JPH08196619A - Cathether tubular member - Google Patents

Cathether tubular member

Info

Publication number
JPH08196619A
JPH08196619A JP7046091A JP4609195A JPH08196619A JP H08196619 A JPH08196619 A JP H08196619A JP 7046091 A JP7046091 A JP 7046091A JP 4609195 A JP4609195 A JP 4609195A JP H08196619 A JPH08196619 A JP H08196619A
Authority
JP
Japan
Prior art keywords
tube
tube body
tubular member
thermoplastic polyimide
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7046091A
Other languages
Japanese (ja)
Inventor
Koichi Nakai
浩一 中井
Taichi Kawahara
太一 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP7046091A priority Critical patent/JPH08196619A/en
Publication of JPH08196619A publication Critical patent/JPH08196619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE: To provide a cathether tubular member which is smoothly and quickly inserted into a living body and easily drawn out without being accompanied by pain even when the inserting distance into the body is long, by forming the cathether tubular member from a seamless tube body whose main component is a thermoplastic polyimide resin. CONSTITUTION: A cathether tubular member is formed by a seamless tube body whose main component is a thermoplastic polyimide resin. Concretely, it is formed by the seamless tube body which contains 55∼95 weight % of thermoplastic polyimide resin and 45∼55 weight % of polyetheretherketone resin. This tube body has a tapered shape so that the at least tip part is narrowed toward the head part, and Young's modulus of the tube body is in the range of 10000 to 50000kg/cm<2> . Thereby, it can be inserted into the living body quite smoothly and quickly without being accompanied by pain and can be drawn out smoothly and quickly even when the inserting distance into the body is long.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は適度の柔軟性、強度、剛
性等を有するカテーテル用チューブ状部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular member for catheter having appropriate flexibility, strength and rigidity.

【0002】[0002]

【従来の技術】カテーテルは腔、管、血管等に挿入する
中空状の医療器具であり、液体の注入、吸入、通路の確
保等に用いられているもので、通常細いチューブ体から
なっている。このようなカテーテル用チューブは適度に
柔軟性を有していることが基本であるが、挿入、引き出
し、位置の調整等に際して折れないために機械的強度と
適度の剛性も要求されている。従来はこれらの要求を考
慮し、その素材としては各種エラストマー、熱可塑性ポ
リウレタン、フッ素系ポリマー等多くのものが用いられ
ている。従来よりカテーテルを用いて体内への液体の注
入、吸引等を行う場合、通常迅速に行なわれることが望
まれ、その解決のために一般にチューブの内径を大とす
ることが行れている。
2. Description of the Related Art A catheter is a hollow medical instrument that is inserted into a cavity, a tube, a blood vessel, etc., and is used for injecting and inhaling a liquid, securing a passage, etc., and usually has a thin tube body. . Such a catheter tube is basically required to have appropriate flexibility, but mechanical strength and appropriate rigidity are also required because it does not break during insertion, withdrawal, position adjustment, and the like. Conventionally, in consideration of these requirements, many materials such as various elastomers, thermoplastic polyurethanes, and fluoropolymers have been used as the material. Conventionally, when injecting a liquid into a body, aspirating, etc. using a catheter, it is usually desired to perform it quickly, and in order to solve the problem, the inner diameter of the tube is generally made large.

【0003】[0003]

【発明が解決しようとする課題】カテーテル用の素材は
各々の目的・用途において満足されて便用されている
が、最近の医療技術の進歩に対し、追従できない状況も
見受けられる。例えば、脳のX線撮影を行うに際し、股
の静脈からマイクロカテーテルを挿入し、脳に造影剤を
注入する場合、その距離は約2mに及ぶので、このカテ
ーテル用チューブの素材としては、従来では前記したよ
うにポリエチレン等のオレフィン系のエラストマー、熱
可塑性ポリウレタン等が使用されているが、こうした材
質のカテーテルは身体内への押し込み時に曲がってしま
い、入りにくい状況で、しかも抜き取る時に切れるとい
ったトラブルがあって、安心して使用できない状況にあ
る。これは素材自身の特性にもよるが、極めて細いチュ
ーブを使用する必要があることと、チューブの先端部分
は細く、つまりテーパ状のチューブが使用されることに
もよる。この問題の解決は、可能な限り、細く、柔軟性
もあることが基本にはなるが、機械的強度と適当な剛性
を有するチューブによって行われることが、より効果的
である。
Although the materials for catheters are used satisfactorily for their respective purposes and uses, there are some situations in which they cannot follow the recent advances in medical technology. For example, when a microcatheter is inserted from a crotch vein and a contrast agent is injected into the brain when performing X-ray imaging of the brain, the distance is about 2 m, so that the material for this catheter tube is conventionally As mentioned above, olefinic elastomers such as polyethylene, thermoplastic polyurethane, etc. are used, but catheters made of these materials bend when pushed into the body, and it is difficult to enter, and there is a problem that they are cut when withdrawn. There is a situation where it cannot be used with confidence. This depends on the characteristics of the material itself, but it is also necessary to use an extremely thin tube and that the tip portion of the tube is thin, that is, a tapered tube is used. The solution to this problem is basically to be as thin and flexible as possible, but it is more effective to use a tube having mechanical strength and appropriate rigidity.

【0004】カテーテルによる液体の体内への注入又は
吸引、排出の迅速性を目的としたチューブ状部材の内径
の拡大策は、次のような問題点がある。即ち、従来の素
材では、内径を大きくしようするならば、必然的に外径
を大きくせざるを得ない。これは適当な強度と剛性とを
付与するためである。外径が大きくなれば、体内に挿入
する場合の刺通抵抗、逆に取り出す時の引抜抵抗、更に
は体内での位置調整(移動)の場合の抵抗において、こ
れが大きくなるので、このような場合、痛さ、違和感が
大きくなり、肉体的、精神的な苦痛につながることにな
る。従って、内径をより大きくして、外径はより小さ
く、しかも適当な柔軟性、強度、剛性を有するチューブ
体がカテーテル用として強く求められるところである。
The measures for increasing the inner diameter of the tubular member for the purpose of promptly injecting, sucking, and discharging the liquid into the body by the catheter have the following problems. That is, in the conventional material, if the inner diameter is increased, the outer diameter is inevitably increased. This is to provide appropriate strength and rigidity. If the outer diameter increases, the piercing resistance when inserting into the body, the pulling resistance when taking out conversely, and the resistance when adjusting the position (moving) inside the body will increase, so in such cases , Pain, discomfort, and physical and mental distress. Therefore, there is a strong demand for a tube body having a larger inner diameter, a smaller outer diameter and suitable flexibility, strength and rigidity for a catheter.

【0005】そこで本発明者らは、前記課題に対して、
従来のチューブ素材をベースにして、ブレンド等による
改質、硬度の変更(適当に硬く)について検討したが、
いずれもすべてを満足するものは見出せなかった。しか
し乍らここでの検討の過程で硬質の樹脂でもチューブの
肉厚を薄くする等の方策を講ずることで、従来のものよ
りも優れた品質のカテーテルを提供することが可能と判
ったので、更に検討を進めた結果、ついに本発明に到達
した。
Therefore, the present inventors have addressed the above-mentioned problems.
Based on the conventional tube material, we examined modification by blending and change of hardness (appropriately hard),
None of them found anything satisfying all. However, in the process of study here, it was found that it is possible to provide a catheter with better quality than the conventional one by taking measures such as thinning the tube thickness even with hard resin. As a result of further study, the present invention was finally reached.

【0006】[0006]

【課題を解決するための手段】即ち本発明は熱可塑性ポ
リイミド樹脂を主成分としたシームレス状のチューブ体
からなるカテーテル用チューブ状部材を提供するもので
あり、更に該ポリイミド樹脂95〜55重量%とポリエ
ーテルエーテルケトン5〜45重量%とを含有するシー
ムレス状のチューブ体をカテーテル用チューブ状部材と
して提供するものである。以下に本発明の構成について
より詳細に説明する。
That is, the present invention provides a tubular member for a catheter comprising a seamless tubular body containing a thermoplastic polyimide resin as a main component, and further 95 to 55% by weight of the polyimide resin. The present invention provides a seamless tube body containing 5 to 45% by weight of polyether ether ketone as a tubular member for a catheter. The structure of the present invention will be described in more detail below.

【0007】まず本発明においてカテーテルは、前記す
るように体内に血液、薬液等を注入したり、逆に体内か
ら分泌液、血液等を吸引したり排出したりする用途に有
用で、更には内視機能を持たせて使用することもでき
る。その上、人体に限らず動物用の各種カテーテルとし
ても使用可能であり、更には工業用の内視カテーテル用
等にも使用でき、その用途はあらゆる分野に広範に及
ぶ。
First, in the present invention, the catheter is useful for the purpose of injecting blood, drug solution or the like into the body as described above, or conversely, for sucking or discharging secretory fluid, blood or the like from the body, It can also be used with a visual function. In addition, it can be used not only as a human body but also as various catheters for animals, and can also be used for industrial endoscopic catheters and the like, and its applications are widespread in all fields.

【0008】本発明で用いられる熱可塑性ポリイミド樹
脂とは、一般にテトラカルボン酸二無水物と有機ジアミ
ンとをジメチルアセトアミド等の有機極性溶媒中で重縮
合反応して、ポリアミック酸を経由し、最後に閉環イミ
ド化して得られるポリイミドの中で、加熱によって軟化
又は溶融する性質を有し、かつ押出成形の可能なポリマ
ーを言う。従って押出成形、即ち加熱による溶融成形の
不可能なポリイミドは本発明から除外される。
The thermoplastic polyimide resin used in the present invention is generally a polycondensation reaction of a tetracarboxylic dianhydride and an organic diamine in an organic polar solvent such as dimethylacetamide to pass through a polyamic acid and finally Among the polyimides obtained by ring-closing imidization, it means a polymer which has the property of softening or melting by heating and which can be extruded. Therefore, polyimides that cannot be extruded, ie, melt-formed by heating, are excluded from the present invention.

【0009】ポリイミドに前記する熱可塑性が付与され
るのは、出発物質であるテトラカルボン酸二無水物又は
/および有機ジアミンの種類による。つまり酸無水基又
はアミノ基が結合する基(芳香族系)が脂肪族炭化水
素、酸素原子、カルボニル基等で結合され、長い直鎖構
造を持つ場合に、熱可塑性ポリイミド樹脂が得られやす
い。具体的には、例えばピロメリット酸二無水物と4、
4′−ビス(3−アミノフェノキシ)ビスフェニルとの
組合せ、3、3′、4、4′−ビスフェニルテトラカル
ボン酸二無水物とビス[4−{3−(4−アミノフェノ
キシ)ベンゾイル・}フェニル]エーテルとの組合せ、
3、3′、4、4′−ベンゾフェノンテトラカルボン酸
二無水物と3、3′−ジアミノベンゾフェノンとの組合
せ、更にはイソプロピリデンビス−(4−フェニレンオ
キシ−4−フタル酸)二無水物と2、2′−フェニレン
ジアミンとの組合せ等によって得られる熱可塑性ポリイ
ミドが例示でき、これらは通常では400℃前後で、加
熱することによって、軟化又は溶融するので、押出成形
が可能である。より具体的には熱可塑性ポリイミド樹脂
として上市されている、例えば、GE社のULTEM1
000、Du・Pont社のK−POLYMER、三井
東圧化学(株)のAURUM又はLARC−TPI等を
あげることができる。中でも押出成形性において、より
優れているものとしてAURUM(New−TPIとも
呼称される)を挙げることができ、ある種のグレードの
ものはガラス転移点が250℃、融点が388℃であ
る。
The reason why the above-mentioned thermoplasticity is imparted to the polyimide depends on the kind of the tetracarboxylic dianhydride or / and the organic diamine as the starting material. That is, when an acid anhydride group or a group (aromatic group) to which an amino group is bonded is bonded by an aliphatic hydrocarbon, an oxygen atom, a carbonyl group or the like and has a long linear structure, a thermoplastic polyimide resin is easily obtained. Specifically, for example, pyromellitic dianhydride and 4,
Combination with 4'-bis (3-aminophenoxy) bisphenyl 3,3 ', 4,4'-bisphenyltetracarboxylic dianhydride and bis [4- {3- (4-aminophenoxy) benzoyl. } Phenyl] ether in combination,
A combination of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride and 3,3′-diaminobenzophenone, and further isopropylidene bis- (4-phenyleneoxy-4-phthalic acid) dianhydride. An example is a thermoplastic polyimide obtained by combining with 2,2'-phenylenediamine and the like, and these are usually softened or melted by heating at around 400 ° C, and therefore extrusion molding is possible. More specifically, it is marketed as a thermoplastic polyimide resin, for example, ULTEM1 manufactured by GE.
000, K-POLYMER manufactured by Du Pont, AURUM or LARC-TPI manufactured by Mitsui Toatsu Chemicals, Inc., and the like. Among them, AURUM (also referred to as New-TPI) can be mentioned as a material which is more excellent in extrusion moldability. Some grades have a glass transition point of 250 ° C and a melting point of 388 ° C.

【0010】かかる熱可塑性ポリイミド樹脂はシームレ
ス状のチューブ体としてカテーテル用に供されるが、こ
のような継目のないチューブ体は通常行われる例えば環
状ダイスからの押出成形によって製造することができ
る。例えば1軸又は多軸等のスクリユー式押出機から軟
化又は溶融状態で環状ダイスから押出し、冷却しつつそ
のまま引き取る方法、張力をかけつつ引き取る方法等を
例示できる。本発明によるチューブ体は内径をより大き
く外径をより小さく、つまり肉厚をより薄くすることが
できるが、このためにはインサイドマンドレル等により
寸法規制を行いつつ引き取る方法、押出、引き取り後、
延伸を行う方法等が採られる。いづれにしろ押出に際し
ては、環状ダイスの中心からエアーを送気し、エアー圧
によって寸法規制を行う方法がより好ましい。これはよ
り小さいチューブ、つまり内径の小さいチューブを成形
するのに有効である。尚、この方法は、前記した方法に
付随して行うこともできる。しかしながらその製法は特
に制限を受けるものでない。
Such a thermoplastic polyimide resin is used for a catheter as a seamless tube body, and such a seamless tube body can be produced by a conventional extrusion molding method, for example, from an annular die. For example, a method of extruding from a ring die in a softened or molten state from a single-screw or multi-screw type extruder and then taking it as it is while cooling, a method of taking it out while applying tension, and the like can be exemplified. The tube body according to the present invention has a larger inner diameter and a smaller outer diameter, that is, it is possible to make the wall thickness thinner.For this purpose, a method of pulling while controlling the dimensions by an inside mandrel or the like, extrusion, after pulling,
For example, a stretching method may be used. In any case, during extrusion, it is more preferable to feed air from the center of the annular die and regulate the dimensions by air pressure. This is effective for forming a smaller tube, that is, a tube having a smaller inner diameter. It should be noted that this method can also be performed in association with the above method. However, the manufacturing method is not particularly limited.

【0011】この際延伸によってもチューブの肉厚を薄
くすることができるが、その延伸は例えば約250〜3
50℃の温度で適宜の倍率、好ましくは2倍程度まで軸
方向及び/又は円周方向に延伸できるので、延伸する場
合は肉厚、柔軟性、剛性等を考慮して倍率を決めればよ
い。
At this time, the wall thickness of the tube can be reduced by stretching, but the stretching is, for example, about 250-3.
Since the film can be stretched in the axial direction and / or the circumferential direction up to an appropriate ratio, preferably about 2 times, at a temperature of 50 ° C., the ratio may be determined in consideration of the thickness, flexibility, rigidity and the like when stretching.

【0012】以上に説明する成形方法によると、肉厚、
内外径は広い範囲で、種々製造できる。例えば、肉厚約
10μm程度まで、外径約100μm程度までのチュー
ブを容易に製造することができる。肉厚についてはチュ
ーブの外径にもよるので特に制限はないが、一般には1
000〜10μm、好ましくは500〜20μm程度を
好適な範囲とすることができる。またチューブの適度な
柔軟性と適度な剛性の一応の目安となるヤング率につい
ては10,000〜50,000kg/cm、好まし
くは18,000〜50,000kg/cm程度を例
示できるが、この範囲を超えても差し支えないことは勿
論である。
According to the molding method described above, the wall thickness,
Various inner and outer diameters can be manufactured. For example, a tube having a wall thickness of about 10 μm and an outer diameter of about 100 μm can be easily manufactured. The wall thickness is not particularly limited because it depends on the outer diameter of the tube, but generally 1
000 to 10 μm, preferably about 500 to 20 μm can be set as a suitable range. The Young's modulus, which is a tentative guide for the appropriate flexibility and the appropriate rigidity of the tube, may be 10,000 to 50,000 kg / cm 2 , preferably 18,000 to 50,000 kg / cm 2 . Of course, there is no problem even if it exceeds this range.

【0013】熱可塑性ポリイミドチューブ体は適度な柔
軟性と耐屈曲性、剛性、強靭性においていかなる他の樹
脂よりも、卓越しているが、若干耐屈曲性、つまり曲折
しながら、体内に押し込んだり、取り出したりする使い
方で、使用頻度が多くなるにつれて、折れが発生する危
険性がある。この危険性を完全に解消することも極めて
重要である。そのために本発明では、特にポリエーテル
エーテルケトンを選択し、これを樹脂成分に対して5〜
45重量%、好ましくは10〜40重量%ブレンドし、
これを前記同様に押出成形して得たチューブ体としてカ
テーテルに使用することで達成できる。この際、熱可塑
性ポリイミド樹脂の混合量は樹脂成分に対して95〜5
5重量%、好ましくは90〜60重量%である。
The thermoplastic polyimide tube is superior to any other resin in moderate flexibility, flex resistance, rigidity and toughness, but is slightly flex resistant, that is, it is pushed into the body while bending. , There is a risk of breaking as the frequency of use increases and decreases. Completely eliminating this risk is also extremely important. Therefore, in the present invention, polyetheretherketone is particularly selected, and it is added to the resin component in an amount of 5 to 5.
45% by weight, preferably 10-40% by weight,
This can be achieved by using it in a catheter as a tube body obtained by extrusion molding as described above. At this time, the mixing amount of the thermoplastic polyimide resin is 95 to 5 with respect to the resin component.
It is 5% by weight, preferably 90-60% by weight.

【0014】ここでポリエーテルエーテルケトンはIC
I社で開発された4.4′−フェニレンジオールと4.
4′−シフルオロベンゾフェノンとの重合反応によって
得られた融点334℃の結晶性のポリマーを例示でき
る。従って熱可塑性ポリイミドと同様に押出成形が可能
である。機能性の高い多くの樹脂のある中で、特にポリ
エーテルエーテルケトンが選択されるのは熱可塑性ポリ
イミドとの相溶性に極めて優れ、チューブ体への押出成
形も良好であることは勿論、得られたチューブ体の特に
耐屈曲性が改良されるからである。耐屈曲性のより改良
の理由は定かでないが、熱可塑性ポリイミドとの相溶性
が良く、ポリエーテルエーテルケトンの分子構造に起因
する耐屈曲特性が付与されるためと考えられる。
Here, the polyether ether ketone is an IC
3. 4.4'-phenylenediol developed by Company I and 4.
A crystalline polymer having a melting point of 334 ° C. obtained by a polymerization reaction with 4′-cifluorobenzophenone can be exemplified. Therefore, extrusion molding is possible like thermoplastic polyimide. Among many highly functional resins, polyetheretherketone is particularly selected because it has excellent compatibility with thermoplastic polyimide and can be extruded into a tubular body well. This is because the bending resistance of the tube body is improved. Although the reason for further improvement in flex resistance is not clear, it is considered that the compatibility with thermoplastic polyimide is good and the flex resistance due to the molecular structure of polyether ether ketone is imparted.

【0015】そしてこの耐屈曲性の改良もポリエーテル
エーテルケトンの混合量が前記の通り5〜45重量%、
好ましくは10〜40重量%で最も効果的に行われる。
つまり5重量%未満では実質的な改良効果は顕著でな
く、又45重量%を超えると剛性を欠き、逆に屈曲しや
すくなり使用中に折れる危険性があって好ましくない。
This improvement in bending resistance is also achieved by mixing the polyether ether ketone in an amount of 5 to 45% by weight, as described above.
The most effective effect is preferably 10 to 40% by weight.
That is, if it is less than 5% by weight, the substantial improvement effect is not remarkable, and if it exceeds 45% by weight, the rigidity is lacking, and conversely, it tends to bend and there is a risk of breaking during use, which is not preferable.

【0016】ポリエーテルエーテルケトンを混合した場
合の押出成形条件は、熱可塑性ポリイミドの場合と全く
同じで良い。これは物性的、熱的な点で両者類似してい
ることによる。そして得られるチューブ体の大きさ、形
状も該ポリイミドによるチューブ体と同様のものを得る
ことができる。本発明にかかるチューブ体は熱可塑性ポ
リイミド樹脂は、前記したポリエーテルエーテルケトン
の他に、チューブ体の性質を著しく悪化させない範囲で
必要ならば各種の熱可塑性樹脂や、各種の添加剤等の第
三成分を加えることはいっこうに差し支えない。
The extrusion molding conditions when the polyether ether ketone is mixed may be exactly the same as those for the thermoplastic polyimide. This is because they are similar in terms of physical properties and heat. The size and shape of the obtained tube body can be the same as the tube body made of the polyimide. The tube body according to the present invention is a thermoplastic polyimide resin, in addition to the above-mentioned polyether ether ketone, various thermoplastic resins and various additives, if necessary, within a range that does not significantly deteriorate the properties of the tube body. There is no problem in adding the three components.

【0017】カテーテル用チューブ状部材は多くの場合
一定の内外径を有するが、マイクロカテーテルと呼ばれ
るカテーテルは体内への刺通抵抗をより小さくして、挿
入しやすい性質も要求されるので、そのために特に挿入
先端部分をテーパー状にして、より細く成形された形状
のものが使用される場合が多い。一般に従来から使用さ
れているテーパー状カテーテルでは、逆に挿入が困難に
なる場合が多々見られるが、これは強度と剛性に欠ける
ことによるものと考えられる。ところが本発明の熱可塑
性ポリイミド樹脂を用いたものは、テーパー状のチュー
ブ体であっても、より容易に小さな刺通抵抗で体内に、
奥深く挿入することができる。この原因は外径が小さく
かつ肉厚がより薄くても、適当な強度と剛性を有すると
共に、肉厚をより薄くすることで適度の柔軟性を付与せ
しめることができるからである。
In many cases, the tubular member for a catheter has a constant inner and outer diameters, but a catheter called a microcatheter is required to have a resistance to pierce into the body and to be easily inserted. In particular, it is often the case that the insertion tip portion is tapered so that it has a thinner shape. On the contrary, in many cases, it is often difficult to insert the conventionally used tapered catheter, but this is considered to be due to lack of strength and rigidity. However, the one using the thermoplastic polyimide resin of the present invention, even a tapered tube body, more easily into the body with a small piercing resistance,
Can be inserted deeply. This is because even if the outer diameter is small and the wall thickness is thin, it has appropriate strength and rigidity, and by making the wall thickness thinner, it is possible to impart appropriate flexibility.

【0018】前記テーパー状のチューブ体は、基端から
先端部へテーパー状をした構成であっても良いが、全体
がテーパー状であることは必ずしも必要ではない。少な
くとも先端部分(例えば約300mm以内)において、
最先端が細くなるようにテーパー状であれば良い。従っ
て、他の部分は内外径とも同じであっても良い。
The tapered tube body may be tapered from the base end to the distal end, but it is not always necessary that the entire tube body is tapered. At least at the tip (for example, within about 300 mm),
A tapered shape may be used so that the leading edge becomes thin. Therefore, the other portions may have the same inner and outer diameters.

【0019】このようなテーパー状のチューブ体の製造
方法は特定されるものはないが、例示するならば次のと
おりである。前記した環状ダイスを用い、連続的に行う
方法としては、テーパ状にしたいチューブの長さを予め
決めておき、その長さの間で吐出されるチューブを連続
的に加速しつつ引取る。次に、その長さの間で、逆に連
続的に初速に向かって、減速しつつ引取る。これを1サ
イクルとして以後同様に加速、減速を繰り返す。ここで
得られるチューブの内径、テーパー角度は主に、加速と
減速の速度加減によって決まる。より具体的には後述す
る実施例にて説明する。
Although there is no specific method for manufacturing such a tapered tube body, the following is an example. As a method of continuously using the above-mentioned annular die, the length of the tube to be tapered is determined in advance, and the tube discharged between the lengths is continuously accelerated and drawn. Next, during that length, the yarn is continuously taken toward the initial velocity while decelerating continuously. This is set as one cycle, and thereafter, acceleration and deceleration are repeated in the same manner. The inner diameter and taper angle of the tube obtained here are mainly determined by the acceleration and deceleration speeds. More concretely, it will be described in Examples described later.

【0020】一方、バッチ的に製造することもできる。
これは前記する方法で予め成形して得られた同径のチュ
ーブを、テーパー状に作られた所定長の型枠(金属製
等)に嵌挿し、全体を約250〜350℃に加熱する。
この場合用いるチューブが延伸されていると、加熱する
のみで良い。これは加熱によって収縮せしめることによ
って、テーパー状に変形するためである。又、無延伸で
ある場合には、嵌挿したチューブの基端部分は固定し
て、先端部分を積極的に引張る。引張る際の加熱温度は
約250〜350℃程度で行うが、先端部分に向かって
徐々に温度を高くするように温度勾配つけることが望ま
しい。
On the other hand, it is also possible to manufacture in batch.
In this, a tube having the same diameter obtained by preforming by the above-described method is fitted into a tapered form frame (made of metal or the like), and the whole is heated to about 250 to 350 ° C.
If the tube used in this case is stretched, it only needs to be heated. This is because when it is shrunk by heating, it is deformed into a taper shape. When the tube is not stretched, the proximal end portion of the inserted tube is fixed and the distal end portion is positively pulled. The heating temperature for pulling is about 250 to 350 ° C., but it is desirable to make a temperature gradient so that the temperature gradually increases toward the tip.

【0021】前記の通り構成されるチューブ体によるカ
テーテルは、股の静脈から脳までの長い挿入距離であっ
てもスムースに挿入される。従って痛みとか違和感も大
きく軽減される。これはチューブ体がより小さく、かつ
より薄い肉厚で成形されていて、しかも適当な強度と剛
性を保持しているからである。かかる機能は逆に引抜く
場合にも、スムースに快適に行われ、勿論これらの操作
中に屈折して医療が中断するような心配もない。
The catheter having the tube body constructed as described above can be smoothly inserted even with a long insertion distance from the vein of the hip to the brain. Therefore, pain and discomfort are greatly reduced. This is because the tube body is formed with a smaller size and a thinner wall thickness, and yet retains appropriate strength and rigidity. On the contrary, even when the function is pulled out, the function is smoothly and comfortably performed, and of course, there is no fear of refracting during these operations and interrupting the medical treatment.

【0022】また液体を注入又は吸引する場合も迅速に
行えるが、これはチューブ体の肉厚をより薄くして内径
をより大きくすることもできるからである。
Further, when injecting or sucking the liquid, it can be carried out quickly, but this is because the tube body can be made thinner and the inner diameter can be made larger.

【0023】痛みに関しては、剛性に依存するところも
大きいと云われ、本発明による熱可塑性ポリイミド樹脂
は、他の熱可塑性樹脂よりかなり剛性があるので、痛み
を伴い易いと思われるが、しかし乍ら本発明チューブ体
は従来の熱可塑性エラストマーによるチューブ体と同様
にほとんど痛みも少ない。この原因は本発明ではチュー
ブ体の肉厚を極簿にすることができるためであり、要す
るに薄くなると、見掛上の剛性がより小さくなって、こ
の分、ふにゃふにゃにならない程度の適度の柔軟性が付
与され、挿入、取り出しが容易となって痛みが少ないも
の考えられる。
With regard to pain, it is said that it depends largely on rigidity, and since the thermoplastic polyimide resin according to the present invention is considerably more rigid than other thermoplastic resins, it is likely to be accompanied by pain, but The tube body of the present invention has almost no pain as in the case of the conventional thermoplastic elastomer tube body. This cause is because it is possible to make the wall thickness of the tube body a pole in the present invention, in other words, when it becomes thin, the apparent rigidity becomes smaller, and by this amount, moderate flexibility that does not become fluffy. It is considered that the pain is imparted, the insertion and the removal are facilitated, and the pain is less.

【0024】[0024]

【実施例】以下に、本発明を比較例と共に実施例によっ
て、更に詳述する。
EXAMPLES The present invention will be described in more detail below with reference to Examples along with Comparative Examples.

【0025】実施例1 吐出先端部分に環状ダイスを取付けた1軸スクリュー式
押出機を準備し、これを使って、熱可塑性ポリイミド樹
脂(三井東圧化学株式会社.AURUM)を押出成形し
チューブ体を得た。この成形では、押出機のバレル温度
を380〜410℃、環状ダイスの温度を395℃、環
状ノズルのスリット間隔を0.45mm(外径4.6m
m、内径3.7mm)とし、ダイスの中心からエアーを
送気した。この際、引取速度は23m/mmに設定し
た。かくして得られたチューブは外径0.8mm、肉厚
125μmであった。
Example 1 A single-screw type extruder having an annular die attached to the discharge tip was prepared, and a thermoplastic polyimide resin (Mitsui Toatsu Chemical Co., Ltd. AURUM) was extrusion molded into a tubular body. Got In this molding, the barrel temperature of the extruder is 380 to 410 ° C., the temperature of the annular die is 395 ° C., the slit spacing of the annular nozzle is 0.45 mm (outer diameter 4.6 m).
m, inner diameter 3.7 mm), and air was fed from the center of the die. At this time, the take-up speed was set to 23 m / mm. The tube thus obtained had an outer diameter of 0.8 mm and a wall thickness of 125 μm.

【0026】比較例1 実施例1の熱可塑性ポリイミド樹脂にかえて、エチレン
−プロピレンゴム(EPDM)とプロピレンとの共重合
体を用い、同様にしてチューブ体を押出成形した。この
際、押出機のバレル温度は190〜220℃、ダイス温
度は220℃とした。得られたチューブの外径は0.8
5mm、肉厚は110μmであった。
Comparative Example 1 A tube body was extruded in the same manner by using a copolymer of ethylene-propylene rubber (EPDM) and propylene instead of the thermoplastic polyimide resin of Example 1. At this time, the barrel temperature of the extruder was 190 to 220 ° C and the die temperature was 220 ° C. The outer diameter of the obtained tube is 0.8
The thickness was 5 mm and the thickness was 110 μm.

【0027】次に得られた夫々のチューブ体を500m
mの長さにカットし、挿入の容易性を比較した。比較試
験は犬を使い、前足の静脈に中空針を差し、その中にチ
ューブを通して静脈中を脳に向かってどこまで挿入でき
るかを比較する挿入テストによって行った。この際、挿
入は該チューブの先端から300mmの位置で、親指と
人差し指とで把持して押し込んだ。その結果、比較例1
のものでは約30mm挿入時点で、挿入困難となり、つ
いに該チューブが屈曲して完全に挿入できなくなったの
で抜取った。一方、実施例1のものではスムースに挿入
でき、400mm入った時点でストップし抜取った。以
上の結果によると、本発明のカテーテル用チューブ状部
材は、一般のカテーテル用チューブに比較して、挿入、
抜き取り操作が容易で、刺通抵抗も小さく、このことか
らも、より大きな刺通抵抗がかかっても、操作し易いこ
とが理解できる。
Next, each of the obtained tube bodies is set to 500 m.
The length was cut into m and the ease of insertion was compared. The comparative test was carried out by using a dog, and inserting a hollow needle into the vein of the forepaw and inserting a tube through the hollow needle to compare the extent of insertion of the vein toward the brain. At this time, the tube was inserted at a position of 300 mm from the tip of the tube, and was gripped with the thumb and forefinger and pushed. As a result, Comparative Example 1
However, it was difficult to insert the tube at about 30 mm, and the tube finally bent so that the tube could not be completely inserted. On the other hand, in the case of Example 1, it could be smoothly inserted, and when it entered 400 mm, it was stopped and removed. According to the above results, the catheter tube-shaped member of the present invention is inserted, compared with a general catheter tube.
It can be understood that the pulling-out operation is easy and the piercing resistance is small. Therefore, even if a larger piercing resistance is applied, it is easy to operate.

【0028】実施例2 実施例1の熱可塑性ポリイミドの粉末60重量%とポリ
エーテルエーテルケトン粉末40重量%とを混合し、更
にこれを二軸の押出機(バレル温度380〜410℃)
で混練りしてペレット化した。この得られたペレットを
用いて、実施例1と同様に、チューブ状に押出成形し
た。得られたチューブ体の外径は0.75mm、肉厚は
130μmであった。
Example 2 60% by weight of the powder of the thermoplastic polyimide of Example 1 and 40% by weight of the polyetheretherketone powder were mixed, and this was further mixed into a twin-screw extruder (barrel temperature 380 to 410 ° C.).
It was kneaded and pelletized. The pellets thus obtained were extruded into a tubular shape in the same manner as in Example 1. The obtained tube body had an outer diameter of 0.75 mm and a wall thickness of 130 μm.

【0029】実施例1及び2の夫々のチューブをループ
状に折曲げを繰り返して、折曲げ時の抵抗を官能的に比
較したところ、実施例2の方がその抵抗は小さく、折曲
げ易いことが分かった。又、ルーブ状態で手を放すと両
者共、同じように元の位置に復帰し、良好な弾性を有し
ていることが分かった。
When the tubes of Examples 1 and 2 were repeatedly bent in a loop shape and the resistances during bending were compared functionally, the resistance of Example 2 was smaller and the bending was easier. I understood. It was also found that when both hands were released in the lube state, both of them returned to their original positions in the same manner and had good elasticity.

【0030】また、前記と同様に犬の足の静脈から脳の
方向に該チューブ体を挿入したが、スムースに挿入さ
れ、また抜取る時も抵抗はなく、実施例1とほとんど差
はなかった。
Further, the tube was inserted from the vein of the paw of the dog in the direction of the brain in the same manner as described above, but it was inserted smoothly, and there was no resistance during withdrawal, and there was almost no difference from Example 1. .

【0031】この際、これら実施例1、2と比較例1の
ヤング率を比べると、実施例1から順に24,000k
g/cm、28,000kg/cm、3,000k
g/cmであり、このことからも本発明のカテーテル
用チューブ状部材は適度の柔軟性と適度の剛性を備えた
ものであると言うことができる。
At this time, comparing the Young's moduli of Examples 1 and 2 and Comparative Example 1, 24,000 k in order from Example 1
g / cm 2 , 28,000 kg / cm 2 , 3,000 k
Since it is g / cm 2 , it can be said from this also that the tubular member for a catheter of the present invention has appropriate flexibility and appropriate rigidity.

【0032】実施例3 環状ダイスのスリット巾を0.8mm(外径3.9m
m、内径2.3mm)にする以外、実施例1と同様にし
てチューブ体を押出成形した。但し本例では吐出量を4
00g/時間とし、該ダイスの中心からエアーを送気し
つつ押出成形を開始し、チューブの成形が順調に行わ
れ、引取速度が2.68m/分に調整されたことを確認
したら、次に引取速度を2.68m/分から20m/分
に連続的に加速して引取た。この際10.6秒を要して
20m/分に到達するように調整した。これによって引
取られたチューブは長さ2mであり、ここで10.6秒
程過ぎた時点で、引取速度が20m/分に到達したら、
次には初期速度の2.68m/分に、10.6秒を要し
て連続的に減速した。これによって引取られたチューブ
の長さは2mであった。以上を1サイクルとして合計1
0回繰返して40m成形して終了した。
Example 3 The slit width of the annular die was 0.8 mm (outer diameter 3.9 m).
m, inner diameter 2.3 mm) except that the tube body was extruded in the same manner as in Example 1. However, in this example, the discharge amount is 4
It was set to 00 g / hour, extrusion molding was started while air was being fed from the center of the die, and it was confirmed that the tube was smoothly molded and the take-up speed was adjusted to 2.68 m / min. The take-up speed was continuously accelerated from 2.68 m / min to 20 m / min for take-up. At this time, it was adjusted to reach 20 m / min in 10.6 seconds. The tube taken up by this is 2 m in length, and when the take-up speed reaches 20 m / min at about 10.6 seconds,
Next, the initial speed of 2.68 m / min was continuously decelerated for 10.6 seconds. The length of the tube collected by this was 2 m. The above is 1 cycle and total 1
The process was repeated 0 times to form 40 m, and the process was completed.

【0033】得られたチューブは、10.6秒を要し引
取速度が20m/分に到達した押出位置で最小の内外径
を有するテーパー状チューブであることが確認された。
このようにして得られたチューブを長さ2mづつにカッ
トし、テーパー状チューブ体を20本得た。かかる2m
のチューブ体の最先端と最基端の内外径を測定したとこ
ろ、最先端の外径は0.35mm、内径は0.30mm
(肉厚は50μm)で最基端の外径は0.95mm、内
径は0.81mm(肉厚140μm)であった。
It was confirmed that the obtained tube was a tapered tube having the smallest inner and outer diameters at the extrusion position where it took 10.6 seconds and the take-up speed reached 20 m / min.
The tube thus obtained was cut into pieces each having a length of 2 m to obtain 20 tapered tube bodies. 2m
The inner and outer diameters of the tip and the proximal end of the tube body were measured, and the tip outer diameter was 0.35 mm and the inner diameter was 0.30 mm.
(The wall thickness was 50 μm), the outermost diameter of the proximal end was 0.95 mm, and the inner diameter was 0.81 mm (wall thickness 140 μm).

【0034】このテーパー状チューブの先端部分は実施
例1の同形状チューブよりも柔軟であり、基端部分は実
施例1と同じような硬さであった。そしてこれを比較例
1で行ったと同様に犬を使って、挿入テストをしたとこ
ろ、実施例1に比較して挿入がよりし易く、また抜取り
もよりし易かった。
The tip portion of this tapered tube was more flexible than the tube of the same shape as in Example 1, and the base portion had the same hardness as in Example 1. When an insertion test was performed using a dog in the same manner as in Comparative Example 1, the insertion was easier and the extraction was easier than in Example 1.

【0035】[0035]

【発明の効果】本発明のカテーテル用チューブ状部材は
前記のとおり構成されているので、次のような効果を奏
する。即ち、体内への挿入距離が長くても、極めてスム
ースに、痛みを伴うようなこともなく、迅速に挿入する
ことができ、引抜くときもスムースに迅速に行える。従
って挿入や引抜き操作中に、屈折して医療がストップす
るようなトラブルはない。
Since the tubular member for a catheter of the present invention is constructed as described above, it has the following effects. That is, even if the insertion distance into the body is long, the insertion can be performed very smoothly and without causing pain, and the insertion can be smoothly and swiftly performed even when withdrawn. Therefore, there is no trouble that the medical treatment stops due to bending during the insertion or withdrawal operation.

【0036】また、本発明はチューブ体の基端部分から
先端部分に向かって、チューブの肉厚を徐々に薄く形成
することも可能で、かつ外径がテーパー状になっている
チューブも得ることができるので、体内への挿入がより
スムースとなり、痛みや違和感はより軽減される。特に
先端部分の適度な柔軟性による痛みの軽減効果は大き
い。尚、違和感については一般に体内で先端部分の位置
を変える時に感じるが、本発明では先端部分の適度の柔
軟性のためにこうした違和感をあまり感じないことが確
認された。
Further, according to the present invention, it is possible to gradually reduce the wall thickness of the tube from the base end portion to the tip end portion of the tube body, and to obtain a tube having a tapered outer diameter. As a result, the insertion into the body becomes smoother, and pain and discomfort are further reduced. In particular, the moderate flexibility of the tip portion has a great effect of reducing pain. It should be noted that it is generally felt that the discomfort is felt when the position of the tip portion is changed in the body, but in the present invention, such discomfort is not felt so much due to the appropriate flexibility of the tip portion.

【0037】更に本発明ではチューブ体全体の径を小さ
くして、かつ内径を大きくすることができるので、体内
への液体の注入、逆に分泌物、血液等の体外への排出、
吸引もより迅速に短時間で終了する。即ち、本発明は肉
厚を極めて薄くすることにより、前記の如く内径を大き
くすることができ、このために適度な強度と剛性が保持
されるのである。従って、肉厚と剛性とを調整すること
により種々のタイプのカテーテル用チューブ状部材を得
ることができる等の格別な効果を奏し、人間を始めとし
てその他の動物用としても有効に使用できる。更に本発
明は内視のための照明用ファイバー、イメージガイド、
フラッシュ孔等として、また適宜の工業用としての用途
も考えられる。
Further, according to the present invention, since the diameter of the entire tube body can be made small and the inner diameter can be made large, it is possible to inject the liquid into the body and, conversely, to discharge secretions, blood and the like out of the body,
Suction is completed more quickly and in a shorter time. That is, in the present invention, by making the wall thickness extremely thin, the inner diameter can be increased as described above, and therefore, appropriate strength and rigidity can be maintained. Therefore, by adjusting the wall thickness and the rigidity, it is possible to obtain special effects such as obtaining various types of tubular members for catheters, and it can be effectively used not only for humans but also for other animals. Further, the present invention provides an illumination fiber for internal vision, an image guide,
It is also conceivable that it can be used as a flash hole or the like, or as an appropriate industrial use.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性ポリイミド樹脂を主成分としたシ
ームレス状のチューブ体からなるカテーテル用チューブ
状部材。
1. A tubular member for a catheter comprising a seamless tubular body containing a thermoplastic polyimide resin as a main component.
【請求項2】熱可塑性ポリイミド樹脂55〜95重量%
及びポリエーテルエーテルケトン樹脂45〜55重量%
を含有するシームレス状のチューブ体からなるカテーテ
ル用チューブ状部材。
2. Thermoplastic polyimide resin 55-95% by weight
And polyether ether ketone resin 45 to 55% by weight
A tubular member for a catheter, which comprises a seamless tubular body containing.
【請求項3】チューブ体が、少なくとも先端部分に向っ
て最先端が細くなるようにテーパー状の形状を有してな
る請求項1又は2に記載のカテーテル用チューブ状部
材。
3. The tubular member for a catheter according to claim 1, wherein the tubular body has a tapered shape such that the tip end becomes thin toward at least the distal end portion.
【請求項4】チューブ体が、ヤング率10,000〜5
0,000kg/cmの範囲にある請求項1から3の
いづれかに記載のカテーテル用チューブ状部材。
4. The Young's modulus of the tube body is 10,000 to 5
The tubular member for a catheter according to any one of claims 1 to 3, which is in a range of 50,000 kg / cm 2 .
JP7046091A 1995-01-26 1995-01-26 Cathether tubular member Pending JPH08196619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7046091A JPH08196619A (en) 1995-01-26 1995-01-26 Cathether tubular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7046091A JPH08196619A (en) 1995-01-26 1995-01-26 Cathether tubular member

Publications (1)

Publication Number Publication Date
JPH08196619A true JPH08196619A (en) 1996-08-06

Family

ID=12737327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7046091A Pending JPH08196619A (en) 1995-01-26 1995-01-26 Cathether tubular member

Country Status (1)

Country Link
JP (1) JPH08196619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326226A (en) * 2005-05-30 2006-12-07 Nipro Corp Guiding catheter
JP2008183226A (en) * 2007-01-30 2008-08-14 Hirakawa Hewtech Corp Catheter tube, catheter tube continuous body, and method of manufacturing catheter tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326226A (en) * 2005-05-30 2006-12-07 Nipro Corp Guiding catheter
JP2008183226A (en) * 2007-01-30 2008-08-14 Hirakawa Hewtech Corp Catheter tube, catheter tube continuous body, and method of manufacturing catheter tube

Similar Documents

Publication Publication Date Title
EP0738169B1 (en) Catheter with thermoplastic polyimide balloon
US6224803B1 (en) Method of forming a thin walled member by extrusion and medical device produced thereby
US5085649A (en) Torque controlled tubing
DE69914882T2 (en) COMPOSITION AND METHOD FOR PRODUCING PBT CATHETER BALLOONS
JPH1066726A (en) Catheter and its manufacture
US6443925B1 (en) Balloon catheter shaft formed of liquid crystal polymeric material blend
JPWO2006077951A1 (en) Catheter and method for manufacturing the same
JP4629668B2 (en) Tubing for medical devices having individually oriented regions
JP2008092969A (en) Multi lumen medical tube
US8608995B2 (en) Method for manufacturing a separated tip catheter
CN115782118A (en) Mold for producing sheath tube easy to tear, product and preparation method thereof
WO1995014501A1 (en) Radiopaque balloon catheters
CN1106743A (en) Production of thermoplastic polyurethane elastomer tube
JPH08196619A (en) Cathether tubular member
JP2007229452A (en) Medical tube and its manufacturing method
US8087923B1 (en) Extremely thin-walled ePTFE
US7407498B2 (en) Construction of medical components using gas assisted microcellular foaming
JP2001029450A (en) Medical polymer blend material and medical balloon using the same
CN115518203B (en) High mechanical strength transparent polypropylene medical microtube and preparation method thereof
US20240066846A1 (en) Thin wall lubricious polyethylene liners
JP2006181258A (en) Manufacturing method of microcatheter and microcatheter
CN115742236A (en) Manufacturing process of medical catheter with multi-section variable hardness
JP3324109B2 (en) How to form the tip of the indwelling needle
JP2017007313A (en) Blow molding method
JPH09313593A (en) Catheter balloon and manufacturing method thereof