 30 bearing oil temperature overshoot prevention circuit 31 second function converter 32 first switching device 33 minimum opening setting device 34 high value priority circuit 40 bearing oil cooling water overflow Prevention circuit 41 First opening setting device 42 Second switching device 43 Second opening setting device 44 Low value priority circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05D 23/00 A 23/19 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G05D 23/00 A 23/19 J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービンの軸受に給油されるタービン軸
受油を、軸受油温度調節弁の開度制御によってその流量
が調整される軸受油冷却水により冷却するタービン軸受
油冷却器と、前記タービン軸受油の温度を検出して軸受
油温度を出力する軸受油温度検出器と、前記タービンの
回転速度を検出して回転速度を出力する回転速度検出器
と、前記回転速度を入力され、前記タービンの回転速度
に応ずる前記タービン軸受油の最適温度設定値を出力す
る関数変換器と、前記軸受油温度と前記最適温度設定値
とを入力され、両入力の温度偏差信号を出力する比較器
と、前記温度偏差信号を入力され、この温度偏差信号に
比例、積分、微分等の演算を行い、前記軸受油温度調節
弁の操作信号を出力するPID演算器と、前記軸受油温
度調節弁の予め定められた最大開度制限値が設定される
第1の開度設定器と、前記軸受油温度調節弁の全開開度
値が設定される第2の開度設定器と、前記第1の開度設
定器の最大開度制限値と前記第2の開度設定器の全開開
度値とが入力され、前記関数変換器の出力する最適温度
設定値または前記タービンの回転速度の少なくともいず
れか一方が予め定められた値より小さいときには前期最
大開度制限値を出力し、前記関数変換器の出力する最適
温度設定値または前記タービンの回転速度の少なくとも
いずれか一方が予め定められた値より大となると切換え
られて前期全開開度値を出力する切換器と、前記操作信
号と前記切換器の出力とが入力され、両入力の中の低い
方の値を有する入力を通過させて前記軸受油温度調節弁
へ出力する低値優先回路と、を備えたことを特徴とする
タービン軸受油温度制御装置。
1. A turbine bearing oil cooler for cooling turbine bearing oil supplied to the bearing of a turbine with bearing oil cooling water whose flow rate is adjusted by controlling the opening of a bearing oil temperature control valve, and the turbine bearing. A bearing oil temperature detector that detects the temperature of oil and outputs the bearing oil temperature, a rotation speed detector that detects the rotation speed of the turbine and outputs the rotation speed, and the rotation speed that is input A function converter that outputs an optimum temperature set value of the turbine bearing oil depending on the rotation speed, a comparator that receives the bearing oil temperature and the optimum temperature set value, and outputs a temperature deviation signal of both inputs, A PID calculator for inputting a temperature deviation signal, performing proportional, integral, differential, etc. operations on the temperature deviation signal and outputting an operation signal for the bearing oil temperature control valve, and a predetermined setting for the bearing oil temperature control valve. A first opening degree setter for setting the maximum opening degree limit value, a second opening degree setter for setting the fully opened opening degree value of the bearing oil temperature control valve, and the first opening degree The maximum opening limit value of the setting device and the full-opening opening value of the second opening setting device are input, and at least one of the optimum temperature set value output by the function converter and the rotational speed of the turbine is input. When it is smaller than a predetermined value, the previous period maximum opening limit value is output, and at least one of the optimum temperature set value output by the function converter and the rotation speed of the turbine becomes larger than a predetermined value. A switching device which is switched to output the full-opening opening value in the previous period, the operation signal and the output of the switching device are input, and the input having the lower value of both inputs is passed to adjust the bearing oil temperature. Equipped with a low value priority circuit that outputs to the valve Turbine bearing oil temperature control device, wherein the door.
JP690895A 1995-01-20 1995-01-20 Turbine bearing oil temperature control device Expired - Fee Related JP2905415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP690895A JP2905415B2 (en) 1995-01-20 1995-01-20 Turbine bearing oil temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP690895A JP2905415B2 (en) 1995-01-20 1995-01-20 Turbine bearing oil temperature control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP233398A Division JP3571205B2 (en) 1998-01-08 1998-01-08 Turbine bearing oil temperature control device

Publications (2)

Publication Number Publication Date
JPH08200094A true JPH08200094A (en) 1996-08-06
JP2905415B2 JP2905415B2 (en) 1999-06-14

Family

ID=11651345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP690895A Expired - Fee Related JP2905415B2 (en) 1995-01-20 1995-01-20 Turbine bearing oil temperature control device

Country Status (1)

Country Link
JP (1) JP2905415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104847800A (en) * 2015-05-26 2015-08-19 宁波达奋精工轴承有限公司 Matching structure of bearing and bearing seat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226500A (en) * 2004-02-10 2005-08-25 Chugoku Electric Power Co Inc:The Method for stopping power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104847800A (en) * 2015-05-26 2015-08-19 宁波达奋精工轴承有限公司 Matching structure of bearing and bearing seat
CN104847800B (en) * 2015-05-26 2017-04-26 宁波达奋精工轴承有限公司 Matching structure of bearing and bearing seat

Also Published As

Publication number Publication date
JP2905415B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US5752378A (en) Prevention of parameter excursions in gas turbines
JPS6124601B2 (en)
JPWO2018179789A1 (en) Gas compressor
CN114811860B (en) Control method of multi-split air conditioning system and multi-split air conditioning system
US6253537B1 (en) Revolution speed control method in gas turbine shutdown process
JPH08200094A (en) Turbine bearing oil temperature control device
JP3571205B2 (en) Turbine bearing oil temperature control device
JP5586020B2 (en) Turbine controller, pump controller, and reactor isolation cooling system control system
JP3302788B2 (en) Turbine control unit and reactor isolation cooling system control system
JP3165619B2 (en) Thermal stress reduction operation method of steam turbine in single shaft combined cycle
US6250887B1 (en) Reversible pump-turbine system
JP3611349B2 (en) Turbine bearing lubrication temperature controller
JP3324899B2 (en) Turbine gland steam pressure controller
JPS60138209A (en) Bearing feed oil temperature control device
JP4127911B2 (en) Steam turbine ground steam pressure controller
JP2781527B2 (en) Pump control method for pressure tank type water supply device
JP2003227304A (en) Turbine control device
JPS62189304A (en) Method for controlling combined plant
JP3734791B2 (en) Gas turbine water injection control device
JPH0610404B2 (en) Steam turbine controller
CN116428060A (en) Control method of lubricating oil system of marine gas turbine
JPH0488851A (en) Controlling system for temperature of bearing oil of rotating machine
JP2511949B2 (en) Turbine bearing oil temperature control device
JPH09145894A (en) Reactor feed water control device for boiling water nuclear power plant
JPH06337103A (en) Controller for water supply flow rate in water supply pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees